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Abstract
Supplier evaluation is one of the most important fields of application for data envel-
opment analysis (DEA). Criteria may include negative data in both input and output
factors. Data translation can solve this problem, but interpretation is not evident from
the literature. Use of an additive model is one method of managing the problem of
negative data. This paper addresses this issue in relation to the supplier ranking prob-
lem. It describes the development of a ranking with cross-efficiency that incorporates
negative data into the additive model. The additive model we describe is compared
with previously used DEA models in which data is replaced with reciprocal values
when necessary. We present a supplier-evaluation-related example of this case. After
the efficiency evaluation, a supplier ranking system is constructed. To do this, we use
the cross-efficiencies obtained from the additive model. Aggregate efficiencies help
display the suppliers in descending order of efficiency. Finally, the paper compares
self- and peer-appraisal indicators for reciprocal and additive DEA models.

Keywords Supplier evaluation · Environmental criteria · DEA · Additive model ·
Cross-efficiency

1 Introduction

Supplier evaluation is one of the most important tasks of supplier management, and
the literature specifically addresses the issue of supplier selection. To structure the
related knowledge, a large number of literature reviews have been published. The
large-scale review of Wetzstein et al. (2018) based on a co-citation network analysis
classifies the topics of the related papers into one of the following clusters: (1) the
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conceptual foundation of the field; (2) modeling of the procurement environment; (3)
handling group decision making and imprecise input data; (4) computational research;
(5) green/sustainable research; and, (6) risk-based supplier selection. As the literature
reviews reveal, one important stream of publications has focused on methodologies
for supporting supplier evaluation. In this regard, AHP and DEA have been identified
as the most common approaches (e.g. Ho et al. 2010; Agarwal et al. 2011; Chai et al.
2013).

These methods generally aim at assisting with the selection of the most appropriate,
best-performing suppliers through assessing their performance and competencies. It is
obviously important that any method that is used can take into account broad decision-
making criteria, thereby mapping the actual preferences of the decision-maker.

Negative numbers may occur among supplier evaluation data (e.g. losses in a profit
statement) or may be the result of data transformation. Such cases cannot be handled
by CCR and BCC data envelopment models (Cook and Seiford 2009) because input
and output data cannot be transformed together so that data translation can be applied.
Therefore, it is almost exclusively additive DEA models that can be used to deal
with such problems. The present paper presents an example of supplier evaluation
in such a case. After an efficiency evaluation, we construct a ranking. To do this,
we use cross-efficiencies (Doyle and Green 1994) obtained from an additive model.
Aggregate efficiencies help rank suppliers in descending order of efficiency.

The paper is organized as follows. The next section summarizes the findings of
literature and underlines the relevance of the examples we later present. The third sec-
tion of the paper describes a DEA framework for supplier evaluation. Data translation
is used to filter out negative data in management and environmental criteria, leading to
an additive model. The reciprocal DEA model is then presented and compared to the
additive DEA models. The model enables the analysis of cross-efficiency (CE) which
is used on suppliers. Section 5 presents some conclusions about this work.

2 Literature review

The performance of suppliers has a fundamental influence on the performance of
buying companies (Janda and Seshadri 2001; Hartmann et al. 2012; Foerstl et al.
2013; Tchokogué et al. 2017). For this reason, it is important to understand what
“best corporate performance” means. The literature includes a number of studies that
have investigated which criteria are important from a business point of view, of which
sustainability criteria are increasingly emphasized. Supplier evaluation criteria should
be those that are relevant to the specific business situation, and the ideal supplier
should perform well in relation to each of these. Most methods therefore compare
performance indicators and create rankings.

Over the years, several techniques have been developed to evaluate suppliers. Ana-
lytic hierarchy process (AHP), analytic network process (ANP), linear programming
(LP), mathematical programming, multi-objective programming, data envelopment
analysis (DEA), neural networks (NN), case-based reasoning (CBR), and fuzzy set
theory (FST) have all been applied in the literature (Chai et al. 2013; Govindan et al.
2015). DEA is one of the most frequently used of these models, being a widely rec-
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ognized approach for evaluating the efficiencies of decision-making units (DMUs).
Because of its ease of use and successful application, DEA has gained much attention
and is in widespread use by business and academic researchers.

