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Abstract
The aim of the present paper is to analyze how firms that sell durable goods should
optimally combine continuous-time operational level planning with discrete decision
making. In particular, a firm has to continuously adapt its capacity investments and
sales strategy, but only at certain times it will introduce a new version of the durable
good to the market. The launch of a new generation of the product attracts new cus-
tomers. However, in order to be able to produce the new version, production facilities
need to be adapted leading to a decrease of available production capacities. We find
that the price of a given generation of a product decreases over time. A firm should
increase its production capacity most upon introduction of a new product. The stock
of potential consumers is largest then so that the market is most profitable. The extent
to which existing capacity can still be used in the production process for the next
generation has a non-monotonic effect on the time when a new version of the product
is introduced as well as on the capital stock level at that time.
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1 Introduction

This paper is about the optimization problem of a firm that sequentially introduces
different versions of a durable good on the market. “A durable good is a good that
does not quickly wear out, or more specifically, one that yields utility over time rather
than being completely consumed in one use. Highly durable goods such as refrigera-
tors, cars, or mobile phones usually continue to be useful for three or more years of
use, so durable goods are typically characterized by long periods between successive
purchases.”1

Our aim is to find out how firms that sell durable goods, combine continuous-time
operational-level planning (continuously deciding on capacity investment and sales)
with discrete strategic decisionmaking (when to launch a newgeneration of the durable
product). The practical applications we have in mind are, e.g., when does Samsung
replace its Galaxy S9 by S10, or when does Apple introduce a new generation of the
iPhone.

Concerning the policy of setting an output price, essentially two basic strategies
can be observed in practice. First, for a given product version the price is always kept
constant. The main advantage of such a strategy (employed e.g. by Apple) is that
the consumers do not have an incentive to wait with purchasing the product until the
price has dropped sufficiently. The other strategy (e.g. applied by Samsung) is that
the price of a given product can be varied over time. This enabled to employ a more
tailor made policy with respect to serving different types of consumers. In particular
one can distinguish between early adopters that are less price sensitive and more price
conscious consumers who intend to wait until the given product has a lower price. The
first policy of a constant price was already analyzed in Seidl et al. (2019). The present
paper modifies and extends that work by analyzing a firm that could vary the price
over time.

The so-called Coase conjecture, see Coase (1972), states that a monopolist has to
sell the durable good at a price equal to its marginal costs. The reasoning behind this
conjecture is that consumers are aware that a firm has to lower its price if they do not
purchase the product for a given price. However, in practice, this outcome is hardly
ever observed. Consider for example the price of a smart phone which is usually the
highest when the phone is launched and decreases over time. In the present paper we
confirm that it is optimal to employ such a strategy and discuss how the heterogenous
willingness of the consumers to pay for a product as well as capacity restrictions affect
the price.

The papers McAfee and Wiseman (2008) and Montez (2013) analyze situations
in which the outcome of the Coase conjecture (does not) occur in a single product
generation problem. The pricing of two generations of a durable product is discussed
for example in Dhebar (1994), Kornish (2001) and Li and Graves (2012). Şeref et al.
(2016) consider the introduction and the pricing of two generations in a diffusion
model. We extend literature by analyzing the impact of increasing the number of
generations and find that the actual optimal number of generations is infinite.

1 See https://en.wikipedia.org/wiki/Durable_good.
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How the diffusion of a durable product is affected by constrained production capac-
ity in a make-to-stock production is investigated by Ho et al. (2002, 2011) in a single
generation problem. The impact of the price in such a framework is considered in Shen
et al. (2014). Note that a more extensive literature review can be found in Seidl et al.
(2019).

In the present paper, we investigate in a rather simple model how the interaction
of pricing and capacity investments is affected by the possibility of introducing new
generations of a product. To thoroughly understand the implications of multiple prod-
uct generations we start by analyzing the problem with a fixed number of generations
which we increase gradually. It is shown that the actual optimal number of product
generations is infinite, which is reasonable due to the assumption that each genera-
tion only has a limited total number of potential consumers and because the planning
period is infinite.

Concerning the optimal investment strategy it is found that in the beginning of each
product generation the investments into capacity are the largest. Then one also charges
the highest price to compensate for these investments. The optimal price decreases
over time as one tries to win consumers who are not able or willing to purchase the
product for a high price.

The impact of different parameters is analyzed. In particular, we find that themarket
potential, the costs for introducing a new product generation and the extent to which
one can reuse capacity for the subsequent generation of the product can have some non-
trivial effect on the optimal solution. We compare the results obtained in the present
paper, where the price follows from the inverse demand function, to the results of Seidl
et al. (2019), where the optimally determined price was assumed to be constant. We
find that the non-constant price allows higher sales of any product generation, thus,
at least for some time investments into capacity are also higher. As a consequence
of the possibility to attract more consumers, the switching time to the next product
generation increases.

