
Central European Journal of Operations Research (2022) 30:1353–1367
https://doi.org/10.1007/s10100-021-00776-z

Numerical experiments with LP formulations of the
maximum clique problem

Dóra Kardos1 · Patrik Patassy1 · Sándor Szabó2 · Bogdán Zaválnij3

Accepted: 19 August 2021 / Published online: 5 September 2021
© The Author(s) 2021

Abstract
The maximum clique problems calls for determining the size of the largest clique in
a given graph. This graph problem affords a number of zero-one linear programming
formulations. In this case study we deal with some of these formulations. We consider
ways for tightening the formulations. We carry out numerical experiments to see the
improvements the tightened formulations provide.

Keywords Combinatorial optimization · Maximum clique problem · Zero-one linear
programming · Greedy coloring · Practical solutions of NP complete problems · LP
relaxation bounds

1 Introduction

All graphs appearing in this paper are finite simple graphs. In other words graphs
have finitely many nodes and finitely many edges. They do not have loops and double
edges. Let G = (V , E) be a finite simple graph, where V is the set of nodes and E
is the set of edges of G. Let U be a subset of V . If each two distinct vertices in U
are always adjacent in G, then we say that the subset U induces a clique Δ in G.
If U has k elements, then we say that Δ is a clique of size k or simply we say that

B Bogdán Zaválnij
bogdan@renyi.hu

Dóra Kardos
kaduabt@hotmail.com

Patrik Patassy
p.patrik08@outlook.com

Sándor Szabó
sszabo7@hotmail.com

1 University of Szeged, Szeged, Hungary

2 Institute of Mathematics and Informatics, University of Pecs, Pecs, Hungary

3 Alfred Renyi Institute of Mathematics, Budapest, Hungary

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10100-021-00776-z&domain=pdf
http://orcid.org/0000-0003-3060-0296

1354 D. Kardos et al.

Δ is a k-clique in G. A k-clique Δ in G is called a maximum clique if G does not
contain any (k + 1)-clique. A k-clique Δ in G is called a maximal clique if Δ is not a
subgraph of any (k + 1)-clique in G. Each maximum clique in G has the same size.
This well defined number is called the clique number of G and it is denoted by ω(G).
The following two problems are known as the k-clique problem and the maximum
clique problem, respectively.

Problem 1 Given a finite simple graph G and given a positive integer k. Decide if G
has a clique of size k.

Problem 2 Given a finite simple graph G. Determine the size of the maximum cliques
in G.

From the complexity theory of computation we know that these problems are com-
putationally hard. Namely, Problem 1, as a decision problem, belongs to the NP
complete complexity class. (For details see Garey and Johnson 2003 or Papadim-
itriou 1994.) On the other hand there are important practical problems which lead to
a k-clique or a maximum clique problem. Many applications are described in Bomze
et al. (1999) and many bench mark problems are given in Hasselberg et al. (1993).

The work horses in the majority of the real life clique search computations are
the Carraghan and Pardalos (1990) and the Östergård (2002) algorithms. Equipped
with pruning methods coming from elementary combinatorial considerations such as
coloring and matching, well tuned implementations of these algorithms are capable
of handling highly non-trivial instances. (See for example Konc and Janežič 2007;
Kumlander 2005; Tomita and Seki 2003.)

The maximum clique problem can be expressed as a linear program. In fact, there
are various linear programming (LP) reformulations of the maximum clique problem.
When a clique search instance falls out of the range of the combinatorial type algo-
rithms we may try to deploy the LP machinery. We may consider a sufficiently small
subgraph H of the given graph G. Applying a combinatorial algorithm to H we may
gather information that can be added to the linear program associated with G as a
cutting plane. In other words we may probe judiciously chosen subgraphs H of G and
test them by combinatorial algorithms. The LP machinery is then used to aggregate
these partial results to get an upper estimate of the clique number of the graph G. On
the other hand, if the graph is not big, one can use an integer linear programming (ILP)
solver for finding exact solutions as well. It is an empirical observation that typically
if the upper estimates are better, then the ILP solver can solve the problem faster. In
the paper we report on the results of these type of numerical experiments. Our paper
is essentially a case study, to compare the merits of various approaches by means of
numerical experiments.

The structure of the paper as follows. In Sect. 2 we describe the canonical formu-
lations of the maximum clique problem. In Sect. 3 we analyze these formulations and
their relations to each other. In Sect. 4 we propose new methods for tightening these
formulations. In Sect. 5 we introduce new cuts based on s-clique free node sets. In
Sect. 6 we propose a method for choosing which variable should be set binary and
which real formixed integer programming (MIP) approach solution. The last section is
summarizing the result of extended numerical measurements of affect of the described
and proposed methods.

123

Numerical experiments with LP formulations of the maximum… 1355

2 Canonical 0–1 LP reformulations

In this sectionwe describe some 0–1 linear programming equivalents for themaximum
clique problem we used. We have to mention that there are further 0–1 LP reformu-
lations of the maximum clique problem. Also we have to point out that these results
are not new and we have compiled them merely for the convenience of the reader.