One of the central problems identified in the literature on DEA is the nature of the
data. In the context of supplier evaluation, several papers have been published which
address the issue of performance-type data related to DEA. It is certainly an important
issue that such methods are capable of comparing performance independent of the
units in which the input and output variables are defined (Lovell and Pastor 1995).
Traditionally, many supplier evaluation models have been based on cardinal data,
with less emphasis on ordinal data. However, emphasis has shifted to the simultaneous
consideration of cardinal and ordinal data in the supplier selection process (Saen 2007;
Ebrahimi et al. 2018). The DEA base model is primarily designed to handle positive
numbers (Pastor and Ruiz 2007), although in some cases negative numbers should be
incorporated into the evaluation dataset (Izadikhah and Saen, 2016). Supplier-related
decisions often rely on personal judgment, as some criteria reflect expert opinions.
Thus, using DEA for an evaluation requires making use of imprecise data (Toloo et al.
2018).

The problem primarily stems from the nature of the data that is incorporated.
However, the different nature of supplier–buyer relationships and different supplier
strategies can lead to a situation and supplier data structure that can ultimately distort
evaluations (Kleinsorge et al. 1992; Bruno et al. 2012; Prajogo et al. 2012).

The concept of game theory is also widely referred to in the purchasing literature
(Bai and Sarkis 2016; Ji et al. 2015; Mohammaditabar et al. 2016). An interesting
consideration is that suppliers strive both to win business, and to maximize their own
profits. In competition with other suppliers, this may lead to the development of tactics
whereby suppliers promise (potentially unrealistically) high levels of performance for
each metric, which are ultimately significantly lower than expected. In some cases,
such strategies may be screened with appropriate specifications, or an appropriate pre-
qualification system (de Boer et al. 2001; Hong et al. 2005; Sen et al. 2010; Dobos
and Vörösmarty 2019b). However, supplier optimization tactics are not always easy
to identify a priori (e.g. in the case of a new purchase) and are thus difficult to prepare
for when determining the evaluation process. For this reason, it is of great importance
that the supplier evaluation method includes an analysis of supplier parameters as a
whole.

There are a number of data problems involved in supplier evaluation that the litera-
ture proposes solutions to. If negative data exist for both inputs and outputs, the additive
DEAmodel is recommended, although its use in purchasing is sporadic. However, the
supplier evaluation problem highlights the issue of the need to manage outliers in sup-
plier evaluation, which can be achieved through the use of cross-efficiencies. This also
allows practitioners to apply additive model cross-efficiency to the ranking problem.

3 DEA framework for supplier evaluation with cross-efficiency

The following supplier selection model is formulated as a decision-making problem.
Suppliers are evaluated along management and environmental criteria (Dobos and
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Vörösmarty 2014, 2019a, b; Vörösmarty and Dobos 2019). The management criteria
are the usual supplier evaluation criteria, such as trustworthiness, purchasing price,
lead time, and quality of products supplied, etc. We assume that environmental criteria
are the outputs of the examined model. A very common method is used to investigate
the effects of environmental issues on supplier assessment.

Input and output data must be transformed in DEA models if the input data is not
minimized, and the same applies to output data if it is not maximized. In previous
papers we explained how this can be done by using reciprocal values (Dobos and
Vörösmarty 2019a; Vörösmarty and Dobos 2019). However, it is also possible to
choose to scale your variables. This solution was chosen in Dobos and Vörösmarty
(2019b). A reciprocal DEA model is presented to illustrate the calculation of cross-
efficiency.