The present model shares some similarities to vintage capital stock models where
also multiple generations of a product are considered. In our model, a certain product
generation appears at an optimally determined time, whereas in a vintage capital stock
model this holds for a certain vintage of the capital stock. If each new vintage would
produce a new generation of a durable good, the models are equivalent.

The present paper was chosen by the authors for this special issue celebrating the
scientific achievements of Gustav Feichtinger in recognition of his enthusiasm and
work in the area of multi-stage modeling, see e.g. Bultmann et al. (2008), Grass et al.
(2008), Caulkins et al. (2011b, 2013a, b), Moser et al. (2014) and Caulkins et al.
(2015), and product innovation, see e.g. Feichtinger et al. (2004, 2006) and Caulkins
et al. (2007, 2011a).

The paper is organized as follows. Themodel is presented in Sect. 2, whereas Sect. 3
contains the analysis. Section 4 concludes.
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2 Themodel

There are two state variables, namely Q, which is the stock of potential consumers
for the durable good, and K , which is the firm’s production capacity. Each consumer
buys one item at most. Once the item is bought, the consumer disappears from the
market. The continuous control variables are q , which is the quantity of the good sold
to the consumers and I , the capacity investment. We have production costs, cq, and
investment costs I + θ

2 I
2.

Further we have p(Q, q), which is the inverse demand function, where

p(Q, 0) > 0,
∂ p (Q, q)

∂q
< 0,

∂ p (Q, q)

∂Q
> 0.

It makes sense that the reservation price is higher if the number of potential con-
sumers is larger. We assume here a linear relationship in that the reservation price
equals f (Q) = αQ where α is a positive parameter. Furthermore, as quite common
in economic models (see, e.g., Tirole 1988), we impose that price linearly depends
on quantity, where the parameter γ measures how sensitive price is to quantity. In
particular, we use p(Q, q) = f (Q)−γ q, with f ′ > 0, i.e. the maximum willingness
to pay is larger if the potential stock of customers is large. Typically, when a new
product is launched, the stock of potential customers is largest, while at the same time
the early adopters are willing to pay the most for the product.

At the optimally determined time Ti the firm decides to launch generation i , i =
2, . . . , N , of the product.2 A major incentive for a new product generation is that
with this new generation one can reach more potential consumers again as it might
motivate consumers who already bought the old generation to adopt a newer version.
When introducing the new product, the demand for old version of the product vanishes,
as for instance with cars. The initial stock of potential consumers in each stage is given
by the exogenous parameter Q0i , where i denotes the number of the stage, i.e. the
generation of the product.

To be able to produce the new product, production capacity needs to be retrofitted.
Consequently, at the moment of the new product arrival T production capacity K
drops, i.e. K (T+

i ) = βK (T−
i ) with β ∈ [0, 1], where T+

i and T−
i represent the time

moment just before and after product arrival, i.e. K (T+
i ) = limt→Ti+0 K (t).

The costs of introducing a new version of the product are given by the switching
costs Si . The resulting optimal control model is represented by

max
q(·),I (·),Ti

∫ ∞

0
e−r t

(
(αQ(t) − γ q(t) − c) q(t) − I (t) − θ

2
I (t)2

)
dt −

N∑
i=2

e−rTi Si

Q̇(t) = −q(t),

K̇ (t) = I (t) − δK (t), for t /∈ {T2, . . . , TN },
2 The number of product generations N can either be exogenously given or optimally determined.
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Q(T+
i ) = Q0i ,

K
(
T+
i

) = βK
(
T−
i

)
, i = 2, . . . , N .

0 ≤ q(t) ≤ K (t), I (t) ≥ 0, Q(t) ≥ 0,

Q(0) = Q01, K (0) = K0.

In what follows, in general we omit the time argument t if no confusion is caused.
The model presented here differs to the model analyzed in Seidl et al. (2019) in

several ways: here the sales rate q is considered as control variable while in Seidl et al.
(2019) it is determined as the minimum of demand and units of the product that can
be produced given the capacity. Another big difference is that in Seidl et al. (2019)
the price is modeled as state variable which only can change at certain, optimally
determined points in time, while here the price follows from the inverse demand
function.

3 Necessary optimality conditions for the N-stage problem

The Lagrangian is

L = (αQ − γ q − c) q − I − θ

2
I 2 + λ (−q) + μ (I − δK ) + ν1q

+ ν2 (K − q) + ν3 I + ν4Q,

whereλ andμ are the co-state variablesmeasuring themarginal value of state variables
Q and K , respectively, see e.g. Grass et al. (2008, p. 109ff). The Lagrange multipliers
are denoted by ν j , j = 1, . . . , 4.

