
Central European Journal of Operations Research (2021) 29:1057–1077
https://doi.org/10.1007/s10100-020-00688-4

ORIG INAL PAPER

A note on computational approaches for the antibandwidth
problem

Markus Sinnl1,2

Published online: 3 June 2020
© The Author(s) 2020

Abstract
In this note, we consider the antibandwidth problem, also known as dual bandwidth
problem, separation problem and maximum differential coloring problem. Given a
labeled graph (i.e., a numbering of the vertices of a graph), the antibandwidth of a
node is defined as the minimum absolute difference of its labeling to the labeling of
all its adjacent vertices. The goal in the antibandwidth problem is to find a labeling
maximizing the antibandwidth. The problem is NP-hard in general graphs and has
applications in diverse areas like scheduling, radio frequency assignment, obnoxious
facility location and map-coloring. There has been much work on deriving theoretical
bounds for the problem and also in the design of metaheuristics in recent years. How-
ever, the optimality gaps between the best known solution values and reported upper
bounds for the HarwellBoeingMatrix-instances, which are the commonly used bench-
mark instances for this problem, are often very large (e.g., up to 577%). Moreover,
only for three of these 24 instances, the optimal solution is known, leading the authors
of a state-of-the-art heuristic to conclude “HarwellBoeing instances are actually a
challenge for modern heuristic methods”. The upper bounds reported in literature are
based on the theoretical bounds involving simple graph characteristics, i.e., size, order
and degree, and a mixed-integer programming (MIP) model. We present new MIP
models for the problem, together with valid inequalities, and design a branch-and-cut
algorithm and an iterative solution algorithm based on them. These algorithms also
include two starting heuristics and a primal heuristic. We also present a constraint
programming approach, and calculate upper bounds based on the stability number
and chromatic number. Our computational study shows that the developed approaches
allow to find the proven optimal solution for eight instances from literature, where
the optimal solution was unknown and also provide reduced gaps for eleven addi-
tional instances, including improved solution values for seven instances, the largest
optimality gap is now 46%.

B Markus Sinnl
markus.sinnl@jku.at

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10100-020-00688-4&domain=pdf
http://orcid.org/0000-0003-1439-8702

1058 M. Sinnl

Keywords Graph labeling · Integer programming · Constraint programming · Clique
problem · Bandwidth

1 Introduction andmotivation

Graph labeling problems are an important class of problems, which have been stud-
ied since the 1960s. In such problems, we are given a graph and we want to find
a labeling (i.e., a numbering of its vertices), such that a given objective function is
optimized. Problems in this class include the bandwidth problem (Cuthill and McKee
1969; Caprara and Salazar-González 2005) and variants of it like cyclic bandwidth
(Rodriguez-Tello et al. 2015), the linear arrangement problem (Caprara et al. 2011;
Rodriguez-Tello et al. 2008) and the cutwidth problem (Martí et al. 2013), see also the
surveys (Díaz et al. 2002; Gallian 2009). In this work, we consider the antibandwidth
problem (ABP), also known as dual bandwidth problem (Yixun and JinJiang 2003),
separation problem (Miller and Pritikin 1989) and maximum differential coloring
problem (Bekos et al. 2014). The ABP is NP-hard in general graphs and has appli-
cations in scheduling (Leung et al. 1984), radio frequency assignment (Hale 1980),
obnoxious facility location (Cappanera 1999) and map-coloring (Gansner et al. 2010).
Problem definition Let G = (V , E) be a graph, where V is the set of vertices and E is
the set of edges, and let n = |V | andm = |E |A labeling f of the vertices is a bijection
V → {1, . . . , n}, i.e., each vertex i ∈ V gets a unique label f (i) ∈ {1, . . . , n}. For a
graph G and a labeling f , the antibandwidth AB f (G) is

AB f (G) = min{AB f (i) : i ∈ V }

where

AB f (i) = min{| f (i) − f (i ′)| : {i, i ′} ∈ E}

is the minimum bandwidth of a vertex i ∈ V (we will also call this antibandwidth of
i). LetF(G) denote all labelings of G. The ABP consists of finding a labeling f ∗ that
maximizes AB f (G) and the corresponding value AB f ∗(G) is called antibandwidth
AB(G) of the graph, i.e.,

AB(G) = max
f ∈F

AB f (G)

For ease of readability, we write AB f instead of AB f (G) in the following. For later
use, for two numbers (labels) a, a′, let d(a, a′) = |a − a′| and for a set of numbers
A, let d(a, A) = mina′∈A |a − a′|; for a vertex i ∈ V , let δ(i) denote its degree and
Δ+ = maxi∈V δ(i),Δ− = mini∈V δ(i), denote themaximum, resp., minimum degree
of a vertex in the considered graph. Figure 1 shows an exemplary instance of the ABP
together with an optimal labeling.

Previous work In Miller and Pritikin (1989) and Yixun and JinJiang (2003) various
theoretical bounds for general graphs based on graph parameters like size, order,

123

A note on computational approaches for the antibandwidth problem 1059

A B C

D E F

G H I

5 1 6

2 7 3

8 4 9

(a) Instance (b) Optimal labeling

Fig. 1 Instance G and optimal solution, AB(G) = 3, as for edge {C, F}, we have | f (C) − f (F)| =
|6 − 3| = 3 (edge {E, H} also gives value three)

degree, stability number and chromatic number are presented. For certain classes of
graphs like Hamming graphs (Dobrev et al. 2013), hypercubes (Raspaud et al. 2009;
Wang et al. 2009), complete k-ary trees (Calamoneri et al. 2009), caterpillars and
spiders (Bekos et al. 2013, 2014) there exist tighter bounds and/or exact algorithms.

For general graphs, a variety of (meta-)heuristic approaches exist: Bansal and
Srivastava (2011) proposed a memetic algorithm, Duarte et al. (2011) develops a
generalized randomized adaptive search procedure with path relinking, Lozano et al.
(2012) presented a variable neighborhood search and Scott and Hu (2014) designed
a hill-climbing algorithm. Duarte et al. (2011) also introduced a mixed-integer pro-
gramming (MIP) model for the exact solution of the ABP, see Sect. 2 for the model.

Contribution and outline While there has been much work on deriving theoretical
bounds for the problem and also in the design of metaheuristics, the optimality gaps
between the best known solution values and reported upper bounds for the Harwell-
Boeing Matrix-instances, which are the commonly used benchmark instances for this
problem, are often very large (e.g., up to 577%, see Table 1 in Sect. 5). Only for
three of the 24 instances, the optimal solution is known. Aside from the upper bounds
provided by the MIP of Duarte et al. (2011), the upper bounds reported in literature
are based on the theoretical bounds involving simple graph characteristics, i.e., size,
order and degree, leading to the conclusion “On the contrary, the CBT, Hamming and
HarwellBoeing instances are actually a challenge for modern heuristic methods” in
Lozano et al. (2012), which presents a the state-of-the-art heuristic for the problem.1

In this note, we present two new MIP formulations for the problem and design
a branch-and-cut algorithm and an iterative solution algorithm based on them. The
branch-and-cut algorithms include valid inequalities, two starting heuristics and a
primal heuristic.We also calculate bounds by using the stability number and chromatic
numbers (these calculations are also done using MIPs to solve the associated NP-hard
problems). The developed approaches and calculations allow tofind the proven optimal

1 For the instance sets CBT, which are complete binary trees and Hamming, which are Hamming graphs,
graph-specific algorithms producing the optimal solution are known, see the Previous Work paragraph
above.