In the second model, we have chosen to transform the data into negative values.
However, this solution involvesmaking the data translation invariant (Cook andSeiford
2009; Neralić and Wendell 2019). This can be done by adding a positive number to
criteria containing negative values, which will make the values of the criterion non-
negative. A positive number is used to create new variables of the “lack of” type.
These values represent the optimum numbers for the criterion under consideration.
The additive model that we present is translation invariant for all data, both input and
output.

3.1 The application of a DEAmodel with reciprocal data in supplier selection

Let us assume that the purchaser evaluates p suppliers. The number of traditional man-
agement criteria is n, and the number of environmental criteria ism. The evaluation of
supplier i is defined with vectors (xi, yi), where vector xi is the value of the manage-
ment (input) criteria, and vector yi is the environmental (output) criteria. The input
and output vectors of suppliers can be summarized in matricesX and Y, where matrix
X � [x1, x2,…, xn] and matrix Y � [y1, y2,…, ym]. It is assumed that the matrices
are reciprocally transformed if this is necessary.

DEA is a general framework for evaluating suppliers in the field of materials and
supply management in the absence of criteria weights. The application of DEA is
based on the categories “inputs,” “outputs,” and efficiencies. The basic method was
initiated by Charnes et al. (1978) to determine the efficiency of decision making units
(DMU). The model offered by the former is a hyperbolic programming model under
linear conditions. The existence of a general solution to such kinds of models was
first investigated by Martos (1964), who examined the problem as a special case of
a linear programming model. The aim of the DEA model is to construct weights for
management (input) and environmental (output) criteria for which the weights are
vectors v and u, respectively. The basic DEA model for the first supplier is thus as
follows:

u · y1 → max (1)

s.t.
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Table 1 Solution of the DEA model with reciprocal data for the first supplier

Lead time Quality Price Reusability CO2 emission

9.617·10−2 3.986·10 1.547·10−1 1.358·10−2 0

v · x1 � 1, (2)

− v · X + u · Y ≤ 0, (3)

u ≥ 0, v ≥ 0. (4)

Model types (1)–(4) can be solved with commercial software such as Microsoft
Excel Solver. Throughout the paper we apply this software to construct our numer-
ical examples (see Table 1). Our example fulfils the general rule for the number of
decision-making units with regard to valid outcomes. The number of suppliers is equal
to 15—i.e. r � max{m·n; 3·(m+ n)}, where r is the number of suppliers and numbers
m � 2, and n � 3 are the number of outputs and inputs (Cooper et al. 2001).

The cross-efficiencies of the model (1)–(4) can be calculated for all jmodels, where
value j is the number of a decision-making unit (DMU). Let us assume that the optimal
weights (u1; v1) of problems (1)–(4) are known. Then the cross-efficiencies for these
weights and Supplier 1 are

E j1 � u1 · y j/v1 · x j ; j � 1, 2, . . . , r . (5)

The efficiency of self -appraisal, is equal to Ejs � Ejj (Doyle and Green 1994).
Peer-appraisal for the first DMU is calculated as the average of the cross-efficiencies:

E1p �

∑
i�1

i ��1

pE ji

p − 1
, j � 1, 2, . . . , r . (6)

We hereby complete the introduction to the basic DEA model. The self-appraisal
and peer-appraisal indicators for Supplier 1 are shown in Eqs. (5) and (6).

3.2 The application of an additive DEAmodel in supplier selection

After introducing “lack of” type variables, the input and output vectors of the suppliers
can be summarized in matrices X′ and Y′. Let us formulate the additive DEA model
in the next format, assuming that we are examining the efficiency of the first decision-
making unit:

−ε · 1 · s− − ε · 1 · s+ → min (7)

s.t.
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− X′ · λ − s− � −x1 (8)

Y′ · λ − s+ � y1 (9)

1 · λ � 1 (10)

λ ≥ 0, s− ≥ 0, s+ ≥ 0. (11)

Model (7)–(11) is the basic dual model for the additive DEA method which can be
reformulated in a primal model in the following form

− v · x′
1 + u · y′

1 + u1 → max (12)

s.t.