It has to hold that

Lq = αQ − 2γ q − c − λ + ν1 − ν2 = 0 ⇒ q = αQ − c − λ + ν1 − ν2

2γ
,

L I = −1 − θ I + μ + ν3 = 0 ⇒ I = μ − 1 + ν3

θ
.

The necessary Legendre Clebsch conditions are fulfilled. The co-state equations
are

λ̇ = rλ − αq − ν4, (1)

μ̇ = (r + δ) μ − ν2. (2)

The complementary slackness conditions

ν1q = 0, ν2 (K − q) = 0, ν3 I = 0, ν4Q = 0,

must hold. Note that q = 0 for all Q ≤ c
α
. The reason for this is that if Q is smaller

than c
α
, it is only possible to sell the product making losses. Thus, it is optimal to
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choose the sales rate as zero, meaning the number of potential customers does not
decrease any further. Therefore, the non-negativity constraint with respect to Q can
never become binding, implying that ν4 = 0 for all t .

Since p = αQ − γ q, we have ṗ = α Q̇ − γ q̇ . Since Q̇ = −q ≤ 0, the price
decreases over time (i.e. ṗ < 0) if q̇ ≥ − α

γ
q. We have to distinguish two cases:

1. q = K In this case q̇ = K̇ , consequently we have

ṗ = − (α − γ δ) K − γ I .

Due to the non-negativity of the state and control variables, a condition that ensures
that the price strictly decreases over time (for K > 0) is α > γ δ.

2. q < K In this case we consider dLq
dt = α Q̇ − 2γ q̇ − λ̇ = 0, which gives

q̇ = − 1
2γ r λ̇, which gives in turn

ṗ = 1

2γ

(
(rγ + α) λ + αc − α2Q

)
.

Here it is not clear whether the price increases or decreases over time.

Concerning capacity investments, it can be seen that

İ = 1

θ
μ̇, for I > 0

which means that I is non-decreasing if q < K .
Due to the discontinuity of the state variables Q and K , we use the Impulse Max-

imum Principle, see Sethi and Thompson (2000, p. 326) and Chahim et al. (2012,
Theorem 2.2). In particular, the jumps in the state variables occur at moments that
new product versions are introduced, and they are equal to

Q(T+
i ) − Q(T−

i ) = Q0i − Q(T−
i ),

K (T+
i ) − K (T−

i ) = (β − 1) K (T−
i ).

The Impulse Hamiltonian is given by

I Ham = λ
(
Q0i − Q(T−

i )
) + μ (β − 1) K (T−

i ).

When introducing a new product, it has to hold that

λ(T+
i ) − λ(T−

i ) = λ(T+
i ),

μ(T+
i ) − μ(T−

i ) = μ(T+
i ) (1 − β) ,

from which we derive that

λ(T−
i ) = 0,
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μ(T−
i ) = βμ(T+

i ).

Note that the present conditions are reasonable from an interpretation point of view.
Namely, the shadow price of the potential consumers has to be zero when a certain
generation is abandoned as the firm does not have any utility from them. However, the
shadow price of capacity is positive as the firm still can take some advantages of its
prior investments into capacity.

Furthermore, it has to hold that

H
(
T−
i

) − H
(
T+
i

) + r S = 0.

3.1 Steady states

First of all, we like to mention that there is no steady state with K̂ > 0. This is because
Î > 0 can only hold if μ̂ > 1. However, we have μ̇ = 0 only if ν̂2 > 0. This implies
that q̂ = K̂ , meaning that Q̇ = 0 only if K̂ = 0. Furthermore, there is no steady
state where both controls are in the interior of the admissible control region. However,
there exist multiple boundary steady states. There is one steady state with only the
constraint Î ≥ 0 active, namely,

Q̂ = c

α
, K̂ = 0, λ̂ = 0, μ̂ = 0, q̂ = 0, Î = 0, ν̂1 = 0, ν̂2 = 0,

ν̂3 = 1, ν̂4 = 0. (3)

The Jacobian evaluated at the steady state is

J =

⎛
⎜⎜⎜⎝

− α
2γ 0 1

2γ 0
0 −δ 0 −1

− α2

2γ 0 r + α
2γ 0

0 0 0 r + δ

⎞
⎟⎟⎟⎠ .