123

1060 M. Sinnl

solution for eight instances, where the optimal solution was not known, and reduced
gaps for eleven additional instances, including seven improved solution values. The
results reveal that the heuristics from literature presented for this problem actually
work quite well, and the large optimality gaps reported so far are mainly caused by
weak upper bounds.

In Sect. 2 we recall the theoretical bounds known for the problem and also the
MIP approach of Duarte et al. (2011), and also discuss calculation of the stability
number and chromatic number. In Sect. 3 we present our new MIP models and also
describe further details of our branch-and-cut algorithm and the iterative solution
algorithm, including valid inequalities and heuristics. Section 4 contains our constraint
programming formulation. Section 5 details the obtained computational results, and
Sect. 6 concludes the paper.

2 Upper bounds for the ABP

The following graph theoretic bounds are known.

Theorem 1 (Miller and Pritikin (1989); Yixun and JinJiang (2003)) Let G be a con-
nected graph, α(G) be the stability number of G and χ(G) be the chromatic number
of the graph. Then the following holds

1. AB(G) ≤ min
{
� n−Δ−+1

2 �, n − Δ+
}

2. AB(G) ≤ �n −
√
8m+1−1

2 �
3. AB(G) ≤ α(G)

4. AB(G) ≤ � n−1
χ(G)−1� .

Note that in previous work presenting heuristic approaches for the problem, aside
from using the bound provided by the MIP in Duarte et al. (2011) (see below), only
the first two bounds stated in Theorem 1 have been used to assess the quality of the
generated heuristic solutions.

To calculate the bounds 3. and 4. in Theorem 1, one needs to calculate the stability
number α(G), resp., the chromatic number χ(G), i.e., one needs to solve the NP-
hard (maximum) stable set problem (SSP) (also known as independent set problem),
resp., (minimum) graph-coloring problem (GCP). Both problems are well-studied in
literature and there are many different (exact and heuristic) solution approaches for
it, see, e.g., the tutorial (Rebennack et al. 2012) and the surveys (Galinier and Hertz
2006; Malaguti and Toth 2010) for more details on these problems. For our purposes
to calculate valid bounds for the ABP, we need the exact solution value (or the value
of a relaxation). To calculate these values, we used standard MIP-models for both
problems: For the SSP (see, e.g., Rebennack et al. (2012)), let binary variable xi = 1,
iff vertex i ∈ V is in the stable set. The problem can be formulated as follows.

α(G) = max
x∈{0,1}|V |

{ ∑
i∈V

xi : xi + xi ′ ≤ 1,∀{i, i ′} ∈ E
}
. (SSP)

123

A note on computational approaches for the antibandwidth problem 1061

For the GCP (see, e.g., Méndez-Díaz and Zabala 2006, 2008), let binary variable
xci = 1, iff vertex i ∈ V gets color c ∈ {1, . . . , |V |} in the solution, and let binary
variable wc = 1, iff color c ∈ {1, . . . , |V |} is used in the solution. The problem can
be formulated as follows.

χ(G) = min
x∈{0,1}|V |

{ ∑
c∈{1,...,|V |}

wc : xci + xci ′ ≤ wc,∀{i, i ′} ∈ E,∀c ∈ {1, . . . , |V |},
∑

c∈{1,...,|V |}
xci = 1,∀i ∈ V

}

Tospeed-up computation, insteadof c ∈ {1, . . . , |V |},weuse c ∈ {1, . . . , |UB(χ(G))|},
whereUB(χ(G)) is the value of an upper-bound forχ(G) obtained by a simple greedy
heuristic (Leighton 1979) for theGCP, the heuristic solution inducing this upper bound
value is also given as starting solution to the MIP-solver.

2.1 Mixed-integer programming approach of Duarte et al. (2011)

In Duarte et al. (2011), the following MIP-model based on a big-M formulation is
presented. Let binary variables x�

i take the value one if and only if vertex i gets
label � (i.e., fi = �). The following set of assignment constraints (VERTICES) and
(LABELS) make sure that every vertex gets an unique labeling.

∑
i∈V

x�
i = 1 ∀� ∈ {1, . . . , |V |} (VERTICES)

∑
�∈{1,...,|V |}

x�
i = 1 ∀i ∈ V (LABELS)

Let integer variables li ∈ {1, . . . , |V |} indicate the labeling of vertex i ∈ V . The
x-variables and l-variables can be linked with the following set of constraints.

∑
1≤�≤|V |

�x�
i = li ∀i ∈ {1, . . . , |V |} (LINK)

Finally, let binary variables yii ′ and zii ′ for {i, i ′} ∈ E indicate whether i has a
smaller label than i ′; if it has a smaller label, then yii ′ = 1, otherwise zii ′ = 1 (one
could get rid of one set of these variables, but we want to follow (Duarte et al. 2011)
exactly), and let variable b measure the value of the antibandwidth of the solution.
The ABP can than be formulated as follows (denoted as (Flit)).

max b

(VERTICES), (LABELS), (LINK)

b − (li − li ′) − 2(|V | − 1)yii ′ ≤ 0 ∀{i, i ′} ∈ E
(OBJ-1)

123

1062 M. Sinnl

b − (li ′ − li) − 2(|V | − 1)zii ′ ≤ 0 ∀{i, i ′} ∈ E
(OBJ-2)

yii ′ + zii ′ = 1 ∀{i, i ′} ∈ E
(OBJ-3)

x�
i ∈ {0, 1} ∀i ∈ V ,∀� ∈ {1, . . . , |V |}
li ∈ {1, . . . , |V |} ∀i ∈ V

yii ′ , zii ′ ∈ {0, 1} ∀{i, i ′} ∈ E

Constraints (OBJ-1), (OBJ-2), (OBJ-3)model b ≤ |li −li ′ |, ∀{i, i ′} ∈ E in a big-M-
constraint style and ensure that b correctly measures the antibandwidth of the solution
indicated by the selected l (resp., x)-variables: For {i, i ′} ∈ E , suppose vertex i has a
smaller label than i ′. Hence b can be at most di ′ − di . Since the objective functions
maximizes, yii ′ will take the value one and zii ′ will take the value zero, resulting in
b − (li − li ′) ≤ 2(|V | − 1) for (OBJ-1) and b − (li ′ − li) ≤ 0 for (OBJ-2), which
ensures that b ≤ li ′ − li . The case for i having a larger label than i ′ works analogously.
The resulting model has O(|V |2) variables and O(|E |) constraints.

3 Newmixed-integer programming approaches

3.1 New formulation (F)

Asafirstway to improve formulation (Flit), one candownlift the coefficients 2(|V |−1)
in (OBJ-1), (OBJ-2) to (|V |−1)+UB whereUB in any valid upper bound to ABP for
the considered instance. This follows from the fact, that b ≤ UB and |li−li ′ | ≤ |V |−1
for any valid labeling. However, the problem can also be formulated without such big-
M-constraints and variables l, y and z, as shown next (denoted as formulation F).

max b

(VERTICES), (LABELS)

b −
∑

1≤�′≤|V |
d(�, �′)(x�′

i + x�′
i ′) ≤ 0 ∀� ∈ {1, . . . , |V |},∀{i, i ′} ∈ E

(OBJ-N)

x�
i ∈ {0, 1} ∀i ∈ V ,∀� ∈ {1, . . . , |V |}

Constraints (OBJ-N) model b ≤ |li − li ′ |, ∀{i, i ′} ∈ E and ensure that b correctly
measures the antibandwidth of the solution indicated by the selected x-variables: For
{i, i ′} ∈ E , let �(i) and �(i ′) be the labels indicated by the values of x�

i and x�
i ′ . For

� = �(i) the constraint (OBJ-N) reads b ≤ d(�(i), �(i ′)) = |�(i) − �(i ′)|, which
is exactly as desired, the case for � = �(i ′) works analogously. For � �= �(i), �(i ′),
the constraint (OBJ-N) reads b ≤ d(�, �(i)) + d(�, �(i ′)) = |� − �(i)| + |� − �(i ′)|,

123

A note on computational approaches for the antibandwidth problem 1063

and due to the triangle inequality |� − �(i)| + |� − �(i ′)| ≥ |�(i) − �(i ′)|, thus the
constraint remains valid also in these cases. Formulation (F) has O(|V |2)-variables
and O(|V ||E |)-constraints. Given a valid upper boundUB, each coefficient d(�, �′) >

UB in constraints (OBJ-N) can be downlifted to UB, clearly the constraints remain
valid. Moreover, constraints (OBJ-N) are actually a special case of the following set
of clique-based constraints.

