
Central European Journal of Operations Research (2020) 28:309–336
https://doi.org/10.1007/s10100-018-0591-2

ORIG INAL PAPER

Multistep quantile forecasts for supply chain and logistics
operations: bootstrapping, the GARCHmodel and quantile
regression based approaches

Joanna Bruzda1

Published online: 30 October 2018
© The Author(s) 2018

Abstract
In this paper,we discuss and compare empirically variousways of computingmultistep
quantile forecasts of demand, with a special emphasis on the use of the quantile
regression methodology. Such forecasts constitute a basis for production planning and
inventory management in logistics systems optimized according to the cycle service
level approach. Different econometric methods and models are considered: direct and
iterated computations, linear and nonlinear (GARCH) models, simulation and non-
simulation based procedures and parametric as well as semiparametric specifications.
These methods are applied to compute multiperiod quantile forecasts of the monthly
microeconomic time series from the popular M3 competition database. According to
various accuracy measures for quantile predictions, the best procedures are based on
simulation techniques using predictive distributions generated by either the quantile
regression methodology combined with random draws from the uniform distribution
or parametric and nonparametric bootstrap techniques. These methods lead to large
reductions in the total costs of logistics systems as compared with non-simulation
based procedures. For example, in the case of forecasting 12 months ahead, relatively
short time series and a high cycle service level, the quantile regression based simulation
approach reduces the average supply chain cost per unit of output by about 70–85%.
At the shortest horizons, the GARCH model should be seriously considered among
the preferred forecasting solutions for production and inventory planning.
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1 Introduction

Demand forecasting in supply chain and logistics management is important for several
reasons, including service level targeting, costsminimization andmanaging the overall
risk of supply chains. It constitutes the first step an organization should undertake in its
strategic and operational planning (see, for example, Chopra and Meindl 2007, Chap.
VII). Because of this, forecasting is among themost important components of logistics
systems. The uncertainty concerning future demand makes supply chain management
very challenging,while the forecast accuracy to a large extent defines the overall cost of
a supply chain (see Syntetos et al. 2016, and compare, for example, Thomassey 2010),
even ifmanagers not always consider costs and keyfinancialmeasureswhen evaluating
their forecasts (see results of the survey studies discussed by McCarthy et al. 2006).
From the perspective of risk forecasting andmanagement, the so-called demand risk is
considered as one of the most important components of the total risk faced by a supply
chain, which consists of risks within a company such as process risks and control risks,
risks outside of a company but within the supply chain, encompassing demand risks
and supply risks, and risks outside of the supply chain—so-called environmental risks
(see Pohl et al. 2010). Thus, the demand risks are considered as a part of the within
supply chain risks. On the other hand, the supply chain risks are also divided into
operational risks associated with some ‘usual’ uncertainties and so-called disruption
risks of natural or anthropogenic kind such as natural disasters, terrorist attacks or
economic crises (see, for example, Tang 2006; Choi and Chiu 2012, section 1.1).
The ‘usual’ uncertainties defining operational risks are those resulting from demand
and supply uncertainty or costs variability, and thus the demand risks are basically
treated as operational uncertainties.1 However, in principle, the ‘unusual’ uncertainties
will also influence the variability of demand, the uncertainty of supply as well as
the total variability of operational costs. This may call for considering demand risk
within a different notion of uncertainty, namely that called Knightian uncertainty in
recognition of the work of Knight (1921), in which case the probability model of
a random variable of interest to the decision-maker is unknown and not estimable
with a reasonable accuracy and which differs from the notion of risk under a known
probability distribution. It also calls for a broader usage of semiparametric methods in
more objectively dealing with what Knight (1921) names a third type of uncertainty
and which is the error associated with estimating a probability distribution.

Quantile forecasts of demand are of interest to both supply chain managers, who
want, for example, to find the optimal level of product availability or the supply chain’s
production or distribution potential, as well as managers in a single firm willing to
optimize thefirm’s inventory level (see, for example, Pearson 2006;Chopra andMeindl
2007, Chap. XII; Ferbar et al. 2009; Tratar 2010, 2015; Wang and Petropoulos 2016;

1 A comprehensive review of definitions and classifications of supply chain risks that were developed in
the literature can be found in Sodhi et al. (2012) and Heckmann et al. (2015). There are also different
mathematical approaches to mitigate supply chain risks. A non-exhaustive review of them is given in Choi
and Chiu (2012, Chapter 1), and covers the use of such diversified concepts as von Neumann–Morgenstern
utility functions, profit target probabilitymeasures, Value-at-Risk andConditional Value-at-Risk, andmean-
risk (mean–variance, mean-semivariance) analysis (see Choi and Chiu 2012, Table 1.1).
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and the dynamic formulation of the newsvendor model in Alwan et al. 2016).2 In
particular, multiperiod quantile forecasts are indispensable under the forecast based
periodic review (T , S) policy in the popular cycle service level (CSL) framework (see,
for example, Strijbosch and Moors 2005; Syntetos and Boylan 2008; and Syntetos
et al. 2010).3 In such policy, the inventory position is reviewed at equidistant points
in time and replenished to a certain level depending on the assumed service level
requirements. To explicitly define this inventory policy, we introduce the following
notation:

T Prespecified review (replenishment) period (in months),
S Order-up-to (target) inventory level (in units),
L Constant lead time (in months),
yt Random demand in period t,
yt,n Cumulated random demand over n consecutive periods starting in t, i.e.,

yt,n � ∑n−1
i�0 yt+i ,

ŷt , ŷt,n Forecasts of the mean values of yt and yt,n , respectively, i.e., the con-
ditional expectations E(yt |Ωt−1) and E(yt,n|Ωt−1) given the set of
information available in period t − 1, Ωt−1,

σ̂ 2
t , σ̂ 2

t,n Forecasts of the variances of yt and yt,n , respectively, i.e., the con-
ditional variances Var (yt |Ωt−1) � E(y2t |Ωt−1) − E2(yt |Ωt−1) and
Var (yt,n|Ωt−1) � E(y2t,n|Ωt−1) − E2(yt,n|Ωt−1),

Φ(·), Φn(·) Standardized conditional cumulative distribution functions of yt and yt,n ,
respectively, which are assumed to be absolutely continuous and constant
over time, and

CSL Quantile order of interest to the decision-maker, i.e., service level require-
ment in terms of the probability of no stockout during the replenishment
cycle.