Its eigenvalues are ξ1 = −δ, ξ2 = r + δ, ξ3,4 = 1
2γ

(
rγ ± √

rγ (rγ + 2α)
)
, which

implies that two of the eigenvalues are always positive and two are negative.
It can be seen that the steady state level of potential consumers increases in the

production costs c and decreases in α which measures the impact of the consumer
stock on the price. Note, however, that at the steady state itself, there are no sales.
This is inherent to the model as sales decrease the stock of potential customers and
Q̇ cannot be zero if q̂ > 0. The particular steady state level Q̂ is such that the price
equals production costs, below that level potential consumers could only be motivated
to buy the product if its price is below costs which is not profitable for the firm.

At the steady state ν̂2 = 0, i.e. the constraint K ≥ q is not active at the steady state.
Since the steady state value μ̂ is zero and (2) is strictly positive for anyμ(t) > 0 when
ν2(t) = 0 this means that the steady state can only be approached if ν2(t) > 0 for
some t ≥ 0 or ifμ(t) = 0 for t ∈ [0,∞). The second case would imply that it is never
profitable for a firm to invest into capacity, which would be the case if investment costs
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are too high. Note that in this case there could only be a feasible solution path with
Q0 > Q̂ approaching the steady state if K0 > 0 as q > 0 only if K > 0. Obviously,
the more interesting case is when ν2(t) > 0 for some t ≥ 0 . Since I > 0 if μ > 1
investments into capacities are zero in vicinity of the steady state which makes sense
as there are no sales at the steady state. Furthermore, it only makes sense to invest into
capacities when q = K when approaching the steady state as there is no incentive to
overinvest into capacities.

There is another steady state where q ≤ K is active, i.e.,

Q̂ = r + δ + c

α
, K̂ = 0, λ̂ = 0, μ̂ = 0, q̂ = 0, Î = 0, ν̂1 = 0, ν̂2 = r + δ,

ν̂3 = 0, ν̂4 = 0,

with the Jacobian

J =

⎛
⎜⎜⎝

0 −1 0 0
0 −δ 0 1

θ

0 −α r 0
−α 2γ 1 r + δ

⎞
⎟⎟⎠

and its eigenvalues

χ1,2,3,4 = 1

2

(
r ± θ

[
θ (r + δ)2 + 4γ + θδ ±

(
(2γ + θrδ)2

+θ
(
2θδ3r + 4γ δ2 + θδ4 − 4αr

))0.5])0.5

.

Note that these eigenvalues can be complex. Furthermore, since

q = 0 ∀Q ≤ c

α
,

(belowwhich the price, which is p = αQ−γ q, is too small to compensate production
costs c) there is a manifold of steady states with

Q̂ ∈
[
0,

c

α

]
,

K̂ = 0, λ̂ = 0, μ̂ = 0, q̂ = 0, Î = 0, ν̂1 = −
(
α Q̂ − c

)
, ν̂2 = 0,

ν̂3 = 1, ν̂4 = 0. (4)

3.2 Single-stage problem

To gain a better understanding of the problem let us first consider the number of stages,
N , to be fixed. In the most simple case, there is just one stage, meaning that there is
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Fig. 1 Phase portrait—single-stage problem

just one product which is never replaced by a newer version. As parameter values we
used

r = 0.1, α = 10, c = 1, β = 0.5, γ = 0.1, δ = 0.2, θ = 1

The parameter values above are arbitrarily chosen in the sense that they are not
empirically validated. The present paper, however uses the same parameter values as
in Seidl et al. (2019), which allows us to compare the solutions. We can find the steady
states described above, however, numerical calculations comparing solutions leading
to the different steady states indicate that if Q0N ≥ c

α
approaching the steady state

(3), i.e.

Q̂ = c

α
= 0.1, K̂ = 0, λ̂ = 0, μ̂ = 0, q̂ = 0, Î = 0, ν̂1 = 0,

ν̂2 = 0, ν̂3 = 1, ν̂4 = 0,

is optimal. For Q0N < c
α
it is optimal to have the sales rate and investments equal

to zero in the terminal stage, implying that one approaches the manifold of steady
states (4). In the subsequent, we only consider values of Q0i greater than c

α
for all

i = 1, . . . , N .
The phase portrait is shown in Fig. 1, where the right panel is a zooming of the left

panel. If Q01 < 0.1, selling the products would only be possible making losses, thus
it is optimal then to produce nothing, invest nothing into production capacities, and
let the capacities just depreciate until it becomes zero.