Observation 1 Let C ⊆ V be a set of vertices forming a clique in G and let L be a set
of labels with |L| = |C | − 1. Then inequalities

b −
∑
c∈C

∑
1≤�≤|V |

d(�, L)x�
c ≤ 0 (CLIQUE-N)

are valid for (F).

Proof For any labeling, at least one of the x�
i variables (with x�

i = 1 in this labeling)
in (CLIQUE-N) has a positive coefficient, as there are |C | vertices in the clique, but
only |C |−1 labels. The proof proceeds by a case distinction on the number of positive
coefficients of variables with x�

i = 1 for a given labeling:

1. There is only one variable, say x�∗
i∗ , with positive coefficient, i.e., all other vertices

in the clique are labeled with labels from L . Thus (CLIQUE-N) measure exactly
the distance from i∗ to the “nearest” vertex in the clique, which is a valid upper
bound for b.

2. All variables have positive coefficient, i.e., none of the vertices in C gets a label
from L . In this case, a similar triangle-inequality-based argument as for (OBJ-N)
holds, as for the labels �i , �i ′ of at least one edge {i, i ′} involved in the clique C , it
must hold that the label �′ ∈ L inducing d(�i , L) and d(�i ′ , L) must be the same
(due to |C | = |L| + 1).

3. More than one, but not all variables have positive coefficient, i.e., between one and
|C | − 2 vertices in C gets a label from L . We make an additional case distinction.

(a) First, suppose for one of the variables x�
i (corresponding to vertex i with label

�i) with positive coefficient, distance d(�i , L) gets induced by a label of a
vertex in C . Thus, the inequality measures at least the distance from vertex i
to the “nearest” vertex in the clique similar to case 1 of this proof.

(b) Next, suppose for none of the variables x�
i with positive coefficient the distance

d(�i , L) gets induced by a label of a vertex in C . Let C+ be the vertices in C
with positive coefficient and let C ′ the remaining vertices in C (i.e., the ones
with labels in L). Let L ′ be the set of labels after removing from L all the labels
of vertices in C ′, we have that |L ′| = |L|− |C ′| = |C |− 1−|C ′| = |C+|− 1.
As by assumption of this subcase, for each vertex i ∈ C+, the coefficient in
the inequality gets induced by d(�i , L ′), we are now in a similar case to case
2 of this proof. ��

Similar to (OBJ-N), the coefficients in (CLIQUE-N) can be downlifted using UB.
Following is another set of valid inequalities.

123

1064 M. Sinnl

Observation 2 Let i ∈ V and � ∈ L and d ∈ N a given distance. Then inequalities

b ≤ |V | + (|V | − d) − (|V | − d)

⎛
⎝ ∑

�′:d(�,�′)≤d

x�′
i +

∑
i ′:{i,i ′}∈E

x�
i ′

⎞
⎠ (VERTEX-N)

are valid for (F).

Proof The sum of the x-variables in (VERTEX-N) can be at most two, as both the first
and second sum can be at most one. It is easy to see that if the sum is zero or one, the
inequality is valid, since the right-hand-side (rhs) in these cases is |V |+(|V |−d), resp.,
|V |. In case the sum of the x-variables is two, the rhs is d and thus the inequality reads
b ≤ d, i.e., the maximal antibandwidth of the labeling induced by these x-variables is
at most d. As a sum of two for the x-variables implies, that one of the vertex adjacent
to i must have label � (due to the second sum), and also that vertex i must have a label
�′ within distance d of � (due to the first sum), this is a correct estimation. ��

If an upper bound UB is known, |V | in (VERTEX-N) can be downlifted to UB
and only d < UB have to be considered.

3.2 New formulation (FE) and an iterative MIP approach

We now present an extended formulation denoted as (FE). Let binary variable b�,
� ∈ {1, . . . , |V |} be one, if and only if the antibandwidth of a solution is �. The ABP
can be modeled as follows.

max
∑

1≤�≤|V |
�b�

(VERTICES), (LABELS)
∑

1≤�≤|V |
b� = 1 (OBJ-E)

∑

�1<�′≤|V |
b�′ +

∑

�2≤�′≤�2+�1

(x�′
i + x�′

i) ≤ 2 ∀{i, i ′} ∈ E, ∀�1 ∈ {1, . . . , |V |}, 1 ≤ �2 ≤ |V | − �1

(OBJ-E2)

x�
i ∈ {0, 1} ∀i ∈ V , ∀� ∈ {1, . . . , |V |}
b� ∈ {0, 1} ∀� ∈ {1, . . . , |V |}

Constraint (OBJ-E) ensures, that only one variable b� is one, while constraints
(OBJ-E2) make sure that the correct variable b�, which is compatible with the solution
encoded by the x�

i -variables is selected: If for an edge x
�
i -variables, which are within

distance �1 are one, the constraints ensure that only variables b�′ with �′ < �1 can
be set to one. There are O(|V |2) variables and O(|V |2|E |) constraints. Given valid
upper and lower bounds UB and LB for the problem, one can remove all variables
b� with � > UB and � < LB and the associated constraints (OBJ-E2). However,
the resulting MIP is still very large. Thus, we do not use formulation (FE) directly to

123

A note on computational approaches for the antibandwidth problem 1065

solve ABP, but instead, use the following related MIP (FE (k)), which is a feasibility
problem, which can be derived to answer the question “Does there exist a solution
with AB(G) ≥ k + 1?”.

max 0

(VERTICES), (LABELS)∑
�2≤�′≤�2+k

(x�′
i + x�′

i) ≤ 1 ∀{i, i ′} ∈ E, 1 ≤ �2 ≤ |V | − k (OBJ-k)

x�
i ∈ {0, 1} ∀i ∈ V ,∀� ∈ {1, . . . , |V |}

The formulation has O(|V |2) variables and O(|V ||E |) constraints. For the given k,
the set-packing constraints (OBJ-k) ensure that for every edge {i, i ′}, in any feasible
solution, the endvertices i and i’ cannot get labels fi , fi ′ whichwould result in AB f ≤
k for this edge. Thus, any feasible solution to (FE (k)) gives a labeling f with AB f ≥
k + 1 and also any labeling f with AB f ≥ k + 1 is a feasible solution for this
MIP. Hence, if for a given k, (FE (k)) is infeasible, than there is no labeling with
AB f ≥ k + 1. Based on (FE (k)), the following simple iterative algorithm to solve
ABP can be designed:

1. k ← 1
2. solve (FE (k))
3. if (FE (k)) is feasible, increase k by one and go back to Step 2
4. output k

In Step 3, instead of increasing k by just one, the antibandwidth of the labeling
induced by the solution of (FE (k)) can be used and k for the next iteration can be set
to this antibandwidth plus one. Moreover, if a feasible labeling (e.g., obtained by a
heuristic) is available, Step 1 can of course start with the value induced by this labeling
and not with one.