LetG = (V , E) be a finite simple graph,where V = {v1, . . . , vn}. LetΔ be a clique
in G and let U be the set of nodes of Δ. We introduce decision variables x1, . . . , xn ,
xi ∈ {0, 1}. Here

xi =
{
1, if vi ∈ U
0, if vi /∈ U

for each i , 1 ≤ i ≤ n. The optimum value of the linear program

x1 + · · · + xn → max
xi + x j ≤ 1, for {vi , v j } /∈ E

gives the clique number of the graph G. This is the so-called edge reformulation and
it is the most commonly encountered reformulation. The linear program

x1 + · · · + xn → max∑
i∈I xi ≤ 1, for each independent set I of G

is known as the independent set reformulation of the maximum clique problem. In
practice instead of listing all independent sets only maximal independent sets are
listed, which is an equivalent formulation. The question about minimizing the listed
independent sets while keeping the correctness was discussed in Beke et al. (2021).

The above reformulations are part of the folklore. For the next reformulation we
need to introduce some notations. For a node v j of G we define the set NN (j) which
contains all non-neighbors of v j in G. Although node v j is not adjacent to itself v j is
not considered to be an element of NN (j). The cardinality of NN (j) is denoted by
h j . More preciselly

h j =
{ |NN (j)|, if NN (j) �= ∅
1, if NN (j) = ∅

or equivalently we set h j = max{1, |NN (j)|}. Since we are assuming that G does not
contain any full rank node we may afford to be a little sloppy. Croce and Tadei (1994)
have advanced the following linear program

x1 + · · · + xn → max
h j x j + ∑

i∈NN (j) xi ≤ h j , for each j, 1 ≤ j ≤ n

to solve the maximum clique problem.

123

1356 D. Kardos et al.

Let us suppose that the nodes of the graph G are listed in the way v1, v2, . . . , vn
and we keep this ordering of the nodes fixed. Let NN+(i) be the set of non-neighbors
of the node v j in the set {v j+1, . . . , vn} and we set

h+
j =

{ |NN+(j)|, if NN+(j) �= ∅
1, if NN+(j) = ∅

or equivalently we set h+
j = max{1, |NN+(j)|}. The reader can verify that the linear

program

x1 + · · · + xn → max
h+
j x j + ∑

i∈NN+(j) xi ≤ h+
j , for each j, 1 ≤ j ≤ n

can be used to solve the maximum clique problem . We may call this LP the triangle
shape formulation of the maximum clique problem. The reason we included this
reformulation is that certainLP solverswork very rapidlywith triangle shape constraint
matrix.

The number of the variables is n in each program, where n is the number of nodes
of the given graph G. The number of the constraints is n in the Croce–Tadei and in
the triangle shape reformulations. The number of constraints is O(n2) in the edge
reformulation. The number of constraints in the independent set reformulation can
be O(2n). There are graphs having a large number of maximal independent sets.
The Bron–Kerbosch algorithm (Bron and Kerbosch 1973) can be used to generate all
maximal cliques of the input graph. Applying the Bron–Kerbosch algorithm to the
complement of G the maximal independent sets of G will be available. Thus there is
a practical way to set up the independent set reformulation when the number of the
nodes of the graph G is not overly large.

Listing all maximal cliques in order to find the a maximum clique does not look a
sensible idea at the first glance. When the edge density of the graph G is low, that is,
when the graph is sparse the maximum clique problem is not too hard. We will use the
linear program only when the graph G is dense. In this situation G the complement
of the graph G is sparse and the problem of listing all maximal cliques of G can be
much easier than locating a maximum clique in G.

We will call the node vi of the graph a full degree node of G if vi is adjacent to
each other node of the graph G. Clearly a full degree node vi has degree n− 1 and the
problem of finding a maximum clique in G can be reduced to the problem of finding a
maximum clique in the graph induced by V \ {vi }. When vi is a full degree node in G,
then the variable xi is missing from the constraints of the formulations we described.
But xi is present in the objective function. Therefore xi = 1 must hold in each optimal
solution. It is straight-forward to detect full degree nodes in a graph. From this reason
we assume that we deal with the situation when the given graph G does not have any
full degree node.

123

Numerical experiments with LP formulations of the maximum… 1357

3 Connections between the LP reformulations

There are intimate connections among the three reformulations. Let I be an inde-
pendent set of G with three elements. For the sake of definiteness suppose that
I = {v1, v2, v3}. The inequalities x1 + x2 ≤ 1, x2 + x3 ≤ 1, x1 + x3 ≤ 1 are
constraints of the edge reformulation. Adding them up gives 2x1 + 2x2 + 2x3 ≤ 3.
Dividing by 2 we get x1 + x2 + x3 ≤ 1.5. Since the left hand side is an integer we may
chop off the fractional part of the right hand side which gives x1 + x2 + x3 ≤ 1. This
inequality is a constraint of the independent set reformulation. In short a constraint in
the independent set reformulation which is associated with an independent set of car-
dinality three belongs to the rank 1 Chvátal closure of the edge reformulation (Chvátal
1973).