If, however, Q01 > 0.1, then it can pay off to invest into capacity. Figure 2 shows
a time path of a solution starting at Q(0) = 10, K (0) = 0. Initially it is optimal to
invest much into capacity so that it can increase. The quantity of the good sold to the
consumers equals the production capacity, i.e. the firm produces as much as possible.
The stock of potential consumers decreases, thus one can also decrease investments
into the capacity. After some time investments will become zero and due to the smaller
number of potential consumers, and less will be produced/sold than possible, i.e. there
is actually more capacity available than necessary. A firm is interested to sell its

123



506 R. F. Hartl et al.

Fig. 2 Time path for Q(0) = 10, K (0) = 0—single-stage problem

product initially fast so it overinvests into capacity in the sense that it does not operate
with full capacity for the entire planning horizon, particularly not when the market
for the product has grown small. It is reasonable that when there are many potential
consumers the price is high, and low when there are only few of them, and equals
production costs in the long run.

Since a non-constant price allows to adapt the price to the heterogeneous amount
that consumers are willing to pay for the durable product, it is not surprising that sales
are larger in the present model than in Seidl et al. (2019). Consequently, investments
are also larger here. The time for which sales equal capacity is about twice as long as
for a constant price, which also relates to the higher sales in the present paper.

3.3 Two-generation problem

The next step is to analyze what happens if there is a second stage, i.e. the first product
is replaced after an optimally determined time T2 by the second generation of the
product. Then the number of potential consumers goes up, i.e. Q(T+

2 ) = Q02 and the
capacity goes down, i.e. K (T+

2 ) = βK (T−).
Figure 3 shows an illustrative solution path starting at Q(0) = 10, K (0) = 0.

The parameters are the same for both product generations. During the first stage,
when generation one is produced and sold, one always sells as much as one can
produce. This also holds true for the beginning of the second stage, but only for some
time. Investments into capacity are higher in the beginning, but are decreasing. When
introducing the second generation of the product, one increases investments again to
compensate the loss of capacity due to retrofitting. Note that investments are not as
high in the second stage as in the first stage, which makes sense as one only has a
utility from investments as long as the market for the product is sufficiently large. The
investments during the first stage have a positive impact on the capacity for the second
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Fig. 3 Two-stage problem, phase portrait and time path

generation as not all of it is lost when switching to the new version of the product. As
no further generation is introduced, the market gets saturated after some time.

Note that the intersection of the solution path with itself in the phase space is not
(only) because of the discontinuity of the state variables at the switching time. Later
on we will see that this phenomenon does not occur when the number of switches is
not restricted. This makes sense as [following the proof of the monotonicity theorem
presented in Hartl (1987)] without restriction on the number of switches it cannot be
optimal to pursue two different strategies w.r.t the continuous control instruments at
the same point in the state space if the problem is autonomous.

Comparing the outcome to Seidl et al. (2019), it can be seen that the non-constant
price leads to a higher switching time. During an initial generation of the product a firm
will choose a low sales rate implying a high price. In this manner it can compensate
the investments and keep initial demand requiring capacity low. If the price remains
constant for the entire period in which a generation of the product is sold, this means
that there are more consumers who are not able to afford or willing to purchase the
product. Thus, by adapting the price one can gain more consumers. Of course this
requires also more capacity and investments. Note, however, profits are higher for the
case of a non-constant price.

Figure 4 shows what happens if the market for the second generation of the product
is much smaller than for the first generation. The different sizes of the potential buyers
of each generation can relate to differences in the functionality and/or the quality of the
product. In this case it does not pay as much as before to invest into capacity, because
less of it is required to meet demand in the second stage. Unlike for larger Q02, the
firm stops investing into capacity already during production of the first generation,
as can be seen in Fig. 4. Consequently, the overal investments into capacity are less
than before. Note, however, that there is also less unused capacity in the second stage.
Furthermore, the price increase after the introduction of the new generation is not as
high as before due to the smaller market size.

The impact of the market potential for the second version of the product is sum-
marized in the left panel of Fig. 5. There one can see that the switching time T2 is
higher if Q02 is low. The reason is that a firm wants to reach more potential con-
sumers before switching, because there are less to be reached after switching than
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Fig. 4 Two-stage problem, phase portrait and time path for Q02 = 2

Fig. 5 Sensitivity analysis w.r.t. the number of potential customers in stage 2, Q02, and w.r.t. the switching
costs S for Q(0) = 10 and K (0) = 0

before. Consequently, the market size before switching, Q(T−
2 ), is lower if Q02 is

low. More investments into capacity are required to satisfy demand after switching if
Q02 is high. Therefore, it makes sense then that capacity before switching is higher.
Not surprisingly, profits are higher if the market is also large in the second stage.

The impact of switching costs S is shown in the right panel of Fig. 5. An increase
of the switching costs leads to an increase of the switching time T2 and a decrease
of the market size before switching Q(T−

2 ). Same as before, one would try to exploit
the availability of potential consumers in the first stage, accepting a delay of the high
initial profits of the second stage. When switching costs are high, a firm is less able
to invest into capacity, therefore the level of capacity before switching is lower if
switching costs are high. When the switching costs are too high, it does not pay off to
switch at all and it is never optimal to introduce the new version of the product.