Then, the order-up-to level S is defined through the equation:

P{yt,T+L ≤ S} � CSL,

i.e., as the quantile of orderCSL of the cumulated actual demand over the period T +L .
This is solved as:

S � ŷt,T+L + �−1
T+L (CSL) · σ̂t,T+L . (1)

2 It isworthmentioning that quantile forecasts are alsowidely discussed in the context of energy forecasting.
For example, theGlobal EnergyForecastingCompetition (GEFC) is concernedwith comparing probabilistic
forecasting methods through the computation of forecasts of load or price at 99 quantiles on a rolling
basis—see Hong et al. (2016) for a review of the winning solutions in the GEFC 2014, encompassing both
popular and new more advanced methods (often making use of the quantile regression methodology). This
discussion supplements the stream of research concerning the use of simplified and advanced solutions to
the problem of constructing mean value forecasts in energy forecasting (see, for example, De Cosmis et al.
2013; Leopold 2016; Nalcaci et al. 2018).
3 Compare Dallery and Babai (2005), Syntetos et al. (2010) and Hill et al. (2015) for an introduction to
quantile forecasting in a simple reorder point based system and certain approximate solutions to this task.
Also note that reorder point systems will in principle require the use of continuous time models as in, for
example, Silver et al. (2009).
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312 J. Bruzda

Under the Gaussianity, stationarity and independence assumptions, (1) can be
rewritten as:

S � ŷ · (L + T ) + �−1(CSL) · σ̂ · √
L + T . (2)

The scaling or ‘square root of T + L’ method (2) is a popular textbook solution and
an industry standard for computing quantile forecasts of demand, and is also used as
an approximation in the case of correlated demand.

In this paper, we undertake the task of an empirical evaluation of different pro-
cedures of multiperiod quantile forecasting which do not require the stationarity and
independence assumptions, encompassing direct and iterated approaches, maximum
likelihood (ML) and quantile regression estimation, simulation and non-simulation
based methods and models with homoscedastic as well as GARCH errors. The basis
for this study constitutes a popular dataset of demand data—the monthly microeco-
nomic time series from the M3 forecast competition database (see Makridakis and
Hibon 2000). The main part of this paper is preceded by an introductory discussion
concerning alternative decision-theoretic approaches that can be of use in supply chain
and logistics forecasting. Then, Sect. 3 presents the analyzed methods together with
our evaluation framework, encompassing different measures of accuracy for quantile
forecasts and tests of quantile unbiasedness, and Sect. 4 discusses the main findings.
Finally, the last section offers brief conclusions.

2 Forecasting for supply chain and logistics operations

It is worth recalling the basic fact that the CSL parameter can be optimized assuming
that the costs of under- and overstocking are linear functions of the forecast error (see,
for example, Chopra and Meindl 2007, Chap. XII). Thus, it is assumed that the supply
chain cost is given as:

L(y, ŷ) �
{
cu(y − ŷ) for y ≥ ŷ
co(ŷ − y) for y < ŷ

, (3)

where cu and co are the unit costs of under- and overstocking, and y and ŷ are the
realization and the forecast, respectively. The function (3) is the well known LINLIN
(doubly linear) forecast loss (cost) function, which is of the ‘prediction error’ type,
i.e., it is an example of a forecast loss dependent solely on the forecast error. Then,
applying to (3) the Bayes rule:

E[L(Y , ŷ)] → min (4)

leads to optimal forecasts in the formofquantile predictions (see, for example,Gneiting
2011a, b; Komunjer 2013), i.e., the optimal forecast is as follows:

ŷ � F−1
(

cu
cu + co

)

� F−1(τ ), (5)
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where Y is distributed according to the forecaster’s subjective or objective predictive
distribution F of demand and, for simplification, we assume throughout the discussion
that the distribution F is absolutely continuous and strictly increasing. Thus, under
the loss function (3), optimal forecasts in a given logistics system take the form of
quantiles of order CSL � τ � cu

cu+co
of the demand distribution.

An alternative way of optimizing a logistics system is based on the notions of
Expected Shortage (ES) and Fill Rate (FR). The Expected Shortage is defined as the
mean level of lost sales under a prespecified product availability S, i.e., as:

ES(S) � E(Y − S)+ �
+∞∫

S

(y − S) f (y)dy,

where f is the probability density function associated with F. On the other hand, the
Fill Rate is the fraction of demand immediately available from stock. In its so-called
infinite period version, it is defined as follows:

FR(S) � Emin{S, Y }
EY

� 1 − E(Y − S)+

EY
� 1 − ES(S)

EY
, (6)

The Fill Rate (6) is also known as the type II service level, while the CSL is called
the type I service level or the vendor service level (see, for example, Lewis 1997;
Brandimarte and Zotteri 2007).