Let I be an independent set of G with four elements. For the sake of simplicity
assume that I = {v1, v2, v3, v4}. The inequalities x1+x2 ≤ 1, x1+x3 ≤ 1, x1+x4 ≤ 1,
x2 + x3 ≤ 1, x2 + x4 ≤ 1, x3 + x4 ≤ 1 are constraints of the edge reformulation. As
we have seen the inequalities x1 + x2 + x3 ≤ 1, x1 + x2 + x4 ≤ 1, x1 + x3 + x4 ≤ 1,
x2 + x3 + x4 ≤ 1 belong to the rank 1 Chvátal closure of the edge reformulation.
Adding them up gives 3x1 + 3x2 + 3x3 + 3x4 ≤ 4. Dividing by three and rounding
on the right hand side leads to x1 + x2 + x3 + x4 ≤ 1. Thus a constraint in the
independent set reformulation that is associated with an independent set of cardinality
four belongs to the rank 2 Chvátal closure of the edge reformulation. In general if I
is an independent set of G with |I | = s, then the constraint in the independent set
reformulation associated with I belongs to the rank (s − 2) Chvátal closure of the
edge reformulation.

Since the constraints of the independent set reformulation are in the Chvátal closure
of the edge reformulation (with various ranks) the independent set reformulation is a
tighter formulation of the maximum clique problem than the edge reformulation. (For
more details about the Chvátal rank of a constraint see Chvátal (1973).)

Let us consider the edge reformulation. We may collect all constraints containing
variable x j . Adding up these constraints we get the j-th constraint of the Croce–Tadei
reformulation. In fact, for 0–1 variables these constraints are equivalent, as they both
proper formulations.

3.1 Case of continuous variables

If instead of using 0–1 variables we use continuous variables, we look for the solution
of the relaxed problem (Dantzig 1993), the Croce–Tadei reformulation is only a con-
sequence of the edge reformulation, and the latter is tighter. This can be proven by a
simple example. Consider the path P4, consisting of nodes 1, 2, 3, 4, which are repre-
sented in the LP by variables x1, x2, x3, x4. The constraints for the edge reformulation
are:

x1 + x3 ≤ 1
x1 + x4 ≤ 1
x2 + x4 ≤ 1

123

1358 D. Kardos et al.

The constraints for the Croce–Tadei reformulation are:

2x1 + x3 + x4 ≤ 2
1x2 + x4 ≤ 1
1x3 + x1 ≤ 1
2x4 + x1 + x2 ≤ 2

The substituted values x1 = 2/3, x2 = 0, x3 = 0, x4 = 2/3 forms a feasible
solution of the Croce–Tadei reformulation but not a solution of the edge reformulation.
In general, the set of feasible solutions of the continuous relaxation of the Croce–Tadei
reformulation can be strictly larger than the set of the feasible solutions of the edge
reformulation.

On the other hand, even if the reformulation is less tight, the Croce–Tadei reformu-
lation uses much less number of constrains. It may be the case that the linear program
for the Croce–Tadei reformulation can fit into the memory of the computer. So on one
hand the edge reformulation may give a better upper estimate, but sometimes it is not
solvable as being too big for computer memory.

4 Tightening the formulations

As we have seen all reformulations of the clique problem are equivalent in 0–1 LP, as
the sets of the solutions are the same. In continuous LP that is for the relaxed problem
they may and are differ. This fact is important for two reasons. First, sometimes one
would only seek for an upper bound by solving the relaxed problem. Second, the
solvers for 0–1 LP mostly use some Branch-and-Bound method and solve several
times the relaxed problem to find the integral solution. In both cases tightening the
formulation has crucial role.

Let G = (V , E) be a finite simple graph such that |V | = n and G does not have
any full degree node.

Let {x1, . . . , xn} ∈ [0, 1] : note that x1 = 0.5, . . . , xn = 0.5 is a feasible solution
of the edge and the Croce–Tadei formulations. This means that n/2 is the lower bound
for the objective function of the relaxed problem for both reformulations. Thus for
those cases, where ω(G) � n/2 the relaxed optimum is not a good upper bound.
Note, that for hard clique problems this is usually the case, as for cases if ω(G) is near
to n, that is n − ω(G) is small, the problem coincides with the vertex cover problem
and can be solved in fixed parameter time (Cygan et al. 2015).

Our first proposed method is a tactical modification of the Croce–Tadei formula-
tions. Let Hi be the subgraph of G induced by NN (i) and set αi = ω(Hi). The reader
may notice that the number hi can be replaced by αi in the Croce–Tadei formulation
for each i , 1 ≤ i ≤ n. When αi < hi the new formulation is tighter than the original.
For example x1 = 0.5, . . . , xn = 0.5 is not a feasible solution any longer. In case the
graphs H1, . . . , Hn are too large to compute the clique numbers ω(H1), . . . , ω(Hn),
then we may use any upper bounds of these numbers we may lay our hands on. For
example if the nodes of Hi can be legally colored using βi colors then αi ≤ βi holds
and consequently hi can be replaced by βi .

