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Abstract
Bipolar is one of the multiple criteria decision analysis methods, proposed by 
Konarzewska-Gubała (in Archiwum Automatyki i Telemechaniki 32(4):289–300, 
1987). The main feature of the method is that alternatives are not compared directly 
with each other, but they are confronted to the two reference sets of objects: desir-
able and non-acceptable. Practical application of the method revealed its shortcom-
ings, therefore improvements of the method were desirable. The aim of the paper is 
to formulate some modifications of the classical Bipolar approach and consider a 
case where reference sets are numerous. Unified Bipolar procedure which contains 
classical Bipolar method as well as the modifications described in the paper is given. 
Numerical illustrations of the modifications and unified approach are also presented.

Keywords  Multi-criteria decision making · Decision support system · Ordering 
problems · Classifying problems

1  Introduction

One of the multiple criteria decision analysis (MCDA) methods is Bipolar proposed 
by Konarzewska-Gubała (1987). The method is based on the concept of two bipo-
lar sets of reference objects. The practical application of the method revealed its 
shortcomings, therefore improvements of the method were desirable. The aim of the 
paper is to formulate some modifications of the classical Bipolar approach, which 
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will help to overcome the difficulties encountered. In one of the modifications we 
consider a case where reference sets are numerous. Unified Bipolar procedure which 
contains classical Bipolar method as well as all the modifications described in the 
paper is given.

The paper consists of nine sections. Section 2 is an overview of MCDM meth-
ods and a comparison of the main notions of the Bipolar method with those meth-
ods. In Sect. 3 a formal presentation of the classical Bipolar method, based on the 
description presented in Trzaskalik and Sitarz (2012) is given. The first suggestion 
presented in Sect.  4 refers to the modification of one of the reference sets. In the 
second suggestion, the set of categories used in bipolar sorting is enlarged. New 
propositions are illustrated by simple numerical examples. Section  5 suggests a 
modification of the method of comparing decision variants with the elements of the 
reference system and of the method of determining the position of the decision vari-
ant with respect to a bipolar reference system. Section 6 suggests a method of aiding 
a decision maker in the determination of criteria weights and veto threshold values. 
Section 7 presents a procedure to be applied in the Bipolar method which takes into 
account the modifications suggested in the paper. Section  8 presents a numerical 
example that includes the modifications of the methods introduced in Sects. 5 and 6. 
The concluding remarks, which include references to applications of Bipolar meth-
odology and directions of further research, end the paper. Early versions of the paper 
can be found in Trzaskalik and Sitarz (2012) and Trzaskalik et al. (2013).

2 � The Bipolar approach as compared with other MCDA methods

2.1 � Overview of MCDA methods

Discrete multi-criteria problems can be formulated as follows: given a finite set of 
alternatives which are evaluated using certain criteria, the decision maker intends to 
achieve one of the following goals (Figueira et al. 2005):

•	 Select the alternative which best corresponds to his/her preferences (the problem 
of selection);

•	 Order the alternatives from the best to the worst (the problem of ordering);
•	 Assign each alternative to one of predefined classes (the problem of multi-crite-

ria classification).

Among multi-criteria problems one can distinguish deterministic, stochastic, 
and fuzzy problems. In deterministic problems, the evaluations of alternatives with 
respect to criteria are numbers. The set of all evaluations forms the decision table. In 
stochastic problems, the evaluation of each alternative with respect to the criteria is 
a discrete random variable with a known probability distribution. To compare deci-
sion variants, selection rules based on stochastic dominations are most often used. 
In fuzzy problems, the evaluations of alternatives are fuzzy numbers (usually tri-
angular fuzzy numbers). The problems are usually solved in two stages. In the first 
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stage the decision variants are compared using certain criteria. In the second stage, a 
synthesis of the results is performed, in various ways (Trzaskalik 2014).

Among the oldest multi-criteria methods are additive methods, such as the SAW 
method (Simple Additive Weighting Method) (Churchman and Ackoff 1954). The 
decision maker’s preferences are modeled using an additive linear function. An 
extension of this method is the F-SAW method (Fuzzy Simple Additive Weighing 
Method) (Tzeng and Huang 2011), in which triangular fuzzy numbers are used, 
and their parameters can be obtained through a dialogue with an expert. In both the 
SMART method (Simple Multi-Attribute Ranking Technique) (Edwards 1971), and 
in the SMARTER method (Simple Multi-Attribute Ranking Technique Exploiting 
Ranks) (Edwards and Barron 1994) the weights of criteria are obtained by compar-
ing the changes of states from the least desired to the most desired with respect to 
one criterion, with those with respect to another criterion. The final evaluation is 
interpreted as the global utility of the given variant.

Analytical hierarchization and related methods are commonly used, in particu-
lar the AHP method (Analytical Hierarchy Process) (Saaty 1980). This method 
allows to form a scale vector whose components permit to order decision variants 
and to select the best one. The vector is formed using verbal pairwise comparisons 
of the criteria and of the decision variants with respect to the criteria. Fuzzy ver-
sions of this method also exist, such as F-AHP (Fuzzy Analytic Hierarchy Process) 
(Mikhailov and Tzvetinov 2004).

In the REMBRANDT method (Ratio Estimation in Magnitudes or deciBells to 
Rate Alternatives which are Non-DominaTed) method (Lootsma 1992), the Saaty 
scale is replaced by the logarithmic scale, and the Perron-Frobenius eigenvalue 
method, by the logarithmic least squares method. This method constitutes a reply 
to the criticism of AHP, concerning the evaluation scale used, the method of obtain-
ing a synthetic evaluation of the variants, and the possible changes in the ranking 
when a new variant is added. In the ANP method (Analytic Network Process) (Saaty 
1996), the assumption of the preferential independence of criteria—used in other 
methods—is abandoned, which allows to take into account relationships among the 
criteria and between the criteria and the alternatives. An example of the fuzzy vari-
ant of this method is F-ANP (Fuzzy Analytic Network Process) (Tzeng and Huang 
2011). In the MACBETH method (Measuring Attractiveness by a Categorical Based 
Evaluation TecHnique) (Bana e Costa and Vansnick 1993), the relative attractive-
ness of the elements compared (ordinal evaluation) is determined, and then—when 
the given elements are not regarded as equally attractive—a qualitative evaluation 
of the difference between the more attractive and the less attractive elements is 
expressed using a set of six semantic categories.