Then, the optimization of a logistics system according to the type II service level
requires solving:

1 − E(Y − S)+

EY
� τ (7)

or, alternatively,

ES(S) � (1 − τ )EY ,

where τ ∈ (0, 1) denotes the required service level. In practice, this is often performed
under the Gaussianity assumption, Y ∼ N (mY , σY ), in which case we have:

ES(S) � σY G

(
S − mY

σY

)

(8)

with

G(z) �
∞∫

z

(y − z)ϕ(y)dy � ϕ(z) − z[1 − Φ(z)],

where ϕ and Φ are the probability density function and the distribution function of
the standard normal distribution.
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On the contrary, the so-called single period version of the Fill Rate is given as (see
Chen et al. 2003; Thomas 2005):

FR1(S) � E
min{S, Y }

Y
(9)

and, under the assumption that the demand variable is positive, fulfils the condition
FR(S) ≤ FR1(S) (see Chen et al. 2003). Thus, a calibration of a logistics system
utilizing FR1 will require solving the equation:

1 − E
(Y − S)+

Y
� τ . (10)

It is worth noting that, similar to the case of the type I service level, we can specify
forecast loss functions whose expected values are uniquely minimized at the statistical
functionals of the distributions of demand which solve the Eqs. (7) and (10). In other
words, these statistical functionals are elicitable in the sense of Gneiting (2011b).
This is explicitly stated in the following two lemmas formulated with the help of the
so-called identification function approach of Osband (1985) (for details, see Gneiting
2011b and the references therein).

Lemma 1 Let F be a class of absolutely continuous distributions with a positive mean
value 0 < EY < ∞, and let T : F → R+ be the functional defined according to the
infinite period Fill Rate requirement of the form:

1 − E[Y − T (Y )]+

EY
� τ (11)

for a certain service level τ ∈ (0, 1). Then the loss function L : R × R+ → R:

L(y, ŷ) �
{
ŷϕ′(ŷ) − ϕ(ŷ) − τϕ′(ŷ)y + a(y) for y ≥ ŷ
(1 − τ )ϕ′(ŷ)y − ϕ(y) + a(y) for y < ŷ

, (12)

where a is F-integrable and ϕ is two times differentiable and strictly convex with
derivative ϕ′ and such that ϕ 1(−∞, x] is F-integrable for every x ∈ R, is strictly
consistent for T.

Proof Let S � T (Y ) for a certain distribution in F, i.e.,

(1 − τ )EY �
∞∫

S

(y − S) dF(y), F ∈ F,

and let f (y) be the probability density function of Y . In order to check that EL(Y , ŷ)
is uniquely minimized at S, let us consider:

EL(Y , ŷ) � [
ŷϕ′(ŷ) − ϕ(ŷ)

]
P(Y ≥ ŷ) − τϕ′(ŷ)

∞∫

ŷ

y f (y)dy + (1 − τ )ϕ′(ŷ)
ŷ∫

0

y f (y)dy
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−
ŷ∫

−∞
ϕ(y) f (y)dy + Ea(Y ) � [

ŷϕ′(ŷ) − ϕ(ŷ)
] − [

ŷϕ′(ŷ) − ϕ(ŷ)
]

ŷ∫

−∞
f (y)dy

− τϕ′(ŷ)EY + ϕ′(ŷ)
ŷ∫

−∞
y f (y)dy −

ŷ∫

−∞
ϕ(y) f (y)dy + Ea(Y ).

Taking the derivative with respect to ŷ, we have:

∂EL(Y , ŷ)

∂ ŷ
� ŷϕ′′(ŷ) − ŷϕ′′(ŷ)

ŷ∫

−∞
f (y)dy − τϕ′′(ŷ)EY + ϕ′′(ŷ)

ŷ∫

−∞
y f (y)dy.

The first-order condition is then as follows:

ϕ′′(ŷ)

⎡

⎢
⎣ŷ − ŷ

ŷ∫

−∞
f (y)dy − τ EY +

ŷ∫

−∞
y f (y)dy

⎤

⎥
⎦ � 0

or, equivalently,

ϕ′′(ŷ)

⎡

⎢
⎣(1 − τ )EY −

∞∫

ŷ

(y − ŷ) f (y)dy

⎤

⎥
⎦ � 0. (13)

The thesis follows since ϕ is strictly convex and the expression in square brackets
in (13) is negative for ŷ < S and positive for ŷ > S. �

Lemma 2 Let F be a class of absolutely continuous distributions on the positive half -
axis such that E

( 1
Y

)
exists, and let T : F → R+ be the functional defined according

to the single period Fill Rate requirement of the form:

1 − E

{
[Y − T (Y )]+

Y

}

� τ (14)

for a certain service level τ ∈ (0, 1). Then the loss function L : R+ × R+ → R:

L(y, ŷ) �
{

ŷϕ′(ŷ)−ϕ(ŷ)
y − τϕ′(ŷ) + a(y) for y ≥ ŷ

yϕ′(ŷ)−ϕ(y)
y − τϕ′(ŷ) + a(y) for y < ŷ

, (15)

where a is F-integrable and ϕ is two times differentiable and strictly convex with

derivative ϕ′ and such that E
(

ϕ(Y )
Y 1{Y≤x}

)
exists for every x ∈ R+, is strictly consis-

tent for T.
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Proof Let S � T (Y ), i.e.,

1 − τ �
∞∫

S

y − S

y
dF(y), for a certain F ∈ F,

and let f (y) be the probability density function of Y . As previously, let us consider
the expected value of the examined loss function:

EL(Y , ŷ) � [
ŷϕ′(ŷ) − ϕ(ŷ)

]
∞∫

ŷ

1
y f (y)dy +

ŷ∫

−∞

[
ϕ′(ŷ) − ϕ(y)

y

]
f (y)dy − τϕ′(ŷ) + Ea(Y )

� [
ŷϕ′(ŷ) − ϕ(ŷ)

]
E

( 1
Y

) − [
ŷϕ′(ŷ) − ϕ(ŷ)

]
ŷ∫

0

1
y f (y)dy + ϕ′(ŷ)

ŷ∫

0

f (y)dy

−
ŷ∫

−∞

ϕ(y)
y f (y)dy − τϕ′(ŷ) + Ea(Y ).

