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Abstract In this paper we analyze two stochastic versions of one of the simplest
classes of contagion models, namely so-called SIS models. Several formulations of
such models, based on stochastic differential equations, have been recently discussed
in literature,mainlywith a focus on the existence and uniqueness of stationary distribu-
tions. With applicability in view, the present paper uses the Fokker–Planck equations
related to SIS stochastic differential equations, not only in order to derive basic facts,
but also to derive explicit expressions for stationary densities and further characteris-
tics related to the asymptotic behaviour. Two types of models are analyzed here: The
first one is a version of the SISmodel with external parameter noise and saturated inci-
dence. The second one is based on the Kramers–Moyal approximation of the simple
SIS Markov chain model, which leads to a model with scaled additive noise. In both
cases we analyze the asymptotic behaviour, which leads to limiting stationary distri-
butions in the first case and limiting quasistationary distributions in the second case.
Finally, we use the derived properties for analyzing the decision problem of choosing
the cost-optimal level of treatment intensity.
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1 Introduction

In epidemiology, one of the simplest types of models is given by SIS models. They
describe the spread of infectious diseases without immunity, i.e. it is assumed that
individuals can be infected multiple times throughout their lives and that no immunity
happens after infection. The acronym SIS illustrates these assumptions: it is possible
for a susceptible (S) individual to become infected (I), and later on to become suscep-
tible (S) again. Typical examples for diseases that can be modelled in this way—at
least in first approximation—are rota-viruses, some sexually transmitted infections
and many bacterial infections, see e.g. Hethcote and Yorke (1984) and Brauer et al.
(2008).

In the present paper we use the language of epidemiology, e.g. speaking of “infec-
tion”, “recovery” or “disease”. However, contagionmodels play an important role also
in various disciplines of social sciences, management science and economics, when
the spreading of information or behavior (the “disease”) amongst sub-populations is
modelled. Examples for such fields are marketing (e.g. Gould 1970; Mahajan et al.
1993), rumour modeling (e.g. Kandhway and Kuri 2014) or illicit drug dynamics (e.g.
Behrens et al. 2002).

We denote the number of infected individuals at time t ∈ R by X (t) and the number
of susceptible individuals by Y (t). In the simplest case (without birth and death), the
overall population with size N is assumed to be constant. Note that because of

N = X (t) + Y (t) (1)

it suffices to model the number of infected, replacing Y (t) by N − X (t)whenever nec-
essary. Two parameters are relevant: the disease transmission coefficient (or strength
of infection) β > 0, leading to a force of infection1 (or incidence rate) of β X (t), and
the recovery rate γ > 0. The force of infection models the rate at which susceptible
individuals become infected, while the recovery rate is interpreted as the rate at which
infected individuals become susceptible again, which means that 1/γ is the duration
of infection.

1 Note that there exist controversies and even conflicting nomenclature on the exact structure of the trans-
mission term, in particular regarding the role of the parameter β. As a simplified overview, we use a force of
infection of β X (t). This specification is often referred to as “pseudo-mass action” or “density dependent”.
Here, the the number of contacts depends (implicitly) on the population size. The most important alterna-
tive is given by the force of infection β X (t)/N , where the force is normalized, such that the number of
contacts does not depend on the population size. This specification is often referred to as “mass action” or
“frequency dependent”. In some sense the frequency dependent specification is more natural and leads to
simpler results, because e.g. the basic reproduction number (3) and related results for the stochastic models
(compare footnote 3 below) then do not depend on the population size N . On the other hand, the exact type
of specification is important only in more complicated models (including e.g. birth and death) where N
depends on time. Basically, N is just a constant here, and one can redefine β = β̂/N for some parameter
β̂, related to the frequency dependent specification. Therefore we stick to the pseudo-mass specification,
which is used in the majority of papers we cite on stochastic formulations of SIS models.
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Stochastic contagion models without immunity: their long… 397

Deterministic SIS model

While we aim at stochastic SIS models in continuous time, deterministic models are
most widely used in epidemiology, as well as in the economic and socio-economic
context. In particular, all papers cited as examples for applications of contagionmodels
in the present work so far build on deterministic formulations. Therefore we start with
a short recapitulation of the simplest deterministic SIS model. Here the number of
infected individuals X (t) is modeled as a smooth, deterministic function of time. The
SIS model is then given by the ordinary differential equation

d X (t)

dt
= β X (t) (N − X (t)) − γ X (t),

X (0) = x0 ∈ (0, N ]. (2)

In view of (2), Eq. (2) is sufficient to describe the whole system (X (t), Y (t)). The
properties of model (2) are well known, as it is equivalent to the logistic equation
used to describe population growth in ecology, see e.g. Murray (1989). Because of its
simplicity, Eq. (2) can be solved explicitly, which leads to

X (t) = Nβ − γ

β − e
−(Nβ−γ )

(
t− 1

x0

)

if Nβ
γ

�= 1, and

X (t) = 1

βt + 1
x0

if Nβ
γ

= 1. Clearly, X (t) remains within (0, N ] if the process starts in this interval.
The asymptotic behaviour of the deterministic model (2) depends on the basic

reproduction number, i.e. the expected number of secondarily infected individuals by
a single initial case of infection,

R0 = Nβ/γ (3)

and can be characterized as follows: if R0 ≤ 1, the disease free equilibrium X (t) = 0
is globally stable, while if R0 > 1 the disease free equilibrium becomes unstable and
the system has a unique (globally stable) endemic equilibrium

X∗ = N − γ

β
,

fulfilling d X (t)
dt = 0. Convergence here is monotonic with no oscillatory behaviour.