Similar to (F), the constraints (OBJ-k) of the formulation are actually a special
case of a more general family of constraints. In a first generalization step, we obtain
following set of conflict constraints, for which validity follows from their definition
and the fact, that every vertex gets exactly one label.

Observation 3 For an edge {i, i ′}, let Li and Li ′ be two sets of (potential) labels, such
that for any � ∈ Li and �′ ∈ Li ′ , we have |� − �′| ≤ k. Then inequalities

∑
�∈Li

x�
i +

∑
�∈Li ′

x�′
i ′ ≤ 1 (CONFLICT)

are valid for (FE (k)).

The inequalities (CONFLICT) can be further generalized as follows using the same
conflict-arguments, i.e., if two of the variables would be one, the solutionwould induce
a labeling f with AB f ≤ k.

123

1066 M. Sinnl

Observation 4 Let C ⊆ V be a set of vertices forming a clique in G and let Lc be sets
of labels, one for each c ∈ C, such that for any � ∈ Lc and �′ ∈ Lc′ for c, c′ ∈ C, we
have |� − �′| ≤ k. Then inequalities

∑
c∈C

∑
�∈Lc

x�
c ≤ 1 (CLIQUE-E)

are valid for (FE (k)).

The formulation (FE (k)) and in particular inequalities (CLIQUE-E) show the strong
relation of the ABP to the SSP: In the SSP, any feasible solution is just allowed to take
one vertex for each clique in the graph. In the ABP, for a labeling f with AB f ≥ k+1
to exist, any set of vertices getting labels within a distance of k must be a stable set.
Thus, in particular, for each clique in the graph and a set of labels L where all labels
in L are within a distance of k, exactly one vertex in the clique can be given a label of
set L , which is exactly what (CLIQUE-E) enforces.

3.3 Implementation details

In this section, we discuss implementation details of the branch-and-cut algorithm
we developed based on (F) and the iterative algorithm based on (FE (k)) (in which
the individual problems (FE (k)) for a fixed k also get solved with a branch-and-cut
algorithm). While both formulations are compact (i.e., have a polynomial number
of constraints), the number of constraints is still very large, and the constraints also
are very dense (i.e., have many non-zero coefficients). Thus, we do not add them all
in the beginning, but separate them on-the-fly when they are violated. Moreover, we
also separate inequalities (VERTEX-N), (CLIQUE-N)., resp. (CLIQUE-E), details are
given in the following.We set the limit for separation-rounds to twenty at the root-node
and to one at all the other nodes in the branch-and-cut tree to avoid overloading the LPs
with too many inequalities. The coefficients of all inequalities used when solving (F)

are downlifted using the best upper bound obtained by applying Theorem 1 and we
also use this upper bound as the termination criterion for the iterative algorithm (i.e.,
thus we solve the SSP and GCP before starting our algorithms). In both approaches,
we initialize the MIP-model with just constraints (VERTICES), (LABELS) and the
symmetry breaking discussed below.

Symmetry breaking As the objective function of the problem uses the absolute value,
any labeling and its reversed version give the same objective function value. Thus,
to break these symmetries, we add constraints such that the vertex with maximum
degree in the graph must have a label at most �|V |/2� (if there is more than one vertex
with maximum degree, we take the one with smallest index). We do this by fixing the
corresponding non-allowed x�

i -variables to zero.

Separation routine for (F) We do different separation routines depending on whether
the current solution(x̃, d̃) to the LP-relaxation at the current branch-and-cut node is
integral or not. If the solution is integral, we simply check by inspection, if any of
the constraints (OBJ-N) is violated, and add any violated constraints. Note that this

123

A note on computational approaches for the antibandwidth problem 1067

would already be enough to ensure correctness of the branch-and-cut (CPLEX, the
MIP-solver we used, also produces integral solution with its internal heuristics, we
also check these solutions in a similar fashion).

Given a fractional solution (x̃, d̃), we first try to find violated inequalities (VER-
TEX-N). This is done by enumeration, and we add at most one violated inequality for
each vertex, i.e., whenwe found a violated inequality for a vertex, we stop enumeration
for this vertex and move to the next one.

If the previous procedure does not produce any violated inequalities, we try a
heuristic separation of inequalities (CLIQUE-N).We note that compared to separation
of clique-type inequalities in other problems such as e.g, the SSP, in our case we
also need to find a set of labels to define the inequalities. We thus first compute a
pseudoposition pi induced by the current fractional x̃ for each vertex i by pi =∑

�∈L �x̃�
i . We then iterate over each edge e = {i, i ′} ∈ E and greedily try to construct

a violated inequality (CLIQUE-N) containing this edge by iteratively adding more
vertices, which form a clique. More precisely, for an e = {i, i ′}, our initial C = {i, i ′}
and to increase C , we take all vertices, which are adjacent to all vertices in C as
candidate setC ′.We then rank each i ′′ ∈ C ′ by calculating scorei ′′ = ∑

i∈C |pi− pi ′′ |.
The vertex with minimal score gets added to C and the procedure gets repeated, until
C ′ = ∅, i.e., there exists no vertex to further grow the clique C . With this approach,
we try to find cliquesC , where the vertices have labels which are near to each other, as
such a labeling would induce a small value of b and thus hopefully leads to a violated
inequality. To specify an inequality (CLIQUE-N) for a given clique C , we also need
a set of |C | − 1 labels. For this, we calculate labelscore� = ∑

c∈C x̃�
c and take the

|C | − 1 labels with the highest score. Whenever a violated inequality is found, we
mark all the edges in the corresponding clique, and we do not consider marked edges
for the remainder of the separation procedure.

Finally, if also no violated inequalities (CLIQUE-N) were found, we try a partial
enumeration to heuristically separate inequalities (OBJ-N): For each edge e = {i, i ′} ∈
E , we check, if the inequality (OBJ-N) for � with maximum x̃�

i + x̃�
i ′ is violated.

Separation routine for (FE (k)) Inequalities (OBJ-k) separated by enumeration. Once
a violated inequality for an edge e = {i, i ′} ∈ E is found, we try to lift it to a clique
inequality (CLIQUE-E) using an iterative heuristic (as set of labels for each vertex in
(CLIQUE-E), we consider � ∈ [�2, �2 +k] , where �2 is the label defining the violated
inequality (OBJ-k)). We initialize C with {i, i ′}, and consider as candidate vertices C ′
for lifting all vertices adjacent to C . For each of these vertices i ′′ ∈ C ′ we calculate
a score

(∑
�2≤�≤�2+k x̃

�
i ′′ + ε

) · δ(i), where ε = 0.0001. The vertex with the biggest
score is added to C , and the process is repeated, until there is no more vertex available
to increase C . Similar to the separation of clique inequalities (CLIQUE-N), once an
edge occurs in an added inequality, it is not considered anymore in the remainder of
the separation procedure.

Branching During the branch-and-cut, the branch-and-cut trees can become very
unbalanced, as branching on an x�

i -variable fixes a vertex to a label in one branch, and
forbids this label for this vertex in the other branch, while all other (not previously
fixed) labels are still possible for this vertex. We thus implemented our own branching
strategy. Given the solution (x̃) of an LP-relaxation at a node, we consider all vertices

123

1068 M. Sinnl

i , where the subvector (x̃i) has fractional entries as branching candidates. Among
these vertices, we take the one with the highest degree to branch on. If there is more
than one candidate, we take the one with the largest number of fractional entries in
the subvector (x̃i), if there are still ties we break them arbitrarily, i.e., we take the
vertex with the smallest index. Regarding the branching itself, we do not branch on a
single label, but branch on

∑
�′<� x

�′
i for a given label �. In one branch, this sum must

be zero, and in the other branch, this sum must be one. The label � is determined as
the largest �′ with x̃�′

i > 0.