Then, differentiating with respect to ŷ, we arrive at:

∂EL(Y , ŷ)

∂ ŷ
� ŷϕ′′(ŷ)E 1

Y − ŷϕ′′(ŷ)
ŷ∫

0

1
y f (y)dy + ϕ′′(ŷ)

ŷ∫

0

f (y)dy − τϕ′′(ŷ)

� ŷϕ′′(ŷ)
∞∫

ŷ

1
y f (y)dy − ϕ′′(ŷ)

∞∫

ŷ

f (y)dy + (1 − τ )ϕ′′(ŷ).

Thus, the first-order condition is the following:

ϕ′′(ŷ)

⎡

⎢
⎣1 − τ −

∞∫

ŷ

y−ŷ
y f (y)dy

⎤

⎥
⎦ � 0. (16)

As previously, the thesis follows since ϕ is strictly convex and the expression in
square brackets in (16) is negative for ŷ < S and positive for ŷ > S. �

Thus, for a large class of distributions fulfilling certain moment conditions, the
functionals defined according to (7) and (10) are elicitable in the sense of Gneiting
(2011b). If a statistical functional of interest to the decision-maker is elicitable, the
loss function associated with it can be utilized at both the computation and evaluation
steps of forecasting procedures in a way similar to the LINLIN loss and the MAPE
(Mean Absolute Percentage Error) accuracy measure (see Weiss and Andersen 1984;
Weiss 1996; Engle andManganelli 2004; and Bruzda 2016, 2018) or the loss functions
discussed recently in the context of the estimation and forecasting of financial risk (see
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Fissler and Ziegel 2016; Dimitriadis and Bayer 2017; Maume-Deschamps et al. 2017;
Patton et al. 2017), even if such loss functions are not of the ‘prediction error’ type.4

Example loss functions (12) and (15) are obtained if one takes φ(y) � y2 and
a(y) � τ y2 in (12), and φ(y) � 1

2 y
2 and a(y) � 1

2 y in (15), which leads, respectively,
to:

L(y, ŷ) �
{

τ (y − ŷ)2 + (1 − τ )ŷ2 for y ≥ ŷ
−(1 − τ )(y − ŷ)2 + (1 − τ )ŷ2 for y < ŷ

, (17)

and

L(y, ŷ) �
{

(y−ŷ)2

2y + (1 − τ ) ŷ for y ≥ ŷ
(1 − τ ) ŷ for y < ŷ

. (18)

Loss functions such as (17) and (18) can be interpreted, for example, in terms of costs
associated with maintaining a firm’s production and/or distribution potential.

In the next section we concentrate on supply chain and logistics forecasting under
the LINLIN loss and discuss the many ways of computing multiperiod forecasts of
this type. We also present our evaluation framework encompassing tests of quantile
unbiasedness and different measures of accuracy for quantile forecasts. Similar con-
siderations under loss functions such as (17) and (18) will constitute an interesting
topic for further studies.

3 Quantile forecasts of demand

It is worth emphasizing that in the practice of supply chain management there is a need
to compute two sorts of multiperiod quantile forecasts of demand. On the one hand, a
decision-maker may be interested in quantiles of the predictive distribution of demand
in some future period n+h, i.e., in quantile forecasts of the variable Dn+h , while, on the
other, there is a need to forecast quantiles of sums of the variables Dn+i in the whole
forecast horizon, i.e., quantiles of the variable

∑h
i�1 Dn+i . The first sort of multiperiod

quantile forecasts can be utilized in early warning systems signaling changes on the
market and possible threads (compare De Nicolò and Lucchetta 2017), in medium-
or long-term (production and distribution) capacity planning, in production planning
if products are not stocked (for example, in the food sector) and will also be used

4 Properties of optimal forecasts with loss functions of the ‘prediction error’ type, i.e., depending solely on
the forecast error, have been established by Patton and Timmermann (2007). In particular, in the simple case
of the conditional mean dynamics, such loss functions lead to optimal forecasts of the form ‘the conditional
mean+a correction term’, where the correction term depends solely on the distribution of innovations
and the loss function (also see Granger 1969; Christoffersen and Diebold 1997). For an introduction to
the decision-theoretic forecasting in a more general case, see Clements (2005, Chap. VI); Granger (1969,
1999), Granger and Machina (2006), Patton and Timmermann (2010) and Gneiting (2011b).
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in the case of delays in information flows required for operational decisions. The
second type of quantile forecasts is required in inventory and production management
systems operating under the CSL approach and, as was already mentioned, is often
computed on the basis of the approximation (2), although exact solutions are also
considered under prespecified data generating mechanisms of the ARMA type, for
example, AR(1), MA(1) and ARMA(1,1) in Ali et al. (2012), and ARIMA(0,1,1) in
Babai et al. (2013). Our further discussion is mainly focused on the second type of
quantile forecasts, which are also exclusively considered later in the empirical part of
this paper.