123

Numerical experiments with LP formulations of the maximum… 1359

Our proposed second method for tightening the formulation is by adding new con-
straints. Suppose that I is an independent set of G such that |I | ≥ 3. For the sake of
definiteness suppose that I = {v1, v2, v3, v4}. Now the constraint x1+x2+x3+x4 ≤ 1
can be appended to the edge and the Croce–Tadei formulations. In this way we get
tighter formulations. For example x1 = 0.5, . . . , xn = 0.5 is not a feasible solution
any longer.

We have carried out a large scale numerical experiment to compare these formula-
tions. The results are summarized in tables. The details are described in Sect. 7.

5 Generating new cuts

Note that legal coloring of the nodes can be used to construct independent sets of the
given graphG. In fact, a color classC of a legal coloring of the nodes is an independent
set. The constraint

∑
i∈C xi ≤ 1 then can be appended to the LP formulation of the

maximum clique problem. It may happen that this new constraint sorts out the optimal
solution of the continuous version of the LP and we get a better upper estimate of the
clique number of the graph G.

There are further ways to locate independent sets in the given graphG. For instance
applying clique search algorithm to the complement graph G can be used to find (not
necessarily optimal) cliques in G which in turn can provide independent sets in G.

We generalize the concept of independent set. Let G = (V , E) be a finite simple
graph and let s be an integer. A set I of V is called an s-clique free set if the subgraph
ofG induced by I does not contain any s-clique. (See Szabó 2011; Szabó and Zaválnij
2012.) The independent sets of G are the 2-clique free sets of G. Note that if I is an
s-clique free set in G, then the inequality

∑
i∈I xi ≤ s − 1 must hold.

Any maximum clique algorithm can be used to locate various s-clique free sets.
Let I be a subset of V and let H be the subgraph of G induced by I . If ω(H) = k,
then I is a (k + 1)-clique free set of G. In our computations we used the Östergård
algorithm (Östergård 2002) to locate s-clique free sets.

Here is what we have done. We started with a 0–1 LP formulation of the maximum
clique problem.We have solved the continuous relaxation of the LP and get the optimal
solution [α1, . . . , αn]. We have rearranged the components of the optimal solution
to a decreasing order to get γ1, . . . , γn . here γ1 is the largest and γn is the smallest
among the numbersα1, . . . , αn . There is a permutation p(1), . . . , p(n) of the elements
1, . . . , n such that γ j = αp(j) for each j , 1 ≤ j ≤ n. We consider the sets of nodes
I j = {vp(1), . . . , vp(j)}. If I j is an s-clique free set ofG and s−1 < αp(1)+· · ·+αp(j),
then the optimal solution [α1, . . . , αn] violates the constraint xp(1)+· · ·+xp(j) ≤ s−1.
In short, using Östergård algorithm we may find a cut for the LP we are working with.
This is a more systematic way to construct tighter LP formulation. It may happen that
the graph induced by the set I j is too large for the combinatorial maximum clique
algorithm. In this case we give up our attempt to tighten the formulation in this way.
Also it may happen adding a large number of new cuts constructed in this way do not
improve the upper estimate of the clique sufficiently. In this case again we abandon
the attempt to tighten the formulation. This is the time to divide the clique search into
smaller instances.

123

1360 D. Kardos et al.

6 Mixed integer programming approach

In previous sections we described both 0–1 LP and continuous (relaxed) LP solutions
of the clique problem. The first approach is exact but obviously slow, while the second
approach gives us only an upper bound but much faster. We would like to spend
more time to produce a better upper bound. The Mixed Integer Programming (MIP)
approach can provide this. If one would prescribe some of the variables to be binary
and the other variables to be continuous then the optimum value probably go down
(never up) and we would get a better upper bound. The question is which and how
many of the variables should we prescribe to be binary?

It is an empirical fact that the running time of a mixed integer program is greatly
influenced by the number of the integer variables and less sensitive to the number of the
continuous variables. In ourMIP approach with the LP reformulation of the maximum
clique problem we present here most of the variables should be continuous and a few
variables should be integer. In this section we describe some MIP reformulation of
maximum clique problem. The Tables 1, 2, 3 and 4 show ILP results, while Table 5
shows MIP results.

Let [α1, . . . , αn] be the optimal solution of the continuous relaxation of the 0–1 LP
formulation. Our assumption was when we solve the relaxation of LP, the variables
which will be close to 1 may be members of the maximum clique. Thus we choose the
average value as cut-off, and so variables over average to be binary and below average
to be continuous. Namely, we computed α the average of the α j values. We kept the
variable x j continuous whenever the inequality α > α j holds and made the remaining
variables integer. Note, that this approach can be iterated, and new variables can be
chosen to be binary from the continuous variables by looking at the solution of the
MIP. We continue this until we got solution in reasonable time or all variable reach 0
or 1.
The steps for the described algorithm are:

1. solve the MIP and examine the value of the MIP variables;
2. set a part of variables to integer by using heuristic described above;
3. after prescribing variables to be binary repeat from step 1.

The objective value of the MIP solutions getting closer to the maximum clique size
with each iteration. Naturally this approach is not particularly promising when the
α1, . . . , αn numbers are all equal or are close to each other.