− v · X′ + u · Y′ + u1 · 1 ≤ 0 (13)

u ≥ ε · 1, v ≥ ε · 1. (14)

The self-appraisal and peer-appraisal indexes of the additive DEA model can be
determined in a similar way to that of Eqs. (5) and (6).

4 Numerical examples

Examples of numerical data are presented in “Appendix 1”. Based on these, we first
determine the values of self-appraisal and peer-appraisal with the data obtained by
reciprocal transformation. Then we transform the data with the additive model. Sec-
tion 4.3 compares the results of self- and peer-appraisal indicators for reciprocal and
additive models.

4.1 A DEAmodel with reciprocal data for supplier selection

Let us transform the data in “Appendix 1” into a form that better fits maximization
criterion; i.e., gives higher values than those of a less good evaluation. If a better
evaluation produces a higher value, then the evaluation of that criterion shall not be
changed. (This is the case, for example, for reusability, lead time, and price.) If a better
criterion is awarded a lower value, then we use the inverse (i.e. reciprocals of the data).
The data used for this type of analysis are shown in “Appendix 2”.

The linear programmingmodel gives the following weights for solving the problem
for the first supplier. For problems (1)–(4), the optimal weights are given in Table 1.
The DEA efficiency measures for the first supplier are shown in the first column of
Table 2. The other columns in the matrix present the relevant DEA efficiency of the
supplier and the cross-efficiencies.
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The most DEA efficient and cross-efficient decision-making units with maximal
values of one are suppliers 7, 8, and 15. The first supplier in our case has an efficiency
score (i.e. self-appraisal) of 0.951, which is relatively high.

In this numerical example, two sets of criteria were formulated: management as
input (traditional purchasing) criteria, and environmental, or output criteria.

The weights vector suggests that the weight of all classical purchasing criteria
should be incorporated into the evaluation of suppliers. The criterion of reusability
received a weight in the analysis, but the criterion of CO2 emissions was not evaluated
in this model.

The efficiency of each supplier is the solution of problem (1)–(4) by optimizing the
values for their own criteria. In the present casewehave to solve 15 linear programming
problems. When solving certain problems, cross-efficiencies are incidental; that is,
with optimal weights the efficiency of other suppliers can be determined.

Table 2 contains the DEA efficiencies and cross-efficiencies for all suppliers. The
diagonal of the matrix shows the DEA efficiencies, which are colored gray. The white
elements of the vertical columns include the 14 cross-efficiencies with the optimum
weights for the particular supplier.

Table 5 includes the self- and peer-appraisal values of suppliers. Suppliers 2, 4, 6,
7, 8, 9, 10, 11, 13, and 15 have the highest efficiency, i.e., one. These suppliers are also
Pareto efficient, meaning there is no other supplier that outperforms them. However,
the remaining five suppliers are inefficient. The cross-efficiencies of suppliers 7, and
15 are around 0.8, or greater. As the purpose of supplier evaluation is to help with
selecting a supplier, one should be chosen that clearly has high cross-efficiency and
DEA efficiency. In this case, Supplier 10 is efficient, but in terms of peer-appraisal it
is weak.

This completes the analysis.

4.2 An additive DEAmodel in supplier selection

Let us now transform the data from “Appendix 1” for the additive model. If a better
evaluation has a higher value, than we will not change the evaluation of that criterion.
If a lower value for a criterion is better, then we will reduce the value of the maximum
available quality (i.e. 100 percent) by the supplier’s value for quality, while for CO2
emissions 40 g/t is the least best value, representing the highest CO2 emission of
any supplier in this sector. These two upper bounds can be interpreted as “lack of”
parameters. Quality has an upper bound of 100 percent, and we assume an “industrial
worst” technologywith 40 g/t CO2 emissions. The data used for the analysis are shown
in “Appendix 3”.

The linear programming model (12)–(14) offers the following weights for solving
the problem for the first supplier. These are presented in Table 3. The ε value for this
model is 10−5. The DEA efficiency measures are shown in the first column of Table 4.
The other columns in the matrix present the relevant DEA efficiency of the supplier
and the cross-efficiencies as well.