In the general linear case of (possibly nonstationary) ARMA processes, the exact
forecasting solution is directly derived as follows. Let us consider an ARMA(p, q)
process of the form:

yt � β0 + β1yt−1 + · · · + βp yt−p + εt + φ1εt−1 + · · · + φqεt−q , (19)

where εt ∼ i .i .d. The process (19) can be rewritten in the equivalent form of an
infinite moving average:

yt � m + εt + θ1εt−1 + θ2εt−1 + · · · . (20)

Then, the forecasts of the sums of the process in the forecast horizon h are given as:

E

(
h∑

i�1

yt+i |Ωt

)

� hm + (θ1 + θ2 + · · · + θh)εt + (θ2 + θ3 + · · · + θh+1)εt−1 + · · · ,
(21)

where Ωt is the set of information available in period t, and the forecast error is
expressed as:

ηt (h) �
h∑

i�1

yt+i − E

(
h∑

i�1

yt+i |Ωt

)

� (1 + θ1 + . . . + θh−1)εt+1

+ (1 + θ1 + · · · + θh−2)εt+2 + · · · + εt+h . (22)

Thus, the variance of the forecast error is the following:

Var(ηt (h)) � σ 2
ε

h−1∑

i�0

(
i∑

l�0

θl

)2

, (23)

and quantile forecasts of
∑h

i�1 yt+i are obtained as follows:

Qτ

(
h∑

i�1

yt+i |Ωt

)

� E

(
h∑

i�1

yt+i |Ωt

)

+
√
Var(ηt (h))�

−1
ε (τ ), (24)
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where � is the standardized conditional distribution function of demand.
In the case of ARMA processes with some sort of conditional heteroscedasticity,5

the conditional variance of either yn+h or
∑h

i�1 yn+i can be derived directly from its
definition. For example, for yn+h we have:

Var (yt+h |Ωt ) � E(y2t+h |Ωt ) − [E(yt+h |Ωt )]
2

� E[(εt+h + θ1εt+h−1 + · · · + θh−1εt+1)
2|Ωt ]

�
h−1∑

i�0

θ2i E(ε
2
t+h−i |Ωt ). (25)

However, when computing multiperiod quantile forecasts under conditional het-
eroscedasticity, one should resort to simulations since in such a case the conditional
distribution becomes a nonlinear combination of the error terms εt , rendering the use
of, for example, quantiles of the standard normal distribution, zτ , inappropriate. This,
together with the need to account for estimation errors, sets simulation techniques
in the centre of our interest when computing multiperiod forecasts of demand for
inventory management applications.

The basis for our forecasting procedures in the empirical part of the paper constitute
autoregressive models with polynomial trend functions, which is justified taking into
account the results of unit root tests on the data used in this study, indicating (trend-
)stationarity in the majority of cases. The maximum autoregression order is set to
k � 6 and the maximum degree of polynomial trend functions is set to p � 2. The
AICC criterion in its versions for the ML and quantile regression estimations is used
in model selections. In the case of the direct approach to forecasting, the models are
always chosen separately for each forecast horizon, as are also the quantile regression
equations for different quantiles, utilized here either in the direct quantile forecasting
or in a quantile regression based simulation approach. Since the analyzed data are
trending, the approximation (2) has been excluded from the comparison.

The following forecasting procedures are evaluated:

1–2 The least squares estimation of models of the form:

yt �
q∑

j�0

α j t
j + β1yt−1 + · · · + βm yt−m + εt (26)

(q ≤ p � 2, m ≤ k � 6)with quantile forecasts computed according to the
formula (24), where quantiles of the standardized conditional distribution
are obtained nonparametrically (1) or are taken from the standard normal
distribution (2).6

5 A conditional heteroscedasticity in demand is usually dealt with smoothing the mean absolute deviation
(MAD) and smoothing the mean squared error (MSE) as in, for example, Strijbosch and Moors (2005)
and Syntetos et al. (2010a, b), but GARCH models have also been suggested and discussed in this context
(Datta et al. 2007, 2009).
6 In the nonparametric quantile estimation in this paper, we rely on the Matlab function ‘quantile’.
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3–4 The least squares estimation of the ‘direct’ (MIDAS-type) equation:

DT
t �

T−1∑

i�0

yt+i �
q∑

j�0

α j t
j + β1yt−1 + · · · + βm yt−m + ηt (27)

(q ≤ p � 2, m ≤ k � 6) with quantile correction computed nonparamet-
rically (3) or assuming the normal distribution (4).

5. A direct quantile regression approach, in which the quantile regression esti-
mator (see Koenker and Bassett 1978; Koenker 2005) is applied to estimate
the (27) and the quantile forecasts are computed in one step.

6. A simulation approach utilizing the quantile regression estimation of the
(26) for different quantile orders τ (compare the method of forecasting
the Quantile Autoregressive—QAR—processes in Koenker 2011), speci-
fied here separately for each quantile order; in the first step, 1000 quantile
regressions are estimated for quantile orders being equally spaced values
between 0 and 1; the estimated equations are directly used to obtain the one-
step ahead predictive distribution of yt ; then, random sequences of quantile
orders from those used in the first step are generated, the one-step ahead
quantile forecasts are substituted for actuals in the quantile regressions cho-
sen according to the random sequences of quantile orders to produce the
two-step ahead predictive distribution, and the computations are continued
in this way to obtain the h-step ahead predictive distribution; finally, the
distributions are cumulated and the forecasts of

∑
i yt+i are computed with

the Matlab function ‘quantile’.
7–8 The basic bootstrap method as presented in Clements (2005), §4.2.3, based

on the percentile method of Efron and the approach suggested in Pascual
et al. (2001) (see the formula (4.9) in Clements 2005), performed on the (26)
without bias correction; the nonparametric (7) or parametric (8) bootstrap
is used, i.e., to generate the bootstrap samples, either resampled residuals
are utilized or innovations are generated assuming the normal distribution;7

the predictive distributions of yt+i are cumulated and the final forecasts are
computed; the number of bootstrap samples is set to 1000.