Verbal Decision Analysis (VDA) is used to analyze unstructured problems, with 
mostly qualitative parameters, for which there is no objective model of aggrega-
tion. It uses verbal evaluations to which no quantitative operations can be applied. 
The ZAPROS method (Russian: ЗAмкнyтыe ПPoцeдypы y Oпopныx Cитyaций, 
Closed Procedures at Reference Situations) (Larichev and Moskovich 1995) and its 
modification, ZAPROS III, use verbal ordinal scales. In the method proposed by 
Larichev (2001), the Joint Ordinal Scale is created on the basis of the decision mak-
er’s preferences and a partial ordering on the set of decision variants is formed.
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Methods from the ELECTRE family (fr. ELimination Et Choix Traduisant la 
REalia), developed by B. Roy and his collaborators, play an important role in the 
development of multi-criteria methods. Roy suggests to extend the set of basic pref-
erence situations so as to include the situations of equivalence, weak preference, 
strong preference, and incomparability. Moreover, he defines grouped relations, 
which—together with the application of equivalence and preference thresholds, as 
well as of the principle of limited compensation—allows to define a fuzzy relation 
called the outranking relation. An entire family of methods, which includes ELEC-
TRE I, ELECTRE Iv, ELECTRE Is, ELECTRE III, ELECTRE TRI, ELECTRE IV 
(Roy and Bouyssou 1993), had been created using these assumptions. An approach 
combining ELECTRE with stochastic dominations can be found in the papers (Zaras 
and Martel 1994; Nowak 2005).

The methods from the PROMETHEE (Preference Ranking Organisation 
METHod for Enrichment Evaluations) group take into account the differences 
between the evaluations of alternatives for all criteria. The greater the difference 
between the evaluations, the stronger (with respect to the given criterion) the prefer-
ence for one of the alternatives. Each criterion has a preference function assigned, 
with values from the interval [0, 1], measuring the strength of the preference. A 
characteristic feature here is the use of preference flows. Among basic methods 
in this group are: PROMETHEE I (Brans 1982), which allows to partially order 
the alternatives, and PROMETHEE II, which allows to order them completely. A 
method proposed in the paper (Górecka and Muszyńska 2011) combines elements 
of ELECTRE and PROMETHEE II, with veto thresholds added. Another modifi-
cation is the EXPROM method (EXtension of the PROMethee method) (Diakou-
laki and Koumoutsos 1991), which uses the ideal and anti-ideal variants. Adding 
veto thresholds to EXPROM has been suggested in the paper (Górecka and Szalucka 
2013). A stochastic variant of PROMETHEE II with veto thresholds and stochas-
tic dominations has been proposed in the paper (Nowak 2005). An extension of the 
EXPROM II method, on the other hand, with veto thresholds and stochastic domina-
tions, can be found in the papers (Górecka 2010a, b).

Using an interactive approach, we assume that the decision maker is able to sup-
ply local information, that is, to evaluate an individual alternative or a small sub-
set of alternatives. Each iteration consists of two stages: dialogue with the decision 
maker and calculations. In the dialogue stage the decision maker is asked to express 
his/her preferences by formulating an opinion about the values of the parameters 
which describe the consequences of the selection of the proposed decision variants. 
The decision makers reveals his/her preferences by evaluating the proposed solution 
and indicating how it can be improved. The process is continued until a solution 
satisfactory for the decision maker is found. Interactive stochastic methods include: 
STEP-DPR (STEP Method for Discrete Decision Making Problems under Risk) 
(Nowak 2008), INSDECM (INteractive Stochastic DECision Making Procedure) 
(Nowak 2006), ATO-DPR (Analysis of Trade-Offs for Discrete Decision Making 
Problems under Risk) (Nowak 2010).

A very popular approach, which is the focus of our attention in this paper, is an 
approach using reference points. One of the best known methods of this kind is the 
TOPSIS method (Technique for Order Preference by Similarity to Ideal Solution) 
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(Hwang and Yoon 1981), in which the alternatives considered are compared with 
abstract weighed reference solutions: ideal and anti-ideal. It has a fuzzy counterpart, 
namely F-TOPSIS (Fuzzy Technique for Order Preference by Similarity to Ideal 
Solution) (Jahanshahloo et  al. 2006). The values of the criteria characterizing the 
alternatives are given as triangular fuzzy numbers. The VIKOR method (Serbian: 
VIseKriterijumska Optimizacija I Kompromisno Resenje, Multicriteria Optimization 
and Compromise Solution) (Opricovic 1998) is very often used, thanks to the paper 
(Opricovic and Tzeng 2004), whose authors compare it to TOPSIS. The ideal and 
anti-ideal variants are the reference points. Combining the three methods: DEMA-
TEL, ANP i VIKOR (Tzeng and Huang 2011) allows to consider decision prob-
lems with interdependent criteria and variants. The first one, DEMATEL (DEcision 
Making Trial and Evaluation Laboratory) (Gabus and Fontela 1973), explains the 
interdependencies among the model’s elements without the need to perform tedious 
pairwise comparisons. To obtain the limit supermatrix, the ANP method is used, 
while the final ordering is obtained using the VIKOR method.

2.2 � The Bipolar method

Let us focus on Bipolar method (Konarzewska-Gubała 1987, 1989). To accept the 
notion of bipolar reference system, applied in the method, it is worth while to follow 
the evolution of the notion of the ideal solution, which can be traced in a large vari-
ety of papers in different fields: goal programming, compromise programming, mul-
tidimensional statistical analysis or game theory. The author of the method claims 
that due to the large number of ideals, as well as to the fuzziness and imprecision 
of their definitions, the ideal “point” is not perceived as a point but, rather, as a 
set (“cloud”). The question arises: do humans try to reach success (“ideal”) with 
the same intensity as they want to avoid failure (“anti-ideal”). It follows from the 
descriptive models that the motivation to reach success and the motivation to avoid 
failure are not entirely symmetrical. Therefore, the final evaluation of an alternative 
is based on its independent “position” with regard to both subsets called “ideal” and 
“anti-ideal” (Konarzewska-Gubała 1987, 1989).

The main feature of the analysis in the Bipolar method is that the decision alter-
natives are not compared directly with each other, but by means of two sets of refer-
ence objects: desirable (“good”) and non-acceptable (“bad”). These two disjoint sets 
form the bipolar reference system. It is assumed that the decision maker applying 
the Bipolar method in practice, on the basis of her/his experience, opinions gathered 
and studies undertaken, is able to create such a system.