Starting heuristics and primal heuristic We implemented two starting heuristics to
create an initial starting solution, and also a primal heuristic which is called during
the branch-and-cut and guided by the value of the LP-solution at the current branch-
and-cut node. All three heuristics consecutively iterate over the labels in an increasing
way, starting at label 1, and give each label to an yet unlabeled vertex, which is then
removed for consideration for the remaining labels (i.e., there is no label-reassignment
during the heuristics).

The first starting heuristic is in similar spirit to construction heuristics used in e.g.,
Bansal andSrivastava (2011),Duarte et al. (2011) andLozano et al. (2012).Given aver-
tex i∗ ∈ V , we construct a breadth-first-search (bfs) tree Ti∗ starting from i∗. This tree
has layers Ti∗(k), k ≥ 0,where layer Ti∗(k) contains all vertices i ′ with k−1 vertices on
thepathbetween it and i∗ in the tree (e.g.,Ti∗(1) contains all vertices adjacent to i∗), and
we define Ti∗(0) = i∗. Note that by construction of a bfs-tree, adjacent vertices inG are
either on the same layer or in two consecutive layers k, k + 1. Naturally, to get a large
antibandwidth, we do not want to give adjacent vertices labels which are close to each
other. Thus, we give label one to vertex i∗ and then repeatedly iterate through the even
and odd layers of Ti∗ to assign the remaining labels to vertices. By switching between
even and odd layers, we try to avoid giving close labels to vertices which are adjacent
and in consecutive layers in the tree. However, vertices on the same layer may also be
adjacent in G. Thus, whenever a vertex i ′ gets assigned a label, we mark all vertices
adjacent to i ′ andwe do not consider marked vertices for assigning labels in the current
iteration. The order inwhichwe consider the verticeswithin a layer for assigning labels
is induced by the following three criteria: (i) resulting antibandwidth for this vertex
if the vertex gets assigned the currently considered label (all unlabeled vertices are
defined to have label |V |−1 for this calculation), (ii) degree of the vertex in the graph
consisting of the yet unlabeled vertices, (iii) maximum degree of an adjacent vertex in
the graph consisting of the yet unlabeled vertices. The vertices in a layer are ordered in
descending order according to (i), ties are first broken by descending order according
to (ii), if there still remain ties, they are broken by descending order according to (iii),
the remaining ties are broken arbitrarily, i.e., the vertexwith the smallest index is taken.

In the second heuristic, we keep a bound BH , which we initialize with the best
UB according to Theorem 1. We start by assigning some given vertex i∗ the label
one, and the continue assigning the remaining labels. For assigning the currently
considered label, we consider all the unlabeled vertices, where assigning the current
label would result in an antibandwidth of the vertex with value at least BH (similar
to (i) above, unlabeled vertices are defined to have label |V | − 1 for this calculation).
If there is more than one vertex fulfilling this condition, we use criteria (ii) and then

123

A note on computational approaches for the antibandwidth problem 1069

(iii) for tie-breaking. If there is no vertex fulfilling the condition, we decrease UBH

until there is again at least one vertex fulfilling the condition. We run both starting
heuristics with all vertices i ∈ V as i∗.

The primal heuristic also uses a bound BH , which get initialized to the value of the
current incumbent solution plus one. We again start the labeling with assigning label
one, and then proceed to the next label. For assigning any label � (including label one),
we sort all the unlabeled vertices i in descending order according to (x̃�

i + ε) · δ(i),
where ε = 0.0001. We iterate through this ordered list of vertices and assign � to
the first vertex, which fulfills the condition that assigning � to it would result in an
antibandwidth of the vertex with value at least BH . If there is no vertex fulfilling this
condition, we decrease BH until there is at least one vertex fulfilling it.

Given a solution f H obtained by any of the heuristics, we try to improve it with
an iterative local search procedure. For the solution f H , we calculate the set of edges
minE , which are all the edges with | f H (i) − f H (i ′)| = AB f H , i.e., the edges with
the minimum bandwidth. We then iterate trough all the edges e{i, i ′} ∈ minE and
try to improve the bandwidth, by switching the labels f H (i) or f H (i ′) with labels
of vertices i ′′ �= i, i ′. For each edge, we apply the switch resulting in the largest
bandwidth considering both vertices involved in the switch. We update minE and
repeat this procedure until no more improvement of the bandwidth is possible.

4 A constraint programming formulation

The ABP can also be straightforwardly modeled as constraint programming (CP)
problem (see, e.g., Rossi et al. 2006 for more on CP) using the abs and alldi f f erent-
constraints.

max b (C.1)

b ≤ abs(li − li ′) ∀{i, i ′} ∈ E (C.2)

alldi f f erent(l) (C.3)

li ∈ {1, 2, . . . , |V |}, ∀i ∈ V (C.4)

Similar to theMIP-approaches,we also add a symmetry breaking constraint restrict-
ing the label of the vertex with maximum degree to be at most �|V |/2� when solving
the problem as CP.

5 Computational results

The branch-and-cut framework and the iterativeMIP algorithm, as as well as theMIPs
for the SSP and GCP were implemented in C++ using CPLEX 12.9 as MIP solver. To
solve the CP formulation, we use the CP optimizer of CPLEX. The runs were carried
out on an Intel Xeon E5 v4 CPUwith 2.5 GHz and 6GBmemory using a single thread,
with timelimit for a run set to 1800 seconds. As timelimit of the MIPs for solving the
SSP and GCPwe set 10 seconds. Note that the calculations for the upper bounds based

123

1070 M. Sinnl

on SSP and GCP are still valid when α(G) is replaced with an upper bound, and χ(G)

is replaced with a lower bound, both are available even if the corresponding MIP is
not solved to optimality within the given timelimit. All CPLEX parameters were left
at their default values, except the choice of the simplex algorithm used within the
branch-and-cut. As default, CPLEX would use the dual simplex (which allows for
faster re-solving after adding constraints), however, as our constraints are very dense,
and also the number of variables is much larger as the number of (added) constraints,
using the primal simplex turned out to be more efficient in preliminary computations
(see e.g., Klotz and Newman 2013a, b for a discussion on the choice of LP-algorithm).

5.1 Instances

In our computational study, we focused on the HarwellBoeing instances, which are
the main instances used in performance tests for the ABP. These instances are based
on the Harwell-Boeing Sparse Matrix Collection, which is a “is a set of standard
test matrices arising from problems in linear systems, least squares, and eigenvalue
calculations from a wide variety of scientific and engineering disciplines”, see https://
math.nist.gov/MatrixMarket/collections/hb.html. The instances are available at
and are available at https://www.researchgate.net/publication/272022702_Harwell-
Boeing_graphs_for_the_CB_problem and have also been used for testing algorithms
for other labeling problem, see, e.g., Rodriguez-Tello et al. (2015); Sinnl (2019). The
set contains instances with up to 715 vertices and 2975 edges, details of the number
of vertices and edges of the individual graphs are given in Table 1 in columns |V |
and |E |. The instances with up to including 118 vertices are denoted as small, the
remaining ones as large, both groups contain twelve instances. We observe that also
other instances have been used in testing, e.g., paths, grids or Hamming graphs in
Lozano et al. (2012), however, for these specific graphs, optimal solution values are
known due to theoretical results.