9–10 The model (26) is estimated jointly with the GARCH(1,1) equation for the
conditional variance assuming the conditional normal distribution; in the
estimation, the Matlab functions ‘garchfit’ and ‘garchget’ from the Econo-
metrics Toolbox are used; the predictive distributions of yt+i are generated
either by resampling standardized residuals (9) or through random draws
from the standard normal distribution (10); the predictive distributions are
then cumulated and the final forecasts are obtained; the estimation errors
are not accounted for;8 1000 replications.

7 Under the Gaussianity assumption, it is potentially possible to obtain an analytic solution accounting for
estimation errors, but such a solution would be only approximate and rather tedious to derive.
8 Attempts to apply bootstrap methods to the AR(m)-GARCH(1,1) models with trend functions estimated
on the data from the M3 competition were unsuccessful, leading to much worse results as compared with
the simulation approach. Also, our experimentation with simulations based on linear ARCH (LARCH)
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1L–2L The model (26) is estimated on logarithms of the data, and either resampled
residuals (1L) or random draws from the normal distribution (2L) are used to
generate the predictive distributions for logarithms of yt+i ; the logarithmic
transformation is then reversed, and the distributions are cumulated; 1000
replications.

6L–10L As 6–10 but all estimations are performed on logarithms and the final fore-
casts are computed as in 1L–2L.

Our evaluation of the forecast accuracy is based on the following aggregate mea-
sures introduced in Bruzda (2018):

• Relative LINLIN costs:

L I N L I N∗τ � 1

K

K∑

i�1

1

T

T∑

t�1

{
τ u+i t + (1 − τ )u−

i t

}

ŷτ
i t

� 1

K

K∑

i�1

1

T

T∑

t�1

L I N L I N∗τ
i t ,

(28)

L I N L I N∗∗τ � 1

K

K∑

i�1

1

T

T∑

t�1

{
τ u+i t + (1 − τ )u−

i t

}

yit
� 1

K

K∑

i�1

1

T

T∑

t�1

L I N L I N∗∗τ
i t ,

(29)

• Hit Ratio:

Hitτ � 1

K

K∑

i�1

1

T

T∑

t�1

I{yit−ŷτ
i t>0}, (30)

• Fill Rate:

FRτ � 1

K

K∑

i�1

1

T

T∑

t�1

{

1 − (yit − ŷτ
i t )

+

yit

}

, (31)

where ŷτ
i t and yit are, respectively, the tth quantile forecast for quantile of order τ

for the ith time series and the corresponding realization, u+i t and u
−
i t are the absolute

values of the positive and negative forecast errors, K denotes the number of series,
T is the number of (fixed horizon) forecasts for a single time series, and IA is the
indicator function for the set A.

It is worth underlining that the aggregate measures (28)–(31) may be interesting
not only as a statistical approach to the evaluation of quantile forecasts, but they can
also be interpreted in economic terms. In particular, (28) and (29) may be thought of as
proportional to supply chain costs per unit of output and per unit of sales, respectively,

Footnote 8 continued
models estimated as in Francq and Zakoïan (2010), which we considered to be close competitors to the
simulations utilizing quantile regression estimation, turned out to provide inferior results compared to the
other methods when evaluated on our dataset.
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if the unit costs of over- and understocking are equal across different products and
over time or, alternatively, to supply chain costs per the (Dollar or Euro) values of
output and sales if the unit costs of over- and understocking are proportional to the
unit prices of products (see Bruzda 2018).

Furthermore, we also examine average ranks of our forecasting procedures in rank-
ings based on the LINLIN loss:

L I N L I N τ
i t � τ u+i t + (1 − τ )u−

i t (32)

and perform the Kupiec (1995) test for quantile unbiasedness, which is based on the
following test statistic:

LR � 2

{

ln

[(
N

K · T
)N(

1 − N

K · T
)K ·T−N

]

− ln
[
(1 − τ)N τ K ·T−N

]
}

, (33)

where N denotes the number of hits (violations) and K · T is the total number of
forecasts for a given quantile. Under the hypothesis that the Hit Ratio is equal to
the nominal value 1 − τ , the statistic (33) has asymptotically the χ2(1) distribution.
The forecast evaluation presented in the next section was executed after replacing all
negative demand forecasts with zeros.

4 Empirical results and discussion

The dataset used in this study comprises the 474 monthly microeconomic time series
from the M3 forecast competition (see Makridakis and Hibon 2000), which are
described as ‘shipments’.9 The time series are of different lengths—the first 277 of
them are of length 68–69, while the last 197—of length 126. The ratio-to-moving
average method with seasonal factors recomputed on the whole range of observations
was applied to seasonally adjust the data if the given time series was treated as seasonal
in the exponential smoothing procedures in the M3 competition.10

The maximum forecast horizon h was set to 12, and all forecasting models were
built on data shortened by 12 observations in order to facilitate a forecast evaluation.
Since one forecast for each forecast horizonwas calculated, in computing the aggregate
accuracy measures we set T � 1. The following quantile orders τ were examined:
0.5; 0.75; 0.9; 0.95; 0.975 and 0.99, while the detailed statistics are presented mainly
for 0.75 and 0.95.11 Our presentation of the empirical outcomes is given separately
for the two subsets of time series. It is worth underlining that the relative LINLIN
costs and the Fill Rate statistics were also computed in trimmed (robustified) versions
excluding 5 (10, 20)% of the forecasts (compare Bruzda 2018).