7 The numerical results

In this section we describe the test problems we used for our experiments and we
present the results of the numerical experiments we carried out. We used test problems
from various sources to compare the canonical and our new formulations. The graphs
are the most commonly used DIMACS benchmark test problems from the second
DIMACS challenge1 (Hasselberg et al. 1993), graphs of combinatorial problems of

1 ftp://dimacs.rutgers.edu/pub/challenge/.

123

ftp://dimacs.rutgers.edu/pub/challenge/

Numerical experiments with LP formulations of the maximum… 1361

monotonic matrices (Weisstein, Szabó 2013), and well-known graphs coming from
coding theory, namely Deletion-Correcting Codes2 (Sloane).

7.1 Canonical formulations

In Table 1 we collected the relaxed optimum values of several canonical formulations,
which gives us an upper bound for the clique size. The running time for the LP solver
was always below 1 minute. The first column (“graph”) of Table 1 holds the name
of the graph. The second, third, fourth columns contain the number of nodes (“|V |”),
then number of edges (“|E |”), and the clique number of the graph (“ω”), respectively.

The Bron–Kerbosch algorithm is designed to list all maximal cliques of a given
graph G. The maximal cliques of G are independent sets of the complement graph G
and so the Bron–Kerbosch algorithm can be used to set up the independent set 0–1 LP
formulation of the maximum clique problem. The continuous relaxation of the 0–1
program provides an upper bound for ω(G). In Table 1 the column labeled by ωBK

contains these estimates.
Since listing all maximal independent sets of a given graph is computationally

demanding we have experimented with relaxation of the independent set formulation.
Namely, instead of using all independent sets we used only a few of them which are
relatively easy to compute.

Choosing a node v with maximum degree in the graph G and restricting G to the
neighbors of v then repeating this procedure in connection with the remaining graph
eventually leads to a not necessarily maximum clique in G. We refer to this method
as the maximum degree rule. Applying the maximum degree rule to the complement
graph G provides an independent set in G. After deleting the located independent set
wemay locate a new independent set in the remaining graph.The family of independent
sets we collect in this way are used to set up a relaxed version of the independent set
formulation. In Table 1 the column labeled by ωM contains the upper bound for ω(G)

we obtain in this way.
In place of the maximum degree rule one can use, say the Östergård algorithm,

which locates a maximum clique not only a suboptimal clique. In Table 1 the column
labeled by ωO contains the upper bound for ω(G) one can get in this manner.

If each node of the graph G is colored with exactly one color such that adjacent
nodes do not receive the same color, thenwe say that the nodes ofG are legally colored.
The set of nodes receiving the same color is called a color class. Plainly color classes of
a legal coloring of the nodes of G are independent sets of G. For a finite simple graph
G there is an integer k such that the nodes of G can be colored with k colors legally
and cannot be colored with (k−1) colors legally. This well defined number k is called
the chromatic number of G and it is denoted χ(G). Determining χ(G) is an NP-hard
problem. However greedy algorithms can provide legal colorings with suboptimal
number of colors relatively easily. So we may add the constraints associated with the
color classes to any LP formulation of the maximum clique problem. In Table 1 the
columns labeled by ωMC , ωOC contain the upper bound for ω(G) we get when added

2 http://neilsloane.com/doc/graphs.html.

123

http://neilsloane.com/doc/graphs.html

1362 D. Kardos et al.

Table 1 Upper bounds obtained by relaxation of the canonical formulations and added new cuts

Graph |V | |E | ω ωM ωMC ωO ωOC ωBK

brock200_3 200 12,048 15 33.63 33.10 31.75 31.30 27.23

brock200_4 200 13,089 17 36.49 35.49 35.18 34.74 –

brock400_2 400 59,786 29 74.02 73.07 – – 64.27

c-fat500-5 500 23,191 64 64.00 64.00 – – –

c-fat500-10 500 46,627 126 126.00 126.00 – – –

hamming10-2 1024 518,656 512 512.00 512.00 512.00 512.00 512.00

hamming10-4 1024 434,176 40 89.37 74.00 – – –

keller4 171 9435 11 15.00 15.00 15.00 15.00 14.82

keller5 776 225,990 27 31.00 31.00 – – –

p_hat300-1 300 10,933 8 27.28 22.00 – – –

p_hat300-2 300 21,928 25 50.23 42.89 – – –

p_hat300-3 300 33,390 36 67.06 64.14 64.23 62.14 54.31

p_hat500-3 500 93,800 50 105.42 100.85 – – 83.20

san200_0.7_1 200 13,930 30 35.21 30.00 35.31 30.00 30.00

san200_0.7_2 200 13,930 18 30.34 19.00 21.86 18.00 18.00

san200_0.9_3 200 17,910 44 58.42 44.00 50.03 44.00 44.00

monoton-7 343 46,305 19 33.00 28.00 30.50 27.66 23.97

monoton-8 512 106,624 23 43.00 40.00 32.00 32.00 30.89

matr-del-8 256 28,801 30 42.24 38.88 38.97 36.85 30.00

matr-del-9 512 121,089 52 75.56 71.27 69.04 67.33 53.31

the color class constraint to the formulations coming from the maximum degree rule
and the Östergård algorithm.