In the first phase of the Bipolar method alternatives are compared to reference 
objects and, as a result, outranking indicators and preference structure in the ref-
erence system are established. In this phase the notions of concordance and veto 
thresholds, introduced in Electre methodology (Roy 1985) can be recognized. In 
the second phase of the method the position of each alternative with respect to the 
bipolar reference system is established. This phase is influenced by algorithms of 
confrontation (Merighi 1980). Finally, in the third phase a bipolar partial preor-
dering is obtained, as the intersection of two mono-sortings of alternatives into 
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specified categories and two partial preorderings (mono-orders) introduced inde-
pendently in the set of alternatives.

The Bipolar method has been applied in modeling of multi-stage multi-criteria 
decision processes (Trzaskalik 1987). Modifications of this approach also exist 
(Górecka 2009). The changes, as compared with the original BIPOLAR method, 
consist in using, in the first stage of the procedure, the distributions of the evalu-
ations of variants with respect to each criterion and in the application of SD (Sto-
chastic Dominance) rules, as well as in the application of the notion of a pseudo-
criterion and the determination of the position of the variants investigated with 
respect to the bipolar reference system. (Here, the idea behind the PROMETHEE 
II method can be recognized.) BIPOLAR MIX (Górecka 2017a, b) is another 
methodological proposal, which allows to use data in various forms.

The Bipolar method belongs to a group of methods that involve reference 
objects for comparison of alternatives. We can also mention to other bi-reference 
methods described in the papers Michałowski and Szapiro (1992) and Skuli-
mowski (1996). Decision support system reference sets and the rough sets meth-
odology is described in (Greco et al. 2002). More recently the paper Chen (2011) 
develops optimistic and pessimistic estimations with several fuzzy point opera-
tors. A new notion of a bipolar query against collections of textual documents 
is introduced in Zadrożny et  al. (2012). The paper Bouzarour-Amokrane et  al. 
(2015) addresses collaborative group decision making problems using a consen-
sus process to achieve a joint legitimate solution. The proposed resolution model 
is based on individual bipolar assessments. The model proposed in Shen and 
Tzeng (2016) provides a bipolar approach to guide businesses towards systematic 
improvements. In Wang et al. (2018) MCDM methods are investigated in a bipo-
lar neutrosophic environment. Bipolar 2-tuple linguistic aggregation operators 
are developed in Lu et al. (2017) for aggregation operations. The paper Liu et al. 
(2018) aims to develop a dynamic linguistic multi-criteria decision making model 
dealing with bipolar linguistic scales in which both alternatives and criteria may 
vary across time.

In the classical Bipolar procedure, described in Konarzewska-Gubała (1987, 
1989), some alternatives can be evaluated as better than “good” objects from the 
reference system. Such alternatives are named “overgood”. Other alternatives can be 
evaluated as worse than “bad” objects from the reference system. Such alternatives 
are named “underbad”. A question arises: is it possible for an alternative to be “over-
good” and “underbad” simultaneously? The author claims that if the reference sets 
of “bad” and “good” objects are disjoint and Assumption 2, formulated as follows.

there does not exist a “good” reference object and a “bad” reference object 
such that the “good” reference object is dominated (in the sense of the classi-
cal domination relation) by the “bad” reference object.

holds, then such a situation (which at first seems unreasonable) cannot occur.
Attempts at using the Bipolar method in practice together with Assumption 2—

particularly when the sets of reference objects are created using historical data—
have shown that it was frequently possible for some alternatives to be “underbad” 
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and “overgood” simultaneously. This feature was pointed out by Dominiak (1996) in 
the application of the method to the selection of securities at a stock exchange. The 
situation in question is eliminated if Assumption 1, formulated as follows:

each “good” reference object dominates each “bad” reference object.

is satisfied.
Assumption 1 is over-restrictive, therefore it is often impossible for decision mak-

ers to apply the approach in real-life decision problems. It seems that it is neces-
sary to include new concepts in the Bipolar methodology. Hence, the present paper 
formulates modifications of the classical Bipolar approach. The selection of one or 
several of the presented possibilities should be performed together with a decision 
maker willing to apply the Bipolar approach. The present paper will also consider 
a case where reference sets are large (as it may happen when they are created from 
historical data) and suggest changes to the original version of the Bipolar method.

3 � The classical Bipolar method

In this section a formal presentation of the classical Bipolar method is given. Such a 
new description [prepared by the authors of the paper and first presented in Trzaska-
lik and Sitarz (2012)] seems necessary for the presentation of modifications to the 
Bipolar method, presented in the next sections of the paper.

It is assumed, that there are given: the set of decision alternatives A = {a1, a2,…, 
am} and the set of criteria functions F = {f1,…,fn}, where fk: A → Kk for k = 1, …, n, 
and Kk is a cardinal, ordinal or binary scale. Criteria are defined in such a way that 
higher values are preferred to lower values.1 For each criterion the decision maker 
establishes weight wk of relative importance (it is assumed, that 

∑n

k=1
wk = 1 and 

wk≥ 0 for each k = 1, …, n), equivalence threshold qk and veto threshold vk. The deci-
sion maker also establishes minimal criteria values concordance level s as the out-
ranking threshold. It is assumed, that condition 0.5 ≤ s ≤ 1 holds.

The decision maker establishes a bipolar reference system R = G  ∪  B, which 
consists of the set of “good” objects G = {g1, …, gg}and the set of “bad” objects 
B = {b1, …, bb}, where g and b denote the number of “good” and “bad” objects, 
respectively. It is assumed, that G ∩ B = ∅. The number of elements of the set R is 
equal to g + b. Elements of the set R are denoted as rh, h = 1, …, g + b. Values fk(rh) 
for k = 1, …, n and h = 1, …, r are known.

We assume, that condition

holds (Assumption 1).
(1)∀k=1,…,n∀�∈�∀�∈�fk(�) ≥ fk(�)

1  A description of the remaining types of criteria is given by Konarzewska-Gubała (1991). It is possible 
to transform them to the form used here.
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3.1 � Comparison of alternatives to reference objects

3.1.1 � Outranking indicators

For the pair (ai, rj), where ai ∈ A, rj ∈ R, the following values:

are calculated.
The value c+

(
�i, � j

)
 is the sum of the criteria weights for which ai is preferred 

to rj with equivalence threshold qk; the value c−
(
�i, � j

)
 is the sum of the criteria 

weights for which rj is preferred to ai with equivalence threshold qk; and the value 
c=
(
�i, � j

)
 is the sum of the criteria weights for which ai is equal to rj with equiva-

lence threshold qk.
Sets of indices:

are determined.
The set I+

(
�i, � j

)
 consists of those criteria indices for which ai is preferred to rj, 

while the set I−
(
�i, � j

)
 consists of those criteria indices for which rj is preferred to ai.