Turning to the analysis of our empirical results, first we note that, for the short
time series of length 68–69 and the relative LINLIN costs (28) and (29), the dominant

9 See http://www.forecastingprinciples.com/index.php/data.
10 See https://forecasters.org/resources/time-series-data/m3-competition/.
11 The other empirical results are available upon request.
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solution turns out to be the procedure 6L, making use of random draws of quantile
orders and quantile regression estimation performed on logarithms of the data (see
Tables 1 and 2 and, for the cost (29), also compare the first two panels in Fig. 1). Only
in the case of one- or two-step ahead quantile forecasts (and up to four-step ahead for
τ � 0.99) this procedure is outperformed by some other methods—most of all the
bootstrap approach and, particularly for one-step ahead forecasting, the simulations
based on GARCH models and the normal distribution (the procedures 10 and 10L).
The dominance of the procedure 6L (and also theGARCHmodels one step ahead) over
the other methods becomes even more visible if the robustified (trimmed) versions of
the costs (28) and (29) are examined (not reported). The bootstrap procedures with ols
estimation on logarithms or, alternatively, levels of the data appear to be the second
best solution.

It is interesting to note that the simulation based procedures lead to large reductions
in the total costs of logistics systems as compared with non-simulation basedmethods.
In particular, in the case of forecasting 12 months ahead and τ �0.95, the quantile
regression based simulation approach reduces the average supply chain cost per unit
of output by about 70% (see Table 1). For τ ∈ {0.975; 0.99} these reductions are even
larger and for τ �0.99 reach about 85%. This indicates that the choice of a forecasting
procedure for production and inventory planning can have a substantial impact on the
total costs of a logistics system.

On the other hand, in the case of the longer data, for which the mean relative costs
are reported in Tables 3 and 4 (also compare the last two panels in Fig. 1), we observe
that the simulations utilizing quantile regression (the procedures 6 and 6L) are able
to outperform all the other methods usually exclusively for the lower-order quantiles
among those considered and at shorter horizons (no longer than 8–9 months in the
case of τ ∈ {0.5; 0.75}, and exclusively for two- and three-step ahead forecasts for
τ � 0.9). For longer forecast horizons, the dominant solution becomes the bootstrap
method, most often when performed on levels of the data and in its parametric version
(the method 8). For example, the method 8 produced the best forecasts on average
at horizons in the range 7–12 for τ � 0.9 (not reported). Thus, longer-term quantile
forecasting in this dataset can be based on linear processes and the normal distribution,
although accounting for estimation errors seems then to be crucial taking into account
large discrepancies between the values of forecast accuracy measures for the different
approaches (see Tables 3, 4). For example, for h � 12 and τ �0.95, the methods 8
and 9 lead to about 60% reductions in the average supply chain costs per unit of output
(see Table 3). In general, these reductions are somewhat smaller than those observed
for the first dataset, and, furthermore, they also tend to differ to a large extent among
the different procedures.

Besides, it is worth noticing that the GARCH models turn out to be very useful
in short horizon forecasting (up to three steps ahead), particularly for large quantiles,
more often producing the best outcomes than in the case of the shorter time series in
the first dataset. For example, for h � 1 and τ �0.95, the GARCH based procedure
10 reduces the average cost (28) by about 17% (or more) as compared with the non-
GARCH based methods (see Table 3). On the contrary, for h lying in the middle of the
range examined here, the linear methods 1 and 2 (especially 1) often outperform the
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First dataset and service level 75%
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Fig. 1 The aggregate LINLIN cost (29) for forecast horizons in the range 1–12 months. Note compare
Tables 2 and 4
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other approaches. All of this is also confirmed to a large extent when the robustified
accuracy measures are analyzed.

It is worth noting that the direct ols or quantile regression based forecasting
approaches (the methods 3–5) often provide inferior solutions relative to the iterated
ols based methods or the simulations utilizing quantile regression, in particular in the
case of short time series, longer forecast horizons and large quantiles. Interestingly, we
also observe that generating predictive distributions with a large number of quantile
regressions estimated on levels (the method 6) can—and, in fact, often does—pro-
vide better one-step ahead quantile forecasts than the direct quantile forecasting (the
method 5).

Turning to the analysis of the Hit Ratios, whose values transformed to the Kupiec
statistics are collated for τ �0.75 and 0.95 in Tables 5 and 6, first we see that, in terms
of quantile unbiasedness, all the methods perform poorly in multistep forecasting. The
only exception to this rule are median forecasts for the first dataset, in which case all
procedures show excellent performance for almost all h. As can be seen in Table 5,
this generally does not apply to larger quantiles, although it can be noted that, for this
dataset, in the case of τ �0.75, the bootstrap methods (7, 8, 7L, 8L) together with
the procedure 6L are able to fulfill the assumed service level requirements at longer
horizons, i.e., for h in the range 7–12. For quantiles above 0.75, the performance of the
different forecasting procedures applied to the first dataset deteriorates further, with
only few methods providing quantile unbiased forecasts at horizons beyond h � 1.
However, with almost no exceptions, the unbiasedness at horizons longer than h � 2
can not be confirmed. Interestingly, the best performance in terms of longer horizon
forecasting most often is shown by the parametric bootstrap methods, which produce
the smallest and, at the same time, the closest to their nominal valuesHit Ratio statistics
for large h.