Table 1 shows the best result in bold face. As one would expect the Bron–Kerbosch
algorithm, which lists all maximal independent sets, gives the best result in the most
cases, but when the graph is sparse the complementary is dense and the algorithm
cannot finish in reasonible time (for example c-fat500-5, c-fat500-10 in the table have
“−′′, because the graph is sparse so the algorithm cannot not finished within 2 hours).
There are some cases when Östergård algorithmwith color classes can be successfully
completed but Bron–Kerbosch cannot. Other cases, when none of them can run, we
could use maximum degree rule with color classes to obtain the best result. Notable
result is that we could obtain optimal upper bound in 7 out of 20 cases.

It is a widely held opinion that tighter formulation leads to sharper upper bound, that
is the objective value of the relaxed problem, for the clique number of the given graph,
which in turns translates to shorter running time for solving the ILP. To check this we
produced Table 2, which contains the running times of ILP solutions in seconds. The
text “> 10” appears when we interrupted the program running after 10 hours. “−′′
show us if the necessary precondition could not run (create independent sets, color
classes etc.) The results does not meet the expectation and there seems no connection
between the relaxed objective value and ILP running times.

123

Numerical experiments with LP formulations of the maximum… 1363

Table 2 The running times in seconds of ILP solution for previous formulations

Graph |V | |E | ω ωM ωMC ωO ωOC ωBK

brock200_3 200 12,048 15 > 10h 731 > 10h > 10h 7548

brock200_4 200 13,089 17 > 10h 2880 > 10h > 10h –

brock400_2 400 59,786 29 > 10h > 10h – – > 10h

c-fat500-5 500 23,191 64 5 5 – – –

c-fat500-10 500 46,627 126 5 8 – – –

hamming10-2 1024 518,656 512 0 0 0 0 2

hamming10-4 1024 434,176 40 > 10h > 10h – – –

keller4 171 9435 11 341 281 397 228 544

keller5 776 225,990 27 > 10h > 10h – – –

p_hat300-1 300 10,933 8 > 10h 354 – – –

p_hat300-2 300 21,928 25 > 10h > 10h – – –

p_hat300-3 300 33,390 36 > 10h > 10h > 10h > 10h > 10h

p_hat500-3 500 93,800 50 > 10h > 10h – – > 10h

san200_0.7_1 200 13,930 30 13 0 8 1 0

san200_0.7_2 200 13,930 18 > 10h 34 113 58 5

san200_0.9_3 200 17,910 44 > 10h 221 169 119 13

monoton-7 343 46,305 19 > 10h > 10h > 10h > 10h 18025

monoton-8 512 106,624 23 > 10h > 10h > 10h > 10h > 10h

matr-del-8 256 28,801 30 > 10h > 10h > 10h > 10h 0

matr-del-9 512 121,089 52 > 10h > 10h > 10h > 10h 15637

7.2 Croce–Tadei formulation and its tightening

Results of the numerical experiments in connection with the relaxed Croce–Tadei
reformulation are presented in Table 3 indicating the best result in bold face. Column
headed by ω̂ contains the estimate of ω(G) provided by the continuous relaxation of
the original Croce–Tadei 0–1 LP formulation. The estimate provided by the tighter
formulation in which h j the cardinality of the set NN (j) is replaced by α j the clique
number of the graph Hj induced by NN (j) is in the column labeled by ω̂O . (We used
the Östergård algorithm to compute the clique number.)

Legal coloring of the nodes of G is referred as global coloring while the legal
coloring of the nodes of Hj is referred as local coloring. The column headed by ω̂OC

contains the estimates of the tighter version when we added constraints associated
with the color classes of a greedy global coloring.

In the next numerical experiment we did not compute the clique number α j of the
graph Hj rather we simply used β j the number of colors coming from a greedy legal
coloring of the nodes of Hj . These estimates are listed in the columns labeled by
ω̂L . Adding constraints associated with the colors classes of a greedy global coloring
provides the estimates in the column marked by ω̂LC .

We carried out similar experiments in connection with the triangle shape formula-
tion. Also we combined the constraints of each of the reformulations we have listed.

123

1364 D. Kardos et al.

Table 3 Upper bound obtained by relaxation of the Croce–Tadei formulation and some of its tightened
versions