The weights vector suggests that the weight of all classical purchasing features
should be incorporated into the evaluation of suppliers. Reusability andCO2 emissions
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Table 3 Solution of the DEA model for the first supplier

Lead time Quality Price Reusability CO2 emission Slack variable (u1)

1.56·10−4 1.492·10−5 1.8·10−4 10−5 10−5 3.92·10−5

receive a weight in the analysis as well. The weighting of the environmental criteria is
exactly the minimum possible (i.e. 10−5). This means that these weights are effective
in the sense that they take on the lowest possible value.

The most efficient decision-making units with values of over 0.9 are suppliers 4, 6,
7, 8 and 15. The first supplier in our case has an efficiency score of 0.823, which is
relatively high.

Analysis from the literature suggests that overall performance can be mapped
according to vendor evaluation criteria, such that each of the evaluation criteria is
an important company parameter. It is often unacceptable for a company to have a
supplier who only fulfils a single criterion well (even if they are extremely good in this
regard). According to the literature, such a situation is the result of a utility-maximizing
supplier.

The analysis of additive model is complete.

4.3 Comparison of self- and peer-appraisal indicators for reciprocal and additive
DEAmodels

DEAefficiency is relatively easy to interpret. However, there are several interpretations
of cross-efficiency (Doyle and Green 1994) One interpretation is that DEA efficiency
can involve self -appraisal, meaning that the supplier tries to maximize their own
efficiency. Cross-efficiencies, on the other hand, develop through peer-appraisal. Of
course, cross-efficiency is always less than DEA efficiency. The method of calculation
of peer-appraisal indexes is shown in (6). Table 5 summarizes the self-appraisal and
peer-appraisal of reciprocal and additive models.

Reciprocal and additive models are compared using a correlation coefficient. First,
we discuss the relationship between self-appraisal and peer-appraisal in reciprocal and
additive models. In the reciprocal model, the correlation between the two efficiency
measures is 0.479. This suggests that there is only a moderate relationship between
the two metrics, so DEA efficiency reassesses the value obtained for efficiency using
peer-appraisal. In the additive model, the correlation is 0.776, which indicates strong
correlation. This shows that the self-appraisal and peer-appraisal metrics are similar.

The correlation coefficient between the two models’ self-appraisal indices is 0.698.
This suggests that if there is a difference between the two models, it is irrelevant.
The correlation between the two peer-appraisal metrics is 0.789. Interestingly, the
relationship between peer-appraisalmetrics is stronger than that between self-appraisal
metrics.

In summarizing the results, we can state that the results obtained by the two data
processing methods give almost similar results. Only a significant difference between
the two efficiency indicators for the reciprocalmodel can be identified. This alsomeans
that the results are less dependent on data transformation.