The impact of parameter β, which describes the extent to which one can reuse the
capacity for the production of the first product version for the second, is shown in
Fig. 6. Interestingly, the switching time T2 depends non-monotonically on parameter
β. For low β, capacity is increasing in β: this is a value effect, because it is more
valuable to invest in capacity if more of the capacity can also be used after the switch.
For β high, capacity is decreasing in β: this is an expansion effect, because if more
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Fig. 6 Sensitivity analysis w.r.t. β, i.e. the extent to which capacity can be reused in stage 2 for Q(0) = 10
and K (0) = 0

of the capacity can be used after the switch then there is no need to build up capacity
so much before the switch. T2 behaves in the opposite way than capacity: for small
β switching time T2 decreases with β because it becomes more attractive to switch
if you can use more of your old capacity after the switch. For β large, T2 increases
with β because the firm has invested less all along implying that the upper bound for
sales is lower. Thus, the stock of potential consumers stays higher and the market is
profitable for a longer period of time.

Note that this non-monotonicity is also observed in the problem where the price
is assumed to be constant, see Seidl et al. (2019). Comparing the solutions, it can be
seen that the switching time is larger for a non-constant price. The number of potential
consumers before switching to the next generation is significantly smaller. This is not
surprising as the non-constant price allows to charge a high price first to compensate
for capacity investments, and then to lower it to allow a larger number of consumers
to purchase the product. The capacity before introducing a new product generation is
larger for the non-constant price, because one can afford to invest more.

If the capacity cannot be reused for the second stage (i.e. β = 0), it makes sense
to exploit available capacity to a larger extent already in the first stage. Figure 7
shows the solution path starting at Q(0) = 10 , K (0) = 0 in the state space and
the corresponding time paths. Compared to the base case, where β = 0.5, the main
difference is the investment strategy: Since one cannot reuse the capacity, it does not
make sense to invest in it at all during the time before introducing the new version,
thus, I (T−

2 ) = 0. However, after the new generation of the product is introduced
higher investments into capacity are required as one needs to build up capacity again
from zero.

When one can completely reuse the capacities (β = 1) built up for the first genera-
tion of the product, the switching time T2 is higher than in the base case for β = 0.5. In
this case investments are more efficient as less capacity gets lost when switching and
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Fig. 7 Two-stage problem, phase portrait and time path

Fig. 8 Two-stage problem, phase portrait and time path

therefore a firm can afford to invest less, i.e. for the intermediate case it makes sense
to invest more to compensate for the capacity loss in order to be able to continue high
sales after switching. Unlike the case of very low β these investments are not lost, and
unlike the case of high β the investments are needed to have sufficient capacity in the
beginning of the second stage. Thus, for β = 1 one can afford to exploit the available
number of potential consumers (who generate less profits as the price is low before
switching) without worrying too much about the depreciation of capacity when less
consumers are available and thus less capacity is required, see Fig. 8.

3.4 Multi-generation problem

In the following section we consider what happens if we increase the (fixed) number
of stages. The case with three generations of the product is shown in Fig. 9. Again,
the initial state value is Q(0) = 10 and K (0) = 0. The highest investments into
capacity are made in the first stage. Of course, this is necessary to be able to sell
anything in the beginning when there is no capacity available otherwise. However,
despite the downfall of capacity when switching to the new version of the product,
one profits from these investment in the subsequent stages most. After switching to the
second stage, one increases investments into capacity to compensate for the loss due
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Fig. 9 Three-stage problem

Fig. 10 Four-stage problem

to switching. However, as one does not lose capacity in the final, third stage anymore,
less investments are needed.

What happens if we increase the number of generations to four can be seen in
Fig. 10. The picture is similar to the three stage case: in the first stage one invests
most, then investments in each subsequent stages are less as the firm does not need
to compensate the capacity loss due to the subsequent introduction of new product
generations as much.