Let νk be threshold values given for k = 1, …, n by the decision maker. Condition

is called the veto test.
For k ∈ I− , the veto test is positively verified if rj is preferred to ai and the value 

of the criteria function is greater than the given threshold νk.
Conditions

are called non-discordance tests. The interpretation of non-discordance tests is anal-
ogous to that of the veto test.

Case 1 c+(ai, rj) > c−(ai, rj).

•	 If for the pair (ai, rj) veto test is positively verified, then outranking indicators are 
defined as follows:

c+
(
�i, � j

)
=

n∑
k=1

wk𝜑
+
k

(
�i, � j

)
where 𝜑+

k

(
�i, � j

)
=

{
1, if fk

(
�i
)
− fk

(
� j
)
> qk

0, otherwise

c−
(
�i, � j

)
=

n∑
k=1

wk𝜑
−
k

(
�i, � j

)
where 𝜑−

k

(
�i, � j

)
=

{
1, if fk

(
� j
)
− fk

(
�i
)
> qk

0, otherwise

c=
(
�i, � j

)
=

n∑
k=1

wk𝜑
=
k

(
�i, � j

)
where 𝜑=

k

(
�i, � j

)
=

{
1, if

|||fk
(
� j
)
− fk

(
�i
)||| ≤ qk

0, otherwise

I+
(
�i, � j

)
=
{
k ∶ �+

k

(
�i, � j

)
= 1

}
I−
(
�i, � j

)
=
{
k ∶ �−

k

(
�i, � j

)
= 1

}

∀
k∈I−

fk
(
�i
)
> vk

∀
k∈I−

fk
(
�i
)
> vk ∀

k∈I+
fk
(
�i
)
> vk

d+
(
�i, � j

)
= c+

(
�i, � j

)
+ c=

(
�i, � j

)
, d−

(
�i, � j

)
= 0
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•	 If for the pair (ai, rj) veto test is not positively verified, then outranking indicators 
are defined as follows:

Case 2 c+(ai, rj) < c−(ai, rj).

•	 If for the pair (ai, rj) veto test is positively verified, then outranking indicators are 
defined as follows:

•	 If for the pair (ai, rj) veto test is not positively verified, then outranking indicators 
are defined as follows:

Case 3 c+(ai, rj) = c−(ai, rj).

•	 If for the pair (ai, rj) two non-discordance tests are positively verified, then out-
ranking indicators are defined as follows:

•	 For the pair (ai, rj) at least one of non-discordance tests is not positively verified, 
then outranking indicators are defined as follows:

The outranking indicators defined above are measures of being better (d+) or 
being worse (d−), with equivalence threshold qk and veto threshold νk. Moreover, 
they satisfy the following conditions: d+(ai, rj) ∈ [0, 1] and d−(ai, rj) ∈ [0, 1].

3.1.2 � Preference structure

By means of outranking indicators three relationships: large preference Ls, indiffer-
ence Is and incomparability Rs are defined as follows:

The interpretations of these relations are as follows:

•	 Large preference (ai Ls rh) means that ai is preferred to rh with outranking thresh-
old s ∈ [0.5, 1]. We interpret large preference (rj Ls ai) analogically.

d+
(
�i, � j

)
= 0, d−

(
�i, � j

)
= 0

d+
(
�i, � j

)
= 0, d−

(
�i, � j

)
= c−

(
�i, � j

)
+ c=

(
�i, � j

)

d+
(
�i, � j

)
= 0 d−

(
�i, � j

)
= 0

d+
(
�i, � j

)
= c+

(
�i, � j

)
+ c=

(
�i, � j

)
d−

(
�i, � j

)
= c−

(
�i, � j

)
+ c=

(
�i, � j

)

d+
(
�i, � j

)
= 0, d−

(
�i, � j

)
= 0.

�iLs�
h iff d+

(
�i, �h

)
> s ∧ d−

(
�i, �h

)
= 0

� jLs�
i iff d+

(
�i, �h

)
= 0 ∧ d−

(
�i, �h

)
> s

�iIs�
h iff d+

(
�i, �h

)
> s ∧ d−

(
�i, �h

)
> s

�iRs�
j otherwise
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•	 Indifference ai Is rh means that ai is indifferent to rh with outranking threshold s. 
This can only hold if c+(ai, rj) = c−(ai, rj) and two non-discordance tests are posi-
tively verified.

•	 Incomparability ai Rs rj means that ai and rh are incomparable.

3.2 � Position of an alternative in relation to the bipolar reference system

3.2.1 � Success achievement degree

For a given ai ∈ A auxiliary sets of indices are defined as follows:

In the set Ls(ai, G) there are included these indices of “good” objects, for whom 
the statement ai Ls gh is true. The two remaining sets are defined similarly.

Defining the position of an alternative ai in relation to the set G we consider three 
possibilities:

Case S1 Ls(ai, G) ∪ Is (ai, G) ≠ ∅.
The value

is calculated. The success achievement degree dS(ai) is defined to be equal to dG
+(ai).

Case S2 Ls(ai, G) ∪ Is(ai, G) = ∅ ^ Ls(G, ai) ≠ ∅.
The value

is calculated. The success achievement degree dS(ai) is defined to be equal to dG
−(ai).

Case S3 If conditions described in Cases S1 and S2 are not fulfilled, then the suc-
cess achievement degree dS(ai) is defined to be equal to 0.

3.2.2 � Failure avoidance degree

For a given ai ∈ A auxiliary sets of indices are defined as follows:

In the set Ls(B, ai) there are included these numbers of “bad” objects, for whom 
the statement bhLsai is true. The two remaining sets are interpreted similarly.
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Defining the position of an alternative ai in relation to the set B we consider three 
possibilities:

Case F1 Ls(B, ai) ∪ Is(B, ai) = ∅ ^ Ls(ai, B) ≠ ∅.
The value

is calculated. The failure avoidance degree dF(ai) is defined to be equal to dB
+(ai).

Case F2 Ls(B, ai) ∪ Is(B, ai) ≠ ∅.
The value

is calculated. The failure avoidance degree dF(ai) is defined to be equal to dB
−(ai).