123



456 I. Dobos, G. Vörösmarty

Ta
bl
e
4
D
E
A
-e
ffi
ci
en
ci
es

an
d
cr
os
s-
ef
fic
ie
nc
ie
s
fo
r
ad
di
tiv

e
D
E
A
m
od
el

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15

1
0.
82

3
0.
56

4
0.
40

2
0.
82

7
0.
85

5
0.
58

3
0.
84

8
0.
58

3
0.
53

8
0.
82

7
0.
75

7
0.
77

8
0.
44

2
0.
58

3
0.
58

3

2
0.
69

9
1.
00

0
0.
70

9
0.
76

0
0.
72

6
0.
68

7
0.
70

9
0.
68

7
0.
96

5
0.
76

0
0.
53

6
0.
63

6
0.
68

5
0.
84

3
0.
84

3

3
0.
55

9
0.
63

1
1.
00

0
0.
60

0
0.
58

0
0.
52

4
0.
58

9
0.
52

4
0.
53

0
0.
60

0
0.
59

0
0.
45

1
0.
94

5
0.
46

3
0.
46

3

4
0.
93

9
0.
86

1
1.
00

0
1.
00

0
0.
97

5
0.
58

5
0.
96

6
0.
58

5
0.
67

5
1.
00

0
0.
86

9
0.
94

4
1.
00

0
0.
58

5
0.
58

5

5
0.
57

6
0.
34

7
0.
18

5
0.
56

9
0.
59

8
0.
40

8
0.
59

4
0.
40

8
0.
35

2
0.
56

9
0.
53

0
0.
54

4
0.
22

2
0.
40

8
0.
40

8

6
0.
94

7
0.
86

8
1.
00

0
0.
97

4
0.
98

2
1.
00

0
1.
00

0
1.
00

0
0.
84

7
0.
97

4
1.
00

0
0.
73

9
1.
00

0
0.
86

7
0.
86

7

7
0.
96

2
0.
70

7
0.
93

7
1.
00

0
1.
00

0
0.
55

1
1.
00

0
0.
55

1
0.
55

9
1.
00

0
1.
00

0
0.
96

6
0.
96

7
0.
52

0
0.
52

0

8
0.
96

4
1.
00

0
0.
80

3
1.
00

0
1.
00

0
1.
00

0
1.
00

0
1.
00

0
1.
00

0
1.
00

0
0.
87

3
0.
79

9
0.
80

6
1.
00

0
1.
00

0

9
0.
68

8
1.
00

0
0.
69

1
0.
74

6
0.
71

5
0.
72

7
0.
70

0
0.
72

7
1.
00

0
0.
74

6
0.
53

2
0.
61

0
0.
66

7
0.
89

1
0.
89

1

10
0.
50

5
0.
64

9
0.
75

1
0.
55

5
0.
52

4
0.
43

3
0.
52

2
0.
43

3
0.
53

3
0.
55

5
0.
46

1
0.
44

3
0.
71

8
0.
43

3
0.
43

3

11
0.
82

7
0.
53

6
0.
86

7
0.
84

3
0.
85

9
0.
52

2
0.
87

5
0.
52

2
0.
45

0
0.
84

3
1.
00

0
0.
74

3
0.
92

1
0.
45

5
0.
45

5

12
0.
63

3
0.
56

8
0.
46

1
0.
66

2
0.
65

8
0.
40

9
0.
64

1
0.
40

9
0.
48

5
0.
66

2
0.
51

1
0.
67

1
0.
46

7
0.
45

2
0.
45

2

13
0.
81

0
0.
70

4
1.
00

0
0.
85

0
0.
84

1
0.
58

3
0.
84

8
0.
58

3
0.
57

8
0.
85

0
0.
85

6
0.
71

8
1.
00

0
0.
53

2
0.
53

2

14
0.
70

3
0.
76

3
0.
46

3
0.
72

7
0.
73

0
0.
74

8
0.
72

1
0.
74

8
0.
82

1
0.
72

7
0.
57

6
0.
60

5
0.
47

0
0.
84

5
0.
84

5

15
0.
96

2
1.
00

0
0.
57

2
1.
00

0
1.
00

0
0.
78

8
0.
96

6
0.
78

8
1.
00

0
1.
00

0
0.
70

0
0.
96

6
0.
57

9
1.
00

0
1.
00

0

123



Supplier selection: comparison of DEA models with… 457

Table 5 Efficiency measures of the suppliers

Supplier Reciprocal model Additive model

Self-appraisal Peer-appraisal Self-appraisal Peer-appraisal

1 0.951 0.672 0.823 0.655

2 1.000 0.707 1.000 0.732

3 0.973 0.486 1.000 0.575

4 1.000 0.708 1.000 0.826

5 0.762 0.525 0.598 0.437

6 1.000 0.697 1.000 0.933

7 1.000 0.870 1.000 0.803

8 1.000 0.740 1.000 0.946

9 1.000 0.696 1.000 0.738

10 1.000 0.519 0.555 0.528

11 1.000 0.668 1.000 0.694

12 0.784 0.596 0.671 0.533

13 1.000 0.689 1.000 0.735

14 0.933 0.606 0.845 0.689

15 1.000 0.879 1.000 0.880

5 Conclusion

In this paper, a cross-efficiency DEA model was defined. The proposed model
addresses two problems. First, we provide an example of supplier evaluation using
negative data. In classical DEA models, input and output data cannot be transformed
together, so data translation must be undertaken. Therefore, additive DEA models are
almost exclusively used to deal with such problems.