Graph |V | |E | ω ω̂ ω̂O ω̂OC ω̂L ω̂LC

brock200_3 200 12,048 15 100.0 24.82 24.80 39.93 36.00

brock200_4 200 13,089 17 100.0 29.90 29.77 44.35 37.00

brock400_2 400 59,786 29 200.0 – – 94.43 80.00

c-fat500-5 500 23,191 64 250.0 67.93 64.00 67.93 64.00

c-fat500-10 500 46,627 126 250.0 143.46 126.00 143.46 126.00

hamming10-2 1024 518,656 512 512.0 512.00 512.00 512.00 512.00

hamming10-4 1024 434,176 40 512.0 – – 124.89 74.00

keller4 171 9435 11 85.5 21.12 15.00 28.11 15.00

keller5 776 225,990 27 388.0 – – 94.16 32.00

p_hat300-1 300 10,933 8 150.0 9.83 9.82 22.74 22.00

p_hat300-2 300 21,928 25 150.0 34.49 33.94 49.60 42.96

p_hat300-3 300 33,390 36 150.0 – – 78.22 65.96

p_hat500-3 500 93,800 50 250.0 – – 123.91 103.00

san200_0.7_1 200 13,930 30 100.0 – – 41.51 30.00

san200_0.7_2 200 13,930 18 100.0 – – 29.31 19.00

san200_0.9_3 200 17,910 44 100.0 79.17 44.00 79.28 44.00

monoton-7 343 46,305 19 171.5 28.09 27.91 30.86 28.00

monoton-8 512 106,624 23 256.0 37.20 37.14 41.45 40.00

matr-del-8 256 28,801 30 128.0 33.81 33.70 34.70 34.51

matr-del-9 512 121,089 52 256.0 59.94 59.57 61.16 60.67

The results were less good as for the original Croce–Tadei formulation, so in order to
keep the presentation short we decided not to include all of our measurements.

Croce–Tadei formulation with Östergård algorithm with color classes shows the
best result in accuracy. Other cases, when Östergård algorithm cannot give result us in
polynomial time, legal coloring could help us with color classes. Östergård algorithm
has the same problem like Bron–Kerbosch algorithm: when the graph has low density
the algorithm cannot run winthin the foreseeable future.

Ifwe take a look at Tables 1 and 3,we can see that heuristics improved the estimation
of the maximum clique number compared to original canonical formulations with
exception of the case when we list all maximal independent sets. The second set
concluded optimal with 5 from 20 cases. Again, we checked if there is a connection
between the objective value of the relaxed problem and the ILP solution running times.
This time as shown in Table 4 there is a clear connection, and the presumption that
tighter upper bound leads to faster ILP solution times turned out to be true for all cases.
This matter needs to be investigated more thoroughly in the future.

7.3 Generating s-clique free cuts

In our next numerical experiment we investigate effect of the s-clique free cuts
described in Sect. 5. We used the predefined ordering of the nodes of the underly-

123

Numerical experiments with LP formulations of the maximum… 1365

Table 4 The running time in seconds for ILP solution of Croce–Tadei formulation and some of its tightened
versions

Graph |V | |E | ω ω̂ ω̂O ω̂OC ω̂L ω̂LC

brock200_3 200 12,048 15 > 10h 4928 3093 > 10h > 10h

brock200_4 200 13,089 17 > 10h > 10h 19848 > 10h > 10h

brock400_2 400 59,786 29 > 10h – – > 10h > 10h

c-fat500-5 500 23,191 64 > 10h 168 0 124 0

c-fat500-10 500 46,627 126 > 10h > 10h 0 > 10h 0

hamming10-2 1024 518,656 512 0 0 0 0 0

hamming10-4 1024 434,176 40 > 10h – – > 10h > 10h

keller4 171 9435 11 > 10h 19091 416 > 10h 248

keller5 776 225,990 27 > 10h – – > 10h > 10h

p_hat300-1 300 10,933 8 > 10h 41 43 > 10h > 10h

p_hat300-2 300 21,928 25 > 10h > 10h > 10h > 10h > 10h

p_hat300-3 300 33,390 36 > 10h – – > 10h > 10h

p_hat500-3 500 93,800 50 > 10h – – > 10h > 10h

san200_0.7_1 200 13,930 30 > 10h – – > 10h 0

san200_0.7_2 200 13,930 18 > 10h – – > 10h 6

san200_0.9_3 200 17,910 44 > 10h > 10h 15 > 10h 12

monoton-7 343 46,305 19 > 10h > 10h > 10h > 10h > 10h

monoton-8 512 106,624 23 > 10h > 10h > 10h > 10h > 10h

matr-del-8 256 28,801 30 > 10h > 10h > 10h > 10h > 10h

matr-del-9 512 121,089 52 > 10h > 10h > 10h > 10h > 10h

ing graph and performed the Östergård algorithm for 10 s. The new s-clique free cut
was added to the LP formulation. This procedure was iteratively repeated. Table 5
shows that the s-clique free cuts in the continuous relaxation solution are improving
the upper estimate for ω(G). Though at the beginning the improvement is substantial
as we addmore andmore cuts the improvement diminishes. In the end if wewould like
to reduce the optimum value we need to add too many constrains and so the running
time of solving the problem increases. The results in the table are connected to the
graph p_hat300-2. This behavior is typical and so we decided not to include further
similar measurements. Note, that this approach could reduce the objective function
value as well as shorten the running time. Though further experiments are needed to
tune the number of cuts needed to be added for optimal performance.