5.2 Results

First, we are interested in the strength of the LP-relaxation of the newmodel (F) com-
pared to the previous model (Flit). In Fig. 2, we give the LP-gaps. The gaps are calcu-
lated as 100·(UBLP−z∗)/z∗,whereUBLP is the value of the respectiveLP-relaxation,
and z∗ is the value of the best known feasible solution for the instance. For the best
solution value, we take the results from Table 6 in Lozano et al. (2012) (this table is
reproduced as Table 2 in the Appendix), which gives a comparison of the state-of-the-
art heuristics fromBansal and Srivastava (2011), Duarte et al. (2011) and Lozano et al.
(2012), and also the solution values our algorithms obtained (these results are discussed
later in this section in detail). For these runs, we directly solve the LP-relaxation of
the compact model (F) (and (Flit), which we also implemented) without any lifting
of coefficients or valid inequalities. We made runs only for the small instances, as for
larger ones, solving the compact LPs becomes computationally burdensome.

Figure 2 shows that the new model brings a big improvement in the value of the
LP-gaps. The gaps of (F) are smaller for all instances, the largest gap for (Flit) is over

123

https://math.nist.gov/MatrixMarket/collections/hb.html
https://math.nist.gov/MatrixMarket/collections/hb.html
https://www.researchgate.net/publication/272022702_Harwell-Boeing_graphs_for_the_CB_problem
https://www.researchgate.net/publication/272022702_Harwell-Boeing_graphs_for_the_CB_problem

A note on computational approaches for the antibandwidth problem 1071

Ta
bl
e
1

D
et
ai
le
d
re
su
lts
,t
he

ho
ri
zo
nt
al
lin

e
sh
ow

s
th
e
di
ff
er
en
ce

be
tw
ee
n
th
e
sm

al
l
an
d
la
rg
e
in
st
an
ce
s

N
am

e
|V

|
|E

|
T
1.
1

T
1.
2

T
1.
3

T
1.
4

(F
li
t)

(F
)

(F
e(
k)

)
C
P

g∗
U
B

U
B

U
B
D

z L
g L

U
B

t[
s]

U
B

t[
s]

U
B

z∗
t[
s]

U
B

z∗
t[
s]

z∗
t[
s]

U
B

z∗
t[
s]

po
re
s1

30
10

3
13

16
8

6
33

.3
8

1
9

1
8

6
T
L

8
6

T
L

6
24

8
6

T
L

0.
0

ib
m
32

32
90

15
19

9
9

0.
0

13
1

10
1

9
9

73
9

9
28

0
9

27
9

9
2

0.
0

bc
sp
w
r0
1

39
46

19
29

17
17

0.
0

21
1

19
1

17
17

13
8

18
17

T
L

17
7

17
17

1
0.
0

bc
ss
tk
01

48
17

6
22

29
11

8
37

.5
13

1
9

1
22

8
T
L

9
8

T
L

9
29

9
9

4
0.
0

bc
sp
w
r0
2

49
59

24
38

22
21

4.
8

27
1

24
1

22
21

T
L

23
21

T
L

21
62

9
21

21
5

0.
0

cu
rt
is
54

54
12

4
26

38
13

13
0.
0

22
1

13
1

13
13

81
4

13
12

T
L

13
5

13
13

9
0.
0

w
ill
57

57
12

7
28

41
14

13
7.
7

25
1

14
1

18
12

T
L

14
13

T
L

13
10

13
13

21
0 .
0

im
pc
ol
b

59
28

1
29

35
14

8
75

.0
21

1
8

1
19

8
T
L

8
8

4
8

1
22

8
T
L

0.
0

as
h8

5
85

21
9

42
64

27
21

28
.6

29
1

28
1

41
17

T
L

28
19

T
L

20
T
L

32
22

T
L

22
.7

no
s4

10
0

24
7

50
78

47
34

38
.2

40
1

49
1

49
27

T
L

40
32

T
L

32
T
L

47
34

T
L

17
.6

dw
t2
34

11
7

16
2

58
99

58
50

16
.0

76
1

58
1

58
46

T
L

58
46

T
L

49
T
L

57
51

T
L

11
.8

bc
sp
w
r0
3

11
8

17
9

59
99

57
39

46
.2

57
1

39
1

39
39

87
4

39
39

9
39

1
39

39
1

0.
0

123

1072 M. Sinnl

Ta
bl
e
1

co
nt
in
ue
d

N
am

e
|V

|
|E

|
T
1.
1

T
1.
2

T
1.
3

T
1.
4

(F
li
t)

(F
)

(F
e(
k)

)
C
P

g∗
U
B

U
B

U
B
D

z L
g L

U
B

t[
s]

U
B

t[
s]

U
B

z∗
t[
s]

U
B

z∗
t[
s]

z∗
t[
s]

U
B

z∗
t[
s]

bc
ss
tk
06

42
0

37
20

21
0

33
4

21
0

32
55

6.
2

72
1

38
5

34
3

1
T
L

71
29

T
L

33
T
L

18
6

30
T
L

15
.2

bc
ss
tk
07

42
0

37
20

21
0

33
4

21
0

31
57

7.
4

72
1

38
5

34
3

1
T
L

71
29

T
L

33
T
L

18
6

30
T
L

15
.2

im
pc
ol
d

42
5

12
67

21
2

37
5

21
2

10
3

10
5.
8

17
3

2
14

1
1

35
3

7
T
L

42
5

91
T
L

99
T
L

19
5

11
0

T
L

28
.2

ca
n4

45
44

5
16

82
22

1
38

7
22

1
84

16
3.
1

12
0

1
14

8
T
L

40
7

6
T
L

44
5

78
T
L

78
T
L

21
7

74
T
L

46
.3

49
4b
us

49
4

58
6

24
7

46
0

24
7

22
7

8.
8

27
8

1
24

6
1

39
1

24
T
L

49
4

21
9

T
L

21
9

T
L

24
6

21
7

T
L

8.
4

dw
t5
03

50
3

27
62

25
0

42
9

25
0

53
37

1.
7

12
7

1
71

7
46

0
2

T
L

50
3

46
T
L

51
T
L

24
6

56
T
L

26
.8

sh
er
m
an
4

54
6

13
41

27
2

49
4

27
2

26
1

4.
2

27
3

1
54

5
1

54
5

1
T
L

54
6

25
6

T
L

25
6

T
L

54
3

21
1

T
L

4.
2

dw
t5
92

59
2

22
56

29
5

52
5

29
5

11
3

16
1.
1

15
0

1
19

7
T
L

49
2

6
T
L

59
2

10
3

T
L

10
3

T
L

27
5

99
T
L

32
.7

66
2b
us

66
2

90
6

33
1

61
9

33
1

22
0

50
.5

35
1

1
22

0
1

66
0

1
T
L

34
7

21
9

T
L

21
9

T
L

22
0

22
0

19
3

0.
0

no
s6

67
5

12
90

33
7

62
4

33
7

32
9

2.
4

33
8

1
67

4
1

67
4

1
T
L

67
5

32
6

T
L

32
6

T
L

67
2

27
1

T
L

2.
4

68
5b
us

68
5

12
82

34
2

63
4

34
2

13
6

15
1.
5

31
3

1
13

6
1

62
1

5
T
L

24
2

13
6

T
L

13
6

1
34

2
13

6
T
L

0.
0

ca
n7

15
71

5
29

75
35

7
63

8
35

7
11

5
21

0.
4

20
8

1
14

2
T
L

64
9

6
T
L

24
2

11
2

T
L

11
2

T
L

33
3

11
2

T
L

23
.5

B
es
te
nt
ri
es

fo
r
U
B
an
d
be
st
so
lu
tio

n
va
lu
e
of

ea
ch

in
st
an
ce

ar
e
gi
ve
n
in

bo
ld

123

A note on computational approaches for the antibandwidth problem 1073

Fig. 2 LP-gap of formulations (F) and (Flit)with respect to the best known solution for the small instances

600%, while the largest gap for (F) is under 300%. In general, the gaps of (F) seem
about 100-200% smaller, and more than half of the gaps of (F) are under 100%.