Second, the method should respond to modifications in suppliers’ offers in the case
that a buyer favors overall good performance. To filter suppliers with data outliers
in supplier evaluation, it is important to distinguish between self-appraisal and peer-
appraisal. Self-appraisal metrics cover DEA efficiency, while peer-appraisal indicators
cover cross-efficiency. In traditionalDEAmodels it is possible tofilter out efficient sup-
pliers based on self-appraisal. Moreover, by applying the concept of cross-efficiency
it is possible to differentiate between generally good performance and partially good
performance with the help of peer-appraisal.

Finally, reciprocal and additivemodel self- and peer-appraisal indicators were com-
pared. The correlation analysis showed a very strong linear relationship in terms of the
efficiency of the two DEA models in our numerical example. The conditions under
which the efficiency measures applied in the two models differ should be further
investigated.

Cross-efficiency is rarely used in an additive model. In additive DEA models,
efficiency can be greater than one. The numerical example presented here indicates
that all self-appraisal DEA and aggregate peer-appraisal cross-efficiency values can
be between zero and one.
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The role of weights may also be the subject of future study.
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Appendix 1

See Table 6.

Table 6 Data for numerical examples

Supplier Management (input) criteria Environmental (output) criteria

Lead time (days) Quality (%) Price ($) Reusability (%) CO2 emission (g/t)

1 2 80 2 70 30

2 1 70 3 50 10

3 3 90 5 60 15

4 1.5 85 1 40 20

5 2.5 75 2.5 65 35

6 2 95 4 90 25

7 3 80 1.5 75 15

8 1.5 85 3.5 85 20

9 1 70 3.5 55 10

10 2.5 75 4 45 10

11 3.5 90 2.5 80 25

12 2 65 1.5 50 20

13 3 85 3 75 15

14 1.5 70 4.5 85 20

15 1 65 2 75 15

123

http://creativecommons.org/licenses/by/4.0/


Supplier selection: comparison of DEA models with… 459

Appendix 2

See Table 7.

Table 7 Data for DEA model with reciprocal data

Supplier Management (input) criteria Environmental (output) criteria

Lead time (days) Quality (%) Price ($) Reusability (%) CO2 emission (g/t)

1 2 0.013 2 70 0.033

2 1 0.014 3 50 0.100

3 3 0.011 5 60 0.067

4 1.5 0.012 1 40 0.050

5 2.5 0.013 2.5 65 0.029

6 2 0.011 4 90 0.040

7 3 0.013 1.5 75 0.067

8 1.5 0.012 3.5 85 0.050

9 1 0.014 3.5 55 0.100

10 2.5 0.013 4 45 0.100

11 3.5 0.011 2.5 80 0.040

12 2 0.015 1.5 50 0.050

13 3 0.012 3 75 0.067

14 1.5 0.014 4.5 85 0.050

15 1 0.015 2 75 0.067
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Appendix 3

See Table 8.

Table 8 The translated data for additive model

Supplier Management (input) criteria Environmental (output) criteria

Lead time (days) Quality (%) Price ($) Reusability (%) CO2 emission (g/t)

1 2 20 2 70 10

2 1 30 3 50 30

3 3 10 5 60 25

4 1.5 15 1 40 20

5 2.5 25 2.5 65 5

6 2 5 4 90 15

7 3 20 1.5 75 25

8 1.5 15 3.5 85 20

9 1 30 3.5 55 30

10 2.5 25 4 45 30

11 3.5 10 2.5 80 15

12 2 35 1.5 50 20

13 3 15 3 75 25

14 1.5 30 4.5 85 20

15 1 35 2 75 25
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