7.4 IteratedMIP approach

The last numerical experiment we performed was the iterated approach for mixed
integer reformulation of the maximum clique problem. We performed the procedure
described in Sect. 6 and set the above average variables to be binary. In the next
iteration we solved the MIP problem, and again set the above average real variables to
binary. If a variable was set to binary it remains so. We proceeded with the iterations

123

1366 D. Kardos et al.

Table 5 Number of s-clique free
cuts and the obtained upper
estimate for the p_hat300-2
graph

Number of cuts Estimate Running time (s)

21 30.44 1827

40 30.02 1747

57 29.99 1688

74 29.85 1898

407 28.99 3340

Table 6 Number of binary variables needed for solving the Mixed Integer Programming formulation to
optimality

Graph |V | |E | ω(G) 0–1 Variables Running time (s)

monoton-5 125 5500 11 47 2

monoton-6 216 17,550 14 80 501

C125.9 125 6963 34 53 14

gen400_p0.9_55 400 71,820 55 170 11033

MANN_a27 378 70,551 126 27 2

MANN_a45 1035 533,115 345 45 290

till all binary and real variables reached 0 or 1 value. For some graphs this procedure
could end in time limit thus producing optimal value, and for some graphs it could
not. Earlier mentioned methods with ILP do not terminate in a given time limit for
some cases shown in Tables 2 and 4. This approach when proceed, gives us the optimal
solution in our experiments. The last column of Table 6 contains the number of integer
variables needed for reaching optimality in suchmixed integer program. Naturally this
approach is not particularly promising when the α1, . . . , αn numbers are all equal or
are close to each other.

Acknowledgements Dóra Kardos and Patrik Patassy have been supported by the European Union, cofi-
nanced by the European Social Fund (EFOP-3.6.3-VEKOP16-2017-00002). The research of Sándor Szabó
and Bogdán Zaválnij was supported by National Research, Development and Innovation Office – NKFIH
Fund No. SNN–135643.

Funding Open access funding provided by ELKH Alfréd Rényi Institute of Mathematics.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

Numerical experiments with LP formulations of the maximum… 1367

References

Beke Á, Szabó S, Zaválnij B (2021) Some zero-one linear programming reformulations for the maximum
clique problem. Mathematica Pannonica 27(1):32–47

Bomze IM, Budinich M, Pardalos PM, Pelillo M (1999) The maximum clique problem, handbook of
combinatorial optimization, vol 4, Kluwer Academic Publisher

Bron C, Kerbosch J (1973) Finding all cliques of an undirected graph. Commun ACM 16:575–577
Carraghan R, Pardalos PM (1990) An exact algorithm for the maximum clique problem. Oper Res Lett

9:375–382
Chvátal V (1973) Edmonds polytopes and a hierarchy of combinatorial problems. DiscreteMath 4:305–337
Croce FD, Tadei R (1994) A multi-KP modeling for the maximum-clique problem. Eur J Oper Res 73:555–

561
Cygan M, Fomin FV, Kowalik L, Lokshtanov D, Marx D, Pilipczuk M, Saurabh S (2015) Parameterized

algorithms. Springer
Dantzig GB (1993) Linear programming and extensions. Princeton University Press, Princeton
Garey MR, Johnson DS (2003) Computers and intractability: a guide to the theory of NP-completeness.

Freeman, New York
Hasselberg J, Pardalos PM, Vairaktarakis G (1993) Test case generators and computational results for the

maximum clique problem. J Glob Optim 3:463–482
Konc J, Janežič D (2007) An improved branch and bound algorithm for the maximum clique problem.

MATCH Commun Math Comput Chem 58:569–590
Kumlander D (2005) Some practical algorithms to solve the maximal clique problem, PhD. Thesis. Tallin

University of Technology
Östergård PRJ (2002) A fast algorithm for the maximum clique problem. Discrete Appl Math 120:197–207
Papadimitriou CH (1994) Computational complexity. Addison-Wesley Publishing Company Inc, Reading
Sloane NJA, Challenge problems: independent sets in graphs. http://neilsloane.com/doc/graphs.html
Szabó S (2011) Parallel algorithms for finding cliques in a graph. J Phys Conf Ser 268:012030. https://doi.

org/10.1088/1742-6596/268/1/012030
SzabóS,Zaválnij B (2012)Greedy algorithms for triangle free coloring.AKCE Int JGraphsComb9(2):169–

186
Szabó S (2013) Monotonic matrices and clique search in graphs. Ann Univ Sci Budapest Sect Comput

41:307–322
Tomita E, Seki T (2003) An efficient branch-and-bound algorithm for finding a maximum clique. Lect Not

Comput Sci 2631:278–289
Weisstein EW,Monotonicmatrix. In:MathWorld: a wolframweb resource. http://mathworld.wolfram.com/

MonotonicMatrix.html

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://neilsloane.com/doc/graphs.html
https://doi.org/10.1088/1742-6596/268/1/012030
https://doi.org/10.1088/1742-6596/268/1/012030
http://mathworld.wolfram.com/MonotonicMatrix.html
http://mathworld.wolfram.com/MonotonicMatrix.html

	Numerical experiments with LP formulations of the maximum clique problem
	Abstract
	1 Introduction
	2 Canonical 0–1 LP reformulations
	3 Connections between the LP reformulations
	3.1 Case of continuous variables

	4 Tightening the formulations
	5 Generating new cuts
	6 Mixed integer programming approach
	7 The numerical results
	7.1 Canonical formulations
	7.2 Croce–Tadei formulation and its tightening
	7.3 Generating s-clique free cuts
	7.4 Iterated MIP approach

	Acknowledgements
	References