The case with 100 product generations can be seen in Fig. 11. The idea behind
choosing such a high number of stages is not only to analyze how such a large number
of switches affects the investment and pricing strategy per se but also to check whether
the profits of the firm increase or decrease in the number of switches (note that the
conditions for switching from one stage to the next are only necessary conditions).
If it increases, it is an indication that for an actual unrestricted number of switches
a periodic solution with infinite switches is optimal. One can see in Fig. 11 that the
solution path for 100 generations of the product approaches the periodic solution (for
details on the periodic solution, see the next section of the paper). Figure 12 shows the
dependency of the value of the objective on the number of generations N . It can be
seen that the value of the objective approaches a fixed level which is the actual value
of the objective for a periodic solution with an infinite number of product generations.
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Fig. 11 100-stage problem

Fig. 12 Value of the objective function depending on the number of switches for Q(0) = 10 and K (0) = 0.
The dashed line depicts for comparison the objective value for N = ∞ (periodic solution)

Concerning the optimal strategy for such a high number of stages, it is optimal at
the beginning of the planning horizon to have high investments such that the capacity
increases and the losses of capacity due to switching are compensated. For the initial
generations, the investments are so large that the capacity after the introduction of a
new generation exceeds the capacity after the launch of the preceding one. However,
after some time, when there are not many further switches possible, the effects of the
market saturation play a larger and larger role again and investment get smaller and
smaller.

3.5 Periodic solution: infinite generations

To find the periodic solution numerically, we formulate the following boundary con-
ditions, see also Seidl (2012). The optimally determined period of the cycle is denoted
by T̄ . Since the problem is autonomous, we consider the solution on the interval
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Fig. 13 Periodic solution in the phase space (left panel) and corresponding time path (right panel)

t ∈ [
0, T̄

]
. It has to hold that

Q (0) = Q0 (5)

K (0) = βK (T̄ ) (6)

λ(T̄ ) = 0 (7)

μ(T̄ ) = βμ(0) (8)

H
(
T̄

) = H (0) + r S (9)

Since μ̇ > 0 for any q < K [see (2)], this means that a periodic solution with q
being in the interior of the admissible control region for all t ∈ [

0, T̄
]
is only possible if

β is greater such that condition (8) can be fulfilled (for positive values of the co-state).
Note that then, even though a periodic solution might occur, it does not necessarily
has to be optimal. Note that a negative value of μ(t) implies I (t) = 0. Since β > 1 is
not particularly meaningful, we focus on the case where the control constraint q ≤ K
becomes active for some time t ∈ [τ1, τ2], where τ1 ≥ 0 and τ2 ≤ T̄ .

Consequently, at least at some part of the periodic solution q = K . Considering
this constraint in more detail we find that Lagrange multiplier ν2 ≥ 0 only if

αQ − 2γ K − c − λ ≥ 0.

The canonical system can be written as

Q̇ = −K ,

K̇ = μ − 1 + ν3

θ
− δK ,

λ̇ = rλ − αK − ν4,

μ̇ = (r + δ) μ − ν2 = (r + δ) μ − (αQ − 2γ K − c − λ) .

Figure 13 shows a solution for the present parameter values which fulfills the
boundary conditions (5)–(9). On the whole periodic solution it holds that q = K ,
i.e. sales equal capacity. Investments into capacity are the highest at the beginning of
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Fig. 14 Time paths approaching the cycle with a low initial capacity (left panel) and a high initial capacity
(right panel)

each product release, but decrease over time. Note, however, these investments are
still large enough so that K increases over time except at the switching point. It makes
sense to invest most when introducing the new product, first to compensate for the
capacity loss due to switching and second because the market is the largest then.

The period of the cycle is slightly larger than for the periodic solution obtained in
Seidl et al. (2019) where optimal price is kept constant for each product generation.
Note, however, that the investments into capacity are much larger, leading to faster
sales and a faster decline of the number of potential consumers. One can afford this
for the non-constant price, because here one can exploit the fact that some consumers
who are willing to pay more for the same product as others by adapting the price.
Thus, the non-constant price implies that one can charge a high price first and then
lower it so that there are more consumers who can actually afford the product.

The time path for solution paths approaching the cycle can be seen in Fig. 14, the
corresponding phase portrait is shown in Fig. 15. If the capacity is zero in the beginning
one has to invest much to be able to produce and sell the product. Thus, capacity and
sales increase. After some time, there are so little potential consumers left so that it is
optimal to switch to the next stage—then the firm is also able to charge a higher price.
In the second stage it is not optimal/necessary to invest as much as before, capacity
still increases over time except at the switching time. Note that the switching time is
the highest in the first stage. This is because one cannot sell as much in the beginning
as one does not have the means to produce as much as necessary and therefore one
needs longer to capture the potential consumers.

When starting with a high initial capacity, a firm does not need to invest as much as
before. Still, the investment strategy is to invest somuch that the capacity still increases
over time (at least when the capacity is not too high) to compensate for the capacity
losses due to the introduction of the new product generation. The capacity decreases
by assumption at the switching points. After switching it is therefore necessary to
invest more. Note, however, the investment level is below that of the periodic solution
at least in the first couple of stages.