Case F3 If conditions described in Cases S1 and S2 are not fulfilled, then the fail-
ure avoidance degree dF(ai) is defined to be equal to 0.

3.3 � Relationships in the set of alternatives

3.3.1 � Mono‑sortings and mono‑rankings

According to the success achievement degree the alternatives from the set A are 
sorted to the three categories:

Category S1 consists of the “overgood” alternatives, for which condition, formu-
lated in Case S1 is fulfilled.

Category S2 consists of the alternatives, for which condition, formulated in Case 
S2 is fulfilled.

Category S3 consists of the alternatives, for which condition, formulated in Case 
S3 is fulfilled (decision variants non-comparable with G).

A way of building above categories implies that each alternative from the Cat-
egory S1 should be preferred to any alternative from the Category S2. Decision vari-
ants are ordered as follows:

According to the failure avoidance degree the alternatives from the set A are 
sorted to the three categories:
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Category F1 consists of the alternatives, for which condition, formulated in 
Case F1 is fulfilled.

Category F2 consists of “underbad” alternatives, for which condition, formu-
lated in Case F2 is fulfilled.

Category F3 consists of the alternatives, for which condition, formulated in 
Case F3 is fulfilled (alternatives non-comparable with B).

A way of building above categories implies that each alternative from the Cat-
egory F1 should be preferred to any alternative from Category F2. Alternatives 
are ordered as follows:

3.3.2 � Bipolar‑sorting and Bipolar‑ranking

Considering jointly evaluation of success achievement degree and failure avoid-
ance degree, three categories of alternatives are defined:

Category B1 consists of such alternatives ai, that dG
+(ai) > 0 ∧ dB

+(ai) > 0.
Category B2 consists of such alternatives ai, that dG

−(ai) > 0 ∧ dB
+(ai) > 0.

Category B3 consists of such alternatives ai, that dG
−(ai) > 0 ∧ dB

−(ai) > 0.
Assuming, that each alternative from the Category B1 is preferred to any alter-

native from Category B2 and each alternative from Category B2 is preferred 
to any alternative from Category B3, linear order is given in each category as 
follows:

For ai, aj ∈ B1

ai is preferred to aj, iff dS(ai) + dF(ai)> dS(aj) + dF(aj)
ai equivalent to aj, iff dS(ai) + dF(ai)= dS(aj) + dF(aj)

For ai, aj ∈ B2

ai is preferred to aj, iff 1 − dS(ai) + dF(ai)>1 − dS(aj) + dF(aj)
ai is equivalent to aj, iff 1 − dS(ai) + dF(ai) =1 − dS(aj) +dF(aj)

For ai, aj ∈ B3

ai is preferred to aj, iff dS(ai)+ dF(ai)< dS(aj)+ dF(aj)
ai is equivalent to aj, iff dS(ai)+ dF(ai)= dS(aj) + dF(aj)

�i is preferred to �j, iff[
dF
(
�i
)
= d+

�

(
�i
)
∧ dF

(
aj
)
= d+

�

(
�j
)
∧ d+

�

(
�i
)
> d+

�

(
�j
)]

∨
[
dF
(
�i
)
= d+

�

(
�i
)
∧ dF

(
�j
)
= d−

�

(
�j
)]

∨
[
dF
(
�i
)
= d−

�

(
�i
)
∧ dF

(
�j
)
= d−

�

(
�j
)
∧ d−

�

(
�i
)
< d−

�

(
�j
)]

�i is equivalent to �j, iff[
dF
(
�i
)
= d+

�

(
�i
)
∧ dF

(
�j
)
= d+

�

(
�j
)
∧ d+

�

(
�i
)
= d+

�

(
�j
)]

∨
[
dF
(
�i
)
= d+

�

(
�i
)
∧ dF

(
�j
)
= d−

�

(
�j
)
∧ d−

�

(
�i
)
= d−

�

(
�j
)]



637

1 3

Bipolar method and its modifications﻿	

4 � Modifications of reference sets and categories

Let D be classical domination relation:

Up to now we have assumed that condition (1) holds. Now we will assume, 
that condition

is fulfilled (Assumption 2).

Example 1  We have four alternatives, four “good” objects and three “bad” objects. 
Values of criteria functions for these data are presented in Fig. 1. Other parameters 
are as follows: v1 = 1, v2 = 1, w1 = 0.7, w2 = 0.3, s = 0.6 q1 = 0.3 and q2 = 0.3.

We can easily check that condition (1) does not hold (for example ~ [f(g2) D 
f(b3)]). Applying the Bipolar method presented in Sect. 3 we obtain the following 
bipolar ranking:

Let us notice that alternative a1 is not included, because for a1 we have 
d+
�

(
�1
)
 > 0 and d−

�

(
�1
)
 > 0. It means that a1 is “overgood” and “underbad” simul-

taneously. To exclude such situations we propose below suitable modifications.

4.1 � Modification of the reference system

We check if condition (1) is fulfilled. If it is not, we modify the reference set of 
“good” objects or reference set of “bad” objects (Trzaskalik and Sitarz 2012).

f (�)D f (�) ⇔ ∀k=1,…,n fk(�) ≥ fk(�) ∧ ∃l=1,…,n fl(�) > fl(�).

(2)∼ ∃�∈� ∼ ∃�∈� f (�)D f (�)

1 ∶ �4

2 ∶ �2, �3(equivalent alternatives)

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6

alternatives
„good” objects
„bad” objects

f(a2)

f(a3)

f(a4)

f(a1)

f(g1) f(g3)

f(g4)

f(b1)

f(b3)

f(b2)

f(g2)

Fig. 1   Values of criteria for alternatives and reference objects
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4.1.1 � Modification of the reference set of “good” objects

Let ∧
��

 denote the ideal vector in the reference set of “bad” objects, hence

We replace the set G by the set � = {�1, …, �g }, changing these evaluations, which 
are too low according to ideal solutions in the set B, that is

Let us notice, that if f(g) dominates all “bad” objects, then f(�) = f(g). In the opposite 
case we increase the appropriate components of vector f(g).

Example 1a  We consider data presented in Example 1. We have: f(g1) = (0, 6), 

f(g2) = (1, 6), f(g2) = (5, 6), f(g3) = (5, 0) and 
∧

f �
1

 = 2, 
∧

f �
2

 = 2. According to the formula 
(3) we obtain: f(�1) = (2, 6), f(�2) = (2, 6), f(�3) = (5, 6), f(�4) = (5, 2). Modifications 
of “good” objects are shown in Fig. 2.