These facts provide the basis for answering the question, if and how it is possible
to extinct the disease in the long run (asymptotically). Basically a decision maker may
try to influence the paramters β and γ such that the condition for the condition for a
disease free equilibrium is fulfilled.
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Diffusion-type SIS models

While many approaches for stochastic epidemiological models exist in literature, see
e.g. Diekmann et al. (2013) or Chapter 6 of Keeling and Ross (2008), the present paper
analyzes diffusion-type versions of the SIS model. Extending the simple deterministic
SIS-model, thismeans that Eq. (2) is replaced by a stochastic (Ito) differential equation

d X (t) = (β X (t) (N − X (t)) − γ X (t)) dt + σ(X (t))dW (t),

X (0) = x0 ∈ (0, N ). (4)

Here, W (t) represents a (standard) Wiener process and the resulting stochastic pro-
cess X (t) is adapted to the filtration generated by W (t). The measurable functions
σ(·) : R → R (the diffusion term) and β(X (t)) (N − X (t)) X (t) − γ X (t) have to
fulfil some technical condition like a local Lipschitz condition together with a linear
growth condition (see e.g. Fleming and Rishel 1975, p 118) or the Yamada–Watanabe
condition (Yamada and Watanabe 1971), in order to guarantee existence and unique-
ness of a (strong) solution.

The exact form of σ depends on the viewpoint of modelling. Several types of
diffusion terms σ(·) for SDE models have been proposed in epidemiologic literature.
Keeling and Rohani (2008) distinguish four types of specifications. In the context of
SIS models (4) we can rephrase their classification as follows:

1. Constant noise, σ(·) ≡ σ with σ a positive real number. Such specifications are
used often. As a result, in the long run the asymptotic expectation of the stochastic
model equals the deterministic equilibrium. See e.g. Rohani et al. (2002) and
McKane and Newman (2005). Unfortunately such an approach cannot exclude
negative numbers of infected individuals.

2. Scaled additive noise, σ(x) = √
(β · x · (1 − x) + γ x) /N . For SIS models the

analyzed stochastic differential equation (4) is used as a diffusion approxima-
tion (Kramers–Moyal approximation) of a continuous time (discrete state space)
Markov chain with jump intensities β and γ . Note that here X (t) models frac-
tions of the population size N , which means that the drift term in (4) is replaced by
β ·x ·(1−x)−γ x . Different approaches for diffusion approximation can be found
e.g. in Gardiner (2009, Chapter 11). See also further applications to epidemiology
in Fuchs (2013), Keeling and Grenfell (1999) and Bjornstad et al. (2002).

2. External parameter noise, σ(x) = σ · x(N − x). While cases (1) and (2) assume
that the number of infected individuals is subject to random fluctuations, the
basic assumption here is that the strength of infection of an—at first glance—
deterministic epidemiological model is disturbed by random noise due to external,
unpredictable forces. For possible underlying mechanisms see e.g. Abad et al.
(1994), Albina (1997) and Dexter (2003).

3. Heterogeneous parameter noise, σ(x) = β(x)
√

x(N − x). This approach also
assumes noisy parameters. Different to case (3), The noise comes fromfluctuations
in individual behaviour. See Keeling and Rohani (2008).

In this paper we analyze two modifications of Eq. (4): The first variant develops
further a recent discussion on stochastic SIS models with external parameter noise
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(case 3. above) and saturated incidence. Saturated incidence slightly generalizes the
pure SIS-setup, but still one can argue that the resulting process fits into the SIS-
framework. The second variant is the setup (4) with scaled additive noise, i.e. case 2.
above. The main qualitative difference between these specification is the existence of
a (nontrivial) stationary distribution (under some condition) in the first case and the
absence of a stationary distribution in the second case.

Gray et al. (2011) analyze a stochastic SISmodel with external parameter noise and
use the specification σ(X (t)) = σ · (N − X (t))X (t). Based on stochastic calculus,
they prove necessary conditions for exponential extinction and on the other hand for
the existence of a stationary solution. Chen and Kang (2014) generalize the setup by
introducing saturated incidence to the stochastic model: the linear force of infection is
replaced by the nonlinear term β X/(1+h X), a specification introduced in a determin-
istic context by Capasso and Serio (1978) in order to model a decrease in the force of
infection (e.g. by more cautious behaviour) if the number of infected individuals goes
up. Chen et al. give necessary conditions for exponential extinction and for persistence
in the mean. Furthermore, they prove the existence of a unique stationary distribution
under certain conditions. Similar analysis of the slightly more complicated case of a
stochastic SIRS model is given in Lahrouz et al. (2015). It also should be mentioned
that in similar manner Lin et al. (2014) prove existence and uniqueness of a stationary
solution for a SIS model with vaccination, which is more complex than the simple SIS
model because of the additional class of vaccinated individuals.

While the purely probabilistic methods used by Gray et al. (2011) and Chen and
Kang (2014) are interesting on their own, the present paper aims at a different approach
and uses Fokker–Planck (or Kolmogorov) equations and their properties for analyzing
the processes and their asymptotic behaviour. In particular, Fokker–Planck (or Kol-
mogorov) equations describe the (transition) density function of a Markov process
X (t) at any time t . They also can be used to derive and analyze stationary distribu-
tions. Unfortunately, Gray et al. (2011) do not even mention the paper Roberts and
Saha (1999), which derives the stationary distribution of a slight generalization of
the Gray model directly from the Fokker–Planck equation and exhaustively analyzes
the different cases of stationary density and extinction. Lin et al. (2014) mention the
Fokker–Planck equation, but make no attempt to use it beyond the mere proof of
existence of a stationary distribution.

We investigate themoregeneralmodelwith saturated incidencewhichwasproposed
in Chen and