On the other hand, in the case of the second dataset (see the example statistics in
Table 6), the performance of the different methods in terms of quantile unbiasedness
at higher quantiles improves, although usually the unbiasedness does not hold for
forecasts more than three steps ahead, with the exception of the procedure 1, which
produces quantile unbiased forecasts up to eight steps ahead for τ � 0.99 and up to six
steps ahead for τ � 0.975. At the longest horizons, the smallest (and, at the same time,
the closest to their nominal values) Hit Ratios are for the bootstrapmethods, especially
when performed on levels of the data and in their parametric versions. Interestingly,
for τ � 0.75 a good performance at horizons from one to three in terms of the Hit
Ratios is achieved under the Gaussianity assumption (i.e., with the procedures 2, 4
and 8).

Figure 2 shows average ranks of the different forecasting procedures for quantiles
of orders 0.75 and 0.95. It turns out that, for the first dataset, this part of the forecast
evaluation favors the method 6L (usually for forecast horizons starting from h �5–7)
and the bootstrap approach, particularly the one based on the normal distribution if
shorter forecast horizons are considered. On the other hand, if the second dataset is
analyzed, the favored approaches are all based on modeling levels and, for longer
forecast horizons, take the form of the bootstrap method (particularly the parametric
procedure 8, although for τ � 0.95 the procedure 7 largely dominates the other
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Fig. 2 Average ranks of models for forecast horizons in the range 1–12 months
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methods), while in the case of shorter horizon forecasting, the ols based iterated
procedures 1 and/or 2 lead to the best outcomes.

Finally, examining the Fill Rates, which are not reported to save space, we observe
that, once more, the dominant solution for the time series of length 68–69 are the
parametric simulation approach accounting for estimation errors and the simulations
utilizing quantile regression, with the latter providing best forecasts at horizons 2–8
or even longer, while the methods 1, 2, 7 and 8 can be distinguished in the case of the
second dataset, with the bootstrap approach performing particularly well at the longer
horizons among those considered and more often in its parametric form. We also note
that, after robustification, for the largest quantiles and particularly in the case of the
methods indicated above, the Fill Rate statistics often reach 100%.

The detailed analysis presented above shows that, although certain discrepancies
across the accuracy metrics and the datasets are observed, it is safe to say that the most
promising approaches to multistep quantile forecasting of demand are those which
either explicitly account for estimation errors or make use of predictive distributions
generated with the help of quantile regression. In forecasting at the shortest horizons,
especially based on larger estimation samples, the AR-GARCH models with trend
functions are able to outperform the other approaches examined here. It is also worth
underlining that, for our datasets, there are substantial discrepancies among the differ-
ent methods’ performance in terms of the costs associated with forecasts, particularly
in the case of longer-term forecasting, and that it is rarely the case that these methods
produce quantile unbiased multistep predictions.

5 Conclusions

Multistep forecasting of demand in logistics systems optimized according to the cycle
service level approach is often based on exact analytic formulas ignoring estimation
errors. Simulation (Monte Carlo or bootstrap) procedures are rarely used to this end.
Our empirical results obtained for the popular dataset of 474 monthly microeconomic
time series from theM3 forecast competition indicate that simulation based procedures
should certainly be taken into account when deciding upon a forecasting approach
for supply chain management. In particular, the best forecasts at annual horizons
were obtained either with simulation techniques utilizing quantile regression or with
procedures able to explicitly account for estimation errors. It is worth underlining
that, according to our results, a careful choice of a forecasting procedure for multistep
quantile forecasting is crucial since huge discrepancies in the forecast accuracy were
observed among the analyzed methods, indicating that such a choice will have a
substantial influence on the total costs of a logistics system. From the cost perspective,
it may be advisable to invest in fast computational tools, which will deliver better
forecasts on a regular (for example, weekly or monthly) basis.

Our empirical study also shows that direct approaches to quantile forecasting (either
ols or quantile regression based), which use disaggregated date to forecast aggregates,
are often outperformed by some sort of iterated forecasting, especially in the case of
high cycle service levels. Finally, we also found that GARCH models, particularly
when estimated on longer time series, should be seriously considered among the pre-
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ferred solutions for short horizon forecasting of demand in supply chain management
applications.

Among future research challenges in the field of supply chain and logistics fore-
casting one can distinguish a comparison of different approaches to computing other
types of optimal forecasts of demand, in particular those fulfilling the type II service
level constraints, defined earlier in this paper. It will be worth investigating, for exam-
ple, if the different functionals of demand can be better forecasted with the help of
models belonging to the recently introduced class of generalized autoregressive score
models (see Creal et al. 2013; Patton et al. 2017). Furthermore, it is also worth exam-
ining if some other characteristics of demand, such as single period Fill Rates for a
given CSL used in performance forecasting, which are not elicitable in the sense of
Gneiting (2011b) (for proof, see Bruzda 2018), can be made elicitable jointly with
other functionals of demand. In a recent paper, Fissler and Ziegel (2016) have shown
that Expected Shortfall is elicitable jointly with Value-at-Risk and that this fact has
immense implications for the derivation, evaluation and testing of forecasts of this
functional (also compare Dimitriadis and Bayer 2017; Patton et al. 2017). This find-
ing opens a new chapter of applied forecasting in finance and sets further research
questions concerning possible higher-order elicitability of other functionals of inter-
est to decision makers, including popular demand characteristics. Some steps in this
direction have been already taken in Bruzda (2018), but more is needed.
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