4.1.2 � Modification of the reference set of “bad” objects

Let ∨
�D

 denote nadir vector in the reference set of “good” objects, hence

We replace the set B by the set � = { �
1
, …, �

b
 } changing these evaluations, which 

are too high according to nadir solution in the set G, that is

∧

f �
k
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{
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}
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k
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k
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= min
{
fk(�) ∶ � ∈ �

}

0
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3

4
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0 1 2 3 4 5 6

„good” objects
„bad” objects

f(g1) f(g3)=f(g 3)

f(b1)

f(b2)

f(g 1)

∧
Bf f(g 4)

f(g4)

f(b2)

f(g 2)=f(g 2)

Fig. 2   Modification of reference set G
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Let us notice, that if f(b) is dominated by all “bad” objects, then f(�) = f(b). In the 
opposite case we decrease the appropriate components of vector f(b).

Example 1b  We consider data presented in Example 1. We have: f(b1) = (0, 2), 
f(b2) = (1, 1), f(b2) = (0, 2), and f�

1

∨ = 0, f�
2

∨ = 0. According to the formula (4) we 

obtain: f(�
1
) = (0, 0), f(�

2
) = (0, 0), f(�

3
) = (0, 0). Modifications of “bad” objects are 

shown in Fig. 3.

4.2 � Modification of categories in bipolar ranking

The idea of this approach comes from (Trzaskalik and Sitarz 2012). We introduce a 
new category B2’ which includes alternatives, which are simultaneously “overgood” 
and “underbad”:

From this point of view category B1 consists of alternatives which are better than 
“good” and “bad” objects simultaneously; category B2 consists of alternatives which 
are worse than “good” objects and better than “bad” objects. Category B3 consists 
of alternatives which are worse than “good” and “bad” objects simultaneously. Thus, 
we can place category B2’ between categories B1 and B3. Categories B2 and B2’ are 
on the same level. To rank alternatives in category B2’ we proceed as described in 
Sect. 3.3.2. Summarizing this approach, dependences among categories in the bipolar 
sorting system can be presented in the way shown in Fig. 4.
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Fig. 3   Modification of the reference set B
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Example 1c  In this example we consider data presented in Example 1 with category 
B2’. In this situation category B2’ consists of one alternative—a1.

4.3 � Numerical results

Table 1 presents the results of computations conducted for Examples 1, 1a 1b and 1c. Let 
us notice that alternative a1 is ranked in Examples 1a, 1b and 1c but not in Example 1.

5 � Modifications for numerous reference sets

Let us assume that reference sets are numerous and values of all the criteria are given 
on number scales. In the first proposed modification it is assumed that the weight of 
considered criterion depends on the values of the “bad” reference objects. Functions of 
local preference will describe that kind of dependence. The second modification refers 
to position description for alternatives in relation to the reference system.

5.1 � Local preference function

Let us denote as {δG
0k, δG

1k, …, δG
10,k} and {δB

0k, δB
1k, …, δB

10,k} subsequent deciles in sets 
G and B. Functions ξG(x) and ξB(x) are defined as follows:

Fig. 4   Dependences among 
categories in bipolar sorting 
system

B1

B3

B2 B2’

Table 1   Results of computations for Examples 1, 1a, 1b, 1c

Example 1 Example 1a Notation for columns

1. Mono-sorting according to 
the success achievement degree
2. Mono-ranking according to 
the success achievement degree 

3. Mono-sorting according to 
the failure avoidance degree
4. Mono-ranking according to 
the failure avoidance degree 

5. Bipolar-sorting 
6. Bipolar-ranking

1 2 3 4 5 6 1 2 3 4 5 6
a1 S1 2 N2 2 S2 3 N2 2 B2 3
a2 S1 2 N1 1 B1 2 S1 2 N1 1 B1 2
a3 S1 2 N1 1 B1 2 S1 2 N1 1 B1 2
a4 S1 1 N1 1 B1 1 S1 1 N1 1 B1 1

Example 1b Example 1c
1 2 3 4 5 6 1 2 3 4 5 6

a1 S1 2 N1 1 B2 2 S1 2 N2 2 B2’ 3
a2 S1 2 N1 1 B1 2 S1 2 N1 1 B1 2
a3 S1 2 N1 1 B1 2 S1 2 N1 1 B1 2
a4 S1 1 N1 1 B1 1 S1 1 N1 1 B1 1
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The local preference function is defined on values fk(ai) for a considered criterion 
and subsequent alternatives ai as follows.

The value of function ηk is equal to wk, if the value of the criterion number k for 
the considered alternative ai is greater or equal to the highest value of that criterion 
on the reference set B. On the other hand, the value of that function is equal to 0, if 
the value of the criterion number k for the considered decision variant ai is smaller 
than the lowest value of the criterion number k on the reference set B. It means, that 
if the value of the k-th criterion for the considered decision variant is lower than the 
best value of that criterion for some (or all) objects from the set B, the value of the 
local preference function weakens the weight of that criterion, given by the decision 
maker.

We propose to take into account local preference functions, when calculating 
coefficients c+(ai, rj), c−(ai, rj) oraz c=(ai, rj). Modified formulas are as follows:

5.2 � Modification of position definition for an alternative in relation 
to the reference system

We assume that the considered alternative outranks a reference set, if the number 
of objects outranked by that variant is greater than the number of objects from that 
set which outranked the considered alternative. Otherwise we assume that the refer-
ence set outranks the considered decision variant. As a measure of outranking we 
consider the ratio of the difference between these values to the number of elements 
of the reference set.
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We denote:

Coefficients of success achievement degree and failure avoidance degree are 
modified as follows:

6 � Determining criteria weights and veto thresholds

Let us assume again that reference sets are numerous and values of all the criteria 
are given on number scales.