Next, we come to our main results, which are contained in Table refta:main. In this
table, we report for each instance

– The number of vertices (column |V |)
– The number of edges (column |E |)
– The upper bounds calculated using Theorem 1 (columns T 1.1, T 1.2, T 1.3, T 1.4),
including the time needed for solving the SSP and GCP for calculating α(G) and
χ(G) (columns tα(G) and tχ(G))

– The upper bound UBD reported in Duarte et al. (2011) for the MIP (Flit). For
these runs, the authors of Duarte et al. (2011) used CPLEX 12.3 with a timelimit
of 24 h; note that for a fairer comparison, we have also re-implemented (Flit) and
run it with CPLEX 12.9 and a timelimit of 1800 seconds, and give detailed results
for our runs, see below

– The best solution value from literature (column zL , taken from Table 6 of Lozano
et al. 2012, plus the value of 84 for can445 reported in Scott and Hu 2014, which
improves on the value of 82 in Table 6)

– The best optimality gap using results from literature (column gL [%], calculated as
100 · (UBL − zL)/zL , where UBL is the best upper bound reported in literature,
i.e., theminimumof T 1.1, T 1.2 and the upper boundUBD reported inDuarte et al.
(2011). Note that Table 6 of Lozano et al. (2012) does not consider the latter upper
bound, and the percentage deviation they report is calculated as 100·(UB−z)/UB
for their upper bounds and solution value

– The upper bound UB, best solution value z∗ and runtime obtained by our
approaches (F), CP , as well as by our re-implementation of (Flit) using CPLEX
12.9. For (Fe(k)), we report just the best solution value and the runtime, as this
algorithm gives no upper bound, except when it manages to prove optimality
(which is indicated by a runtime smaller than the timelimit in the table)

– The best optimality gap g∗ obtained after taking into account our new results. The
gap is calculated as 100·(UBB−zB)/zB , whereUBB and zB are the best available

123

1074 M. Sinnl

upper bounds, resp., best solution values taking into account our results, and also
the best solution values previously reported in literature (i.e., as given in column
zL).

Several interesting results can be seen in Table 1. The best known solution values
from literature are already quite good, however, for seven instances, we were able to
find better values. Five of these improvements were achieved by approach CP, and
three by (Fe(k)) (for one instance, both managed it). This is a strong contrast to the
statement “On the contrary, the […] HarwellBoeing instances are actually a challenge
for modern heuristic methods” in Lozano et al. (2012). Our results reveal, that the
large gaps were mostly caused by bad upper bounds. Indeed, for none of the instances,
bounds T 1.1 or T 1.2 (as used in Lozano et al. 2012 to assess the quality of the best
obtained solution values) are among the best bounds, they are often very far away.
Also, the UBD of the MIP (Flit) as reported in Duarte et al. (2011) is similar to the
best known upper bound after our current study for only six instances. Amongst the
bounds provided byTheorem1, the bound based on the chromatic numberχ(G) seems
to be the strongest, for twelve instances, it provides the (sometimes jointly) best upper
bounds. For six instances, the provided upper bound is actually the same as the best
solution value, which proves optimality. The associated NP-hard GCP can be solved
within the given timelimit of ten seconds for all but three instances.

Using our approaches, the optimal solution value is now known for eleven instances
(nine out of the twelve small instances, and for two out of twelve large instances),
compared to three instances before. The optimality gaps are improved for further
eleven instances, the only (previously unsolved) instances, where we were not able to
achieve any improvement are sherman4 and nos6 (for which the gaps are already
quite small with 4.2% and 2.4 %). The largest optimality gap is now 46.3% (for
instance can445), compared to 577.4% before (for instance bcsstk07).

Regarding effectiveness of our approaches, both (Fk(e)) and CP work much better
than (F). Surprisingly, although (F) has better LP-gaps compared to (Flit), it actually
givesworse performance in solving the problem compared to our re-implementation of
(Flit). This could be caused by the fact that (Flit) is sparser than (F), so LP-solving is
faster andmore nodes can be enumerated.We can also note that this re-implementation
is more effective within our timelimit of 1800 seconds, compared to the runs made in
Duarte et al. (2011) with a timelimit of 24 h. This is likely caused by the improvements
in CPLEX from version 12.3 to 12.9, and also be the better computer we used in our
runs. The approach (Fk(e)) manages to prove optimality for ten instances within the
timelimit, while CP manages to do so for eight instances, our re-implementation of
(Flit) for four, and (F) for three.

6 Conclusions

In this note, we considered the antibandwidth problem (ABP) and provided improved
upper and lower bounds for standard benchmark instances from literature, for which
the optimality gaps were up to 577%. We presented new MIP-formulations for the
model, and designed a branch-and-cut algorithm and an iterative solution algorithm

123

A note on computational approaches for the antibandwidth problem 1075

based on them. We also developed a constraint programming approach and calculated
bounds using the NP-hard stable set problem and graph coloring problem. In a com-
putational study, we showed that the developed approaches allow to find the proven
optimal solution for eight instances from literature (out of a commonly used set of 24
benchmark instances for this problem), where the optimal solution was unknown and
also provide reduced gaps for eleven additional instances, including improved solution
values for seven instances. The largest gap is now 46%.

There are several avenues for further work: Trying to improve the MIP-approaches
is a possibility, however, for larger-scale instances, the size of MIP-models seems to
become prohibitive for solving the problem. But exploring the MIP-approaches fur-
ther, especially the connection to the stable set problem could maybe be interesting
with respect to theoretical results, e.g., finding complete descriptions for certain graph
classes. Moreover, as there is also some connection of the ABP to the graph coloring
problem, trying to develop column generation/branch-and-price approaches could be a
worthwhile topic, as for graph coloring problems, such approaches usually work quite
well. Aside from using a MIP-based approach directly to solve the problem, a combi-
natorial branch-and-bound algorithm could be an interesting idea. Such approaches,
which typically work with partial labelings and use problem-specific, graph-theoretic
bounds for the problem at hand often are often quite effective for graph labeling prob-
lems (Caprara and Salazar-González 2005; Martí et al. 2010, 2013). In case of the
ABP, even solving NP-hard problems within the branch-and-bound to provide bounds
could be a viable option, since our computational study showed, that the stable set
problem and graph coloring problem can be solved very quickly for the standard
benchmark instances of the ABP.

Acknowledgements Open access funding provided by Austrian Science Fund (FWF). The research was
supported by the Austrian Research Fund (FWF, Project P 26755-N19 and P 31366-NBL). The author
wants to thank Georg Brandstätter for interesting conversations about the problem.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix: Table 6 of Lozano et al. (2012)

Table 2 is a reproduction of Table 6 of Lozano et al. (2012). This table collects the best
known solution values for the HarwellBoeing instances obtained by the heuristics of
Bansal and Srivastava (2011) (MA), Duarte et al. (2011) (EvPR), Lozano et al. (2012)
(VNS), upper bound obtained by applying Theorem 1.1 and 1.2, and a deviation
calculated as 100 · (UB − z)/UB, where UB is the upper bound and z the best
solution value.