The impact of the switching costs S on theperiodic solution is investigated inFig. 16.
The objective value of starting directly on the periodic solution, i.e. on Q(0) = 10 and
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Fig. 15 Phase portrait where the number of switches is not restricted

K (0) = K+, where K+ = K (T̄+), is depicted by the solid line (i). Not surprisingly
the value of the objective of the periodic solution decreases in S. Note, however, that
K (T̄+) differs for different values of S, in particular it decreases in S. For comparison,
the value of the objective is shown if (ii) just one switch is allowed and (iii) no switch
is allowed. One can see that for small switching costs, the objective value is always
above that for solutions with a restricted number of switches. If the switching costs
become too high, then it becomes optimal to never switch at all. The switching time
increases with switching costs. This has presumably two reasons: first one cannot
afford to invest as much into capacity as before and second one needs to exploit the
customer base of each stage as much as possible.

Note that when the switching costs are high, something interesting happens: Fig. 17
illustrates that for high switching costs, the control constraint q ≤ K can become
inactive, i.e. initially it is optimal to sell as much as possible, but closely before
switching to the next stage this is not the case anymore. Furthermore, Fig. 17 shows
that if switching costs are higher the firm invests less in such a project, it does not pay
off. The increase of the investments over time at the end of the first stage imply that
then one already builds up capacity for the next stage, so that one can start with high
sales then. The strategy has the practical reason that one needs to exploit the available
potential customers as far as possible and when the number of potential customers is
low, then the inverse demand function suggests that sales should be kept low to be
able to charge a positive price.

The left panel of Fig. 18 shows the impact of parameter β, i.e. the extent to which
one can reuse capacity in the next stage on the periodic solution. Obviously, the value
of the objective increases when less adjustments need to be made for the production of
the new generation of the product. Because of a higher β, less investments are needed
to keep up a high capacity and one can afford to not capture less potential customers.
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Fig. 16 Impact of switching costs on the periodic solution (i) with respect to the value of the objective
(upper panel) and with respect to the switching time (lower panel)

Fig. 17 Phase portrait and time path of a periodic solution for high switching costs

The right panel of Fig. 18 shows the impact of the market size on the decision to
introduce a new generation of the product. What is interesting is that the switching
time decreases in Q0. If the market is large then one has an incentive to switch sooner
as there aremore peoplewhowould buy the product. Note, however, that the difference
between the initial and the final state value on the periodic solution decreases when
Q0 becomes smaller.
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Fig. 18 Impact of the extent at which one can reuse capacity in the next stage and on the initial number of
potential customers in each stage on the periodic solution

Fig. 19 Periodic solution for Q0 = 0.15

We considered the periodic solution for for an intermediate and a lowmarket poten-
tial. Figure 19 illustrates the periodic solution for Q0 = 0.15 in the phase space in
the left panel and the time path in the right panel. One can observe that investing
into capacity becomes zero for some time before switching leading to a decrease of
capacity. Obviously when there are only a few potential customers investment do not
pay off so much. Thus, sales rates are lower than in the base case and the number of
potential customers decreases more slowly. One can conclude that the lower Q0 gets
the less investments pay off.

The impact of other parameters was also investigated: The effect of a change of
parameter c, the production costs, is not particularly large:When c increases the period
of the cycle slightly increases because the firm invests less. Thus, the upper bound on
sales is lower which makes that the firm takes a longer time to serve the demand of
the stock of potential consumers. The customer base before switching also increases
slightly, and the capacity at T̄− becomes smaller, thus one would produce and sell
less. Obviously, profits decrease in c. An increase of the depreciation rate δ has a
similar effect, while an increase of parameter α, which relates the number of potential
consumers to the maximum possible sales, has the opposite effect.
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4 Conclusion

The durable goods model we considered led to the following main results. First,
investment in capacity is largest directly after the launch of the new product. The
reason is twofold. Capacity needs to be built up, and the stock of potential consumers
is the largest at the beginning of a period in which a certain product is put up for
sale. Second, we found that the switching time is non-monotonic in β, which is the
part of the capacity that can be rolled over to the production process of the new good.
However, in the periodic solution it holds that the firm will switch sooner for a larger
value of β. Third, firms produce up to capacity when switching costs are not too high.
Fourth, switching costs reduce investments considerably. The reason is that switching
is less attractive. Therefore the firm keeps on selling the same product for a longer
time so that not much capacity is needed to serve all consumers who want to buy.

Potential extensions for the the present model would be to consider the consumers’
behavior in more detail. For example, one could analyze how the optimal strategy is
affected if consumers are impatient, i.e. a certain fraction of the consumers which is
not able to purchase the product due to the limited capacity loses interest. Furthermore,
one could study the impact of network effects. Then there would be an inflow to the
number of potential consumers related to the previous sales of the product.
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