6.1 � Criteria weights

For each criterion we compute the value

The value of coefficient μk is from the range from 0 to 100. If the value of all 
deciles of the k-th criterion in the set f(G) are greater than the highest value of 
that criterion in the set f(B), then μk = 100. That situation is the most profitable. 
If the values of all deciles of the k-th criterion in the set f(G) are smaller than the 
highest value of that criterion in the set f(B), then μk = 0. Such a result indicates 
that the decision maker should remove that criterion from the further considera-
tions. If deciles distributions for a chosen criterion in the both sets are identical or 
close each other, then μk = 55. It occurs, if

If μk ≤ 55, such a situation is unfavorable and the decision maker is advised to 
remove that criterion from the further considerations. We assume, that the cri-
terion weight should be higher, if the values of the considered criterion is more 
differentiated between sets f(B) and f(G). To set up weights we propose to apply 
the formula:
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Applying the coefficient

we determine the degree of values differentiation in reference sets. The value of that 
coefficient belongs to the interval [0, 1]. The higher value ω the better considered 
criteria reflect preference structure, represented by means of reference sets. Calcu-
lated weights and the value ω are presented to the decision maker. She/he can accept 
proposed values or modify them. The decision maker should verify the set of crite-
ria, especially if the weights for some criteria should be close or equal to zero.

6.2 � Veto thresholds

We propose to define a veto threshold for k-th criterion as follows:

Value of q (the same for all the considered criteria) is arbitrarily determined 
by the decision maker. Defining the number of deciles in the set f(G) the decision 
maker determines such a value of considered criterion, which is better than the 
value of that criterion for q × 10% objects in that set.

7 � Modified Bipolar procedure

We consider the situation, when all the considered criteria are on the num-
ber scale. To give a possibility for a decision maker to apply the modifications 
described above as well as the classical Bipolar approach we propose a proce-
dure, elaborated below. The block-scheme of the procedure is given in Fig. 5.

Start

	 1.	 Establish sets A, G, B.
	 2.	 Is condition (1) fulfilled? Yes—go to 10. No—go to 3.
	 3.	 Do you want to modify reference sets? Yes—go to 4. No—go to 6.
	 4.	 Do you want to modify the set G? Yes—go to 7. No—go to 5.
	 5.	 Do you want to modify set B? Yes—go to 8. No—go to 10.
	 6.	 Do you want to extend the set of Bipolar categories? Yes—go to 9. No—go 

to 10.
	 7.	 Modify the set G according to 3.1.1. Go to 10.
	 8.	 Modify the set B according to 3.1.2. Go to 10.
	 9.	 Extend the set of categories in Bipolar ranking according to 3.2. Go to 10.

� =

n∑
p=1

�p∕100n

vk = �
�
qk
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Fig. 5   Modified Bipolar block scheme
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	 10.	 Do you want to apply the possibility of decision support for establishing 
weights? Yes—go to 12. No—go to 11.

	 11.	 Establish weights, k = 1, …, n and concordance level s. Go to 13.
	 12.	 Establish weights according to 5.1 and concordance level s. Go to 13.
	 13.	 Do you want to apply possibility of decision support for establishing veto 

thresholds? Yes—go to 15. No—go to 14.
	 14.	 Establish veto thresholds. Go to 16.
	 15.	 Establish veto thresholds according to 5.2. Go to 16.
	 16.	 Do you want to apply local preference functions to determine outranking 

coefficients? Yes—go to 17. No—go to 18.
	 17.	 Determine outranking coefficients according to 4.1. Go to 20.
	 18.	 Determine outranking coefficients according to 2.1.1. Go to 20.
	 19.	 Determine preference structure according to 2.1.2. Go to 20.
	 20.	 Do you want to apply modification of position definition for ai in relation 

to R? Yes—go to 22. No—go to 21.
	 21.	 Determine the position ai in relation to R according to 2.2. Go to 23.
	 22.	 Determine the position ai in relation to R according to 4.2. Go to 23.
	 23.	 Perform mono-sortings and mono-rankings according to 2.3.1. Go to 24.
	 24.	 Perform Bipolar-sorting and Bipolar-ranking according to 2.3.2. Go to 

Stop.

Stop

Table 2   Values of criteria 
for reference objects and 
alternatives

G f1 f2 f2 B f1 f2 f2 A f1 f2 f2

g1 15 110 9 b1 7 31 1 a1 25 115 6
g2 14 56 4 b2 2 65 3 a2 18 80 8
g3 18 90 6 b3 4 95 4 a3 19 35 9
g4 19 120 7 b4 3 5 5 a4 10 65 5
g5 15 30 8 b5 12 3 5 a5 14 13 8
g6 11 18 8 b6 2 14 3 a6 15 17 13
g7 12 15 6 b7 7 28 2 a7 21 13 8
g8 13 15 5 b8 2 32 6 a8 14 25 9
g9 20 25 9 b9 5 70 4 a9 8 35 1
g10 13 95 7 b10 3 40 3 a10 5 15 3
g11 19 65 6 b11 10 50 2
g12 9 150 5 b12 11 49 1
g13 23 58 5 b13 7 85 0
g14 15 74 4 b14 2 125 5
g15 12 80 6 b15 4 55 4
g16 12 70 4 b16 3 45 1
g17 20 35 5 b17 12 15 3
g18 13 50 3 b18 5 25 4
g19 15 45 3 b19 11 35 6
g20 11 78 8 b20 15 53 2
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8 � Illustrative numerical examples

We will consider two examples. In both of them the reference system consists of 20 
“good” objects and 20 “bad” objects, while the set of alternatives consists of 10 ele-
ments. Values of 3 criteria are real numbers. Numerical data are given in Table 2.

In the first of considered examples (Example 2) we will apply modifications, 
described in Chapters  4 and 5, whereas in the second one (Example 2a) for the 
same set of data we will perform calculations according the classical version of the 
method.

Example 2 

Start

	 1.	 We establish sets A, G, B (Table 2).
	 2.	 Condition (1) is not fulfilled [condition (2) holds]. We go to 3.
	 3.	 We do not want to modify reference sets and go to 6.
	 6.	 We do not want to extend set of Bipolar categories and go 10.
	 10.	 We will apply possibility of decision support for establishing the weights.
		    Subsequent deciles in the sets B and G are given in Table 3. Determining 

deciles we apply linear interpolation. We go to 12.
	 12.	 We apply decision support in establishing weights and calculate coeffi-

cients μ1 = 99, μ2 = 74, μ1 = 92, weights: w1 = 0.374, w2 = 0.279, w3 = 0.347, 
and coefficient ω = 0.883. It is seen, that the obtained value of ω confirms, 
that reference sets B and G has been established properly. We establish 
s = 0.5 and go to 13.