123

http://creativecommons.org/licenses/by/4.0/

1076 M. Sinnl

Table 2 Reproduction of Table
6 of Lozano et al. (2012)

Name z UB Deviation Method

ash85 21 42 50.0 VNS

bcspwr01 17 19 10.5 VNS, EvPR

bcspwr02 21 24 12.5 VNS, EvPR

bcspwr03 39 59 33.9 VNS, EvPR

bcsstk01 8 22 63.6 VNS, EvPR

pores1 6 13 53.8 VNS, MA, EvPR

will57 13 28 53.6 VNS, EvPR

curtis54 13 26 50.0 VNS

dwt234 50 58 13.8 VNS, EvPR

ibm32 9 15 40.0 VNS, EvPR

impcolb 8 29 72.4 VNS, EvPR

nos4 34 50 32.0 VNS, EvPR

494bus 227 247 8.1 VNS

662bus 220 331 33.5 VNS

685bus 136 342 60.2 VNS, EvPR

can445 82 221 62.9 VNS

can715 115 357 67.8 EvPR

bcsstk06 32 210 84.8 EvPR

bcsstk07 31 210 85.2 VNS, EvPR

dwt503 53 250 78.8 VNS, EvPR

dwt592 113 295 61.7 VNS

impcold 103 212 51.4 VNS, EvPR

nos6 329 337 2.4 MA

sherman4 261 272 4.0 MA

References

Bansal R, SrivastavaK (2011)Memetic algorithm for the antibandwidthmaximization problem. JHeuristics
17(1):39–60

BekosM, Das A, Geyer M, KaufmannM, Kobourov S, Veeramoni S (2013) Maximum differential coloring
of caterpillars and spiders. arXiv:1302.7085

Bekos MA, Kaufmann M, Kobourov S, Veeramoni S (2014) A note on maximum differential coloring of
planar graphs. J Discrete Algorithms 29:1–7

Calamoneri T, Massini A, Török L, Vrt’o I (2009) Antibandwidth of complete k-ary trees. Discrete Math
309(22):6408–6414

Cappanera P (1999) A survey on obnoxious facility location problems. Technical Report del Dipartimento
di Informatica. Università di Pisa, Pisa, IT

Caprara A, Salazar-González JJ (2005) Laying out sparse graphs with provably minimum bandwidth.
INFORMS J Comput 17(3):356–373

Caprara A, Letchford AN, Salazar-González JJ (2011) Decorous lower bounds for minimum linear arrange-
ment. INFORMS J Comput 23(1):26–40

Cuthill E, McKee J (1969) Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of the
1969 24th national conference, ACM, pp 157–172

Díaz J, Petit J, Serna M (2002) A survey of graph layout problems. ACMComput Surv (CSUR) 34(3):313–
356

Dobrev S, KráLovič R, Pardubská D, Török L, Vrt’o I (2013) Antibandwidth and cyclic antibandwidth of
hamming graphs. Discrete Appl Math 161(10–11):1402–1408

123

http://arxiv.org/abs/1302.7085

A note on computational approaches for the antibandwidth problem 1077

DuarteA,Martí R, ResendeMG, SilvaRM (2011)Graspwith path relinking heuristics for the antibandwidth
problem. Networks 58(3):171–189

Galinier P, Hertz A (2006) A survey of local search methods for graph coloring. Comput Oper Res
33(9):2547–2562

Gallian JA (2009) A dynamic survey of graph labeling. Electron J Comb 16(6):1–219
Gansner ER, Hu Y, Kobourov S (2010) Gmap: Visualizing graphs and clusters as maps. In: Visualization

Symposium (PacificVis), 2010 IEEE Pacific, IEEE, pp 201–208
Hale WK (1980) Frequency assignment: theory and applications. Proc IEEE 68(12):1497–1514
Klotz E, Newman AM (2013a) Practical guidelines for solving difficult linear programs. Surv Opera Res

Manag Sci 18(1–2):1–17
Klotz E, NewmanAM (2013b) Practical guidelines for solving difficult mixed integer linear programs. Surv

Oper Res Manag Sci 18(1–2):18–32
Leighton FT (1979) A graph coloring algorithm for large scheduling problems. J Res National Bureau Stand

84(6):489–506
Leung JY, Vornberger O, Witthoff JD (1984) On some variants of the bandwidth minimization problem.

SIAM J Comput 13(3):650–667
Lozano M, Duarte A, Gortázar F, Martí R (2012) Variable neighborhood search with ejection chains for the

antibandwidth problem. J Heuristics 18(6):919–938
Malaguti E, Toth P (2010) A survey on vertex coloring problems. Int Trans Oper Res 17(1):1–34
Martí R, Gallego M, Duarte A (2010) A branch and bound algorithm for the maximum diversity problem.

Eur J Oper Res 200(1):36–44
Martí R, Pantrigo JJ, Duarte A, Pardo EG (2013) Branch and bound for the cutwidth minimization problem.

Comput Oper Res 40(1):137–149
Méndez-Díaz I, Zabala P (2006) A branch-and-cut algorithm for graph coloring. Discrete Appl Math

154(5):826–847
Méndez-Díaz I, Zabala P (2008) A cutting plane algorithm for graph coloring. Discrete Appl Math

156(2):159–179
Miller Z, Pritikin D (1989) On the separation number of a graph. Networks 19(6):651–666
Raspaud A, Schröder H, Sỳkora O, Torok L, Vrt’o I (2009) Antibandwidth and cyclic antibandwidth of

meshes and hypercubes. Discrete Math 309(11):3541–3552
Rebennack S, Reinelt G, Pardalos PM (2012) A tutorial on branch and cut algorithms for the maximum

stable set problem. Int Trans Oper Res 19(1–2):161–199
Rodriguez-Tello E, Hao JK, Torres-Jimenez J (2008) An effective two-stage simulated annealing algorithm

for the minimum linear arrangement problem. Comput Oper Res 35(10):3331–3346
Rodriguez-Tello E, Romero-Monsivais H, Ramirez-Torres G, Lardeux F (2015) Tabu search for the cyclic

bandwidth problem. Comput Oper Res 57:17–32
Rossi F, Van Beek P, Walsh T (2006) Handbook of constraint programming. Elsevier, Amsterdam
Scott J, Hu Y (2014) Level-based heuristics and hill climbing for the antibandwidth maximization problem.

Numer Linear Algebra Appl 21(1):51–67
Sinnl M (2019) Algorithmic expedients for the S-labeling problem. Comput Oper Res 108:201–212
Wang X,WuX, Dumitrescu S (2009) On explicit formulas for bandwidth and antibandwidth of hypercubes.

Discrete Appl Math 157(8):1947–1952
Yixun L, JinJiang Y (2003) The dual bandwidth problem for graphs. J Zhengzhou Univ 35(1):1–5

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Markus Sinnl1,2

1 Department of Statistics and Operations Research, Economics and Statistics, Faculty of
Business, University of Vienna, Vienna, Austria

2 Institute of Production and Logistics Management, Johannes Kepler University Linz, Linz,
Austria

123

http://orcid.org/0000-0003-1439-8702

	A note on computational approaches for the antibandwidth problem
	Abstract
	1 Introduction and motivation
	2 Upper bounds for the ABP
	2.1 Mixed-integer programming approach of duarte2011grasp

	3 New mixed-integer programming approaches
	3.1 New formulation (F)
	3.2 New formulation (FE) and an iterative MIP approach
	3.3 Implementation details

	4 A constraint programming formulation
	5 Computational results
	5.1 Instances
	5.2 Results

	6 Conclusions
	Acknowledgements
	Appendix: Table 6 of lozano2012variable
	References