	 13.	 We do not want to apply decision support for establishing veto thresholds 
and go to 14.

Table 3   Deciles distributions in 
the sets G and B 

Deciles in set B Deciles in the set G

ξq,1
B ξq,2

B ξq,3
B ξq,1

G ξq,2
G ξq,3

G

0 2 3 0 9 15 3
1 2 13.1 1 11 17.7 3.9
2 2.8 23 1.8 12 29 4
3 3 30.1 2 12.7 42 5
4 4 33.8 3 13 53.6 5
5 5 42.5 3 14.5 61.5 6
6 7 49.4 4 15 71.6 6
7 7.9 53.6 4 15.9 78.6 7
8 11 66 5 19 91 8
9 12 86 5.1 20 111 8.1
10 15 125 6 23 150 9
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	 14.	 We establish veto thresholds v1 = 1, v2 = 1, v3 = 1 and go to 16.
	 16.	 We want to apply the local preference function and go to 17.
	 17.	 We determine outranking coefficients according to 4.1. Auxiliary values 

are shown in Table 4. We go to 20.
	 20.	 We want to apply modification of position definition for ai in relation to R 

and go to 22.
	 21.	 We determine the position ai in relation to R according to 4.2. and go to 

23.
	 23.	 We perform mono-sortings and mono-rankings according to 2.3.1. Results 

are given in Table 5. We go to 24.
	 24.	 We perform Bipolar-sorting and Bipolar-ranking according to 2.3.2. Re-

sults are given in Table 5. Go to Stop.

Stop

Table 4   Auxiliary calculations ξ1 ξ2 ξ3 η1 η2 η3

a1 10 10 10 1 1 1
a2 10 9 10 1 0.9 1
a3 10 5 10 1 0.5 1
a4 8 8 9 0.8 0.8 0.9
a5 10 1 10 1 0.1 1
a6 10 2 10 1 0.2 1
a7 10 1 10 1 0.1 1
a8 10 3 10 1 0.3 1
a9 8 5 2 0.8 0.5 0.2
a10 6 2 6 0.6 0.2 0.6

Table 5   Categories and rankings in Examples 2 and 2a

Example 2 Example 2a Notation for columns

1. Mono-sorting according to 
the success achievement degree
2. Mono-ranking according to 
the success achievement degree 

3. Mono-sorting according to 
the failure avoidance degree
4. Mono-ranking according to 
the failure avoidance degree 

5. Bipolar-sorting 
6. Bipolar-ranking

1 2 3 4 5 6 1 2 3 4 5 6

a1 S1 1 N1 1 B1 1 S1 1 N1 1 B1 1
a2 S1 2 N1 1 B1 2 S1 1 N1 1 B1 1
a3 S1 3 N1 1 B1 3 S1 1 N1 1 B1 1
a4 S2 8 N1 5 B2 5 S1 2 N2 1
a5 S2 7 N1 7 B2 8 S1 2 N2 2
a6 S2 6 N1 6 B2 7 S1 1 N2 2
a7 S2 5 N1 7 B2 6 S1 2 N1 1 B1 2
a8 S2 4 N1 4 B2 4 S1 1 N2 2
a9 S2 9 N2 9 B3 9 S2 3 N2 3 B3 3
a10 S2 10 N2 10 B3 10 S2 4 N2 3 B3 4
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Example 2a 

Start
We perform steps 1, 2, 3, 6, 10, 12, 13, 14 in the same way, as in Example 2

	 16.	 We do not want to apply the local preference function and go to 18.
	 18.	 We determine outranking coefficients according to 2.1.1 and go to 20.
	 20.	 We do not want to apply modification of position definition for ai in rela-

tion to R and go to 21.
	 21.	 We determine the position ai in relation to R according to 2.2 and go to 

23.
	 23.	 We perform mono-sortings and mono-rankings according to 2.3.1. Results 

are given in Table 5. We go to 24.
	 24.	 We perform Bipolar-sorting and Bipolar-ranking according to 2.3.2. Re-

sults are given in Table 5. We go to Stop.

Stop

Comparing results obtained in Examples 2a and 2 it is seen that four alterna-
tives: a4, a5, a6 and a8 are simultaneously “overgood” and “underbad”. Applying 
proposed modifications they become comparable with the rest of the alternatives 
and are classified in the class B2. It is worth to notice reverse of classification in 
mono-sortings (column 1 and 3—for alternatives a4, a5, a6, a7, a8) and bipolar 
sorting (column 5 for alternative a7).

9 � Concluding remarks

The present paper presents some modifications of the Bipolar method which are 
optional and complement the classical version of the procedure. They can be 
treated as a decision support tool when formula (1) is not satisfied.

Inconsistency of preference can be removed by the application of modifications 
described in Sect. 4.1.1 for “good” objects and in Sect. 4.1.2 for “bad” objects. 
When discussing modifications of categories in bipolar ranking it should be noted 
that despite of the supposition that no alternative can be both “overgood” and 
“underbad”, such situations occur in practical applications. It may be difficult 
(or impossible) to modify the reference sets, hence—if the decision maker does 
not want to disregard such an alternative—we propose an (optional) procedure of 
ranking alternatives, presented in Sect. 4.2.

Examples 1a, 1b and 1c illustrate the possibility of a rational solution of the 
problem of bipolar incomparability of one alternative that is observed when the 
classical version of the Bipolar method is applied. On the other hand, a com-
parison of the results obtained when analyzing Examples 2 and 2a shows that 
the modifications suggested in Sects. 5 and 6 allow for a rational solution of the 
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problem of bipolar incomparability of some alternatives and also for working out 
a ranking.

In the present paper the criteria were measured on a number scale. It is a limi-
tation which we want to overcome in further research. We will consider criteria 
measured on an ordinal or binary scale. Another direction of research is to con-
sider the possibility of applying an interactive approach both for the creation of 
reference sets and during the procedure itself.

The Bipolar method has been already applied to solve some real-life problems: 
for instance, to create a job characteristics of a “good” physics teacher (Jakubo-
wicz 1987; Jakubowicz and Konarzewska-Gubała 1989), to support an effec-
tive performance appraisal system (Konarzewska-Gubała 1996), in multi-crite-
ria decision support for portfolio selection using the idea of reference solutions 
(Dominiak 1997; Trzaskalik 2014). Multiple Criteria company benchmarking 
(Konarzewska-Gubała 2002). Modifications of Bipolar methodology proposed by 
D. Górecka were used for the evaluation and ranking of the European projects 
(Górecka 2009, 2010a, b, 2011, 2012, 2014, 2017a, b). The development of appli-
cations is the next direction of further research.

Open Access  This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, 
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate if changes were made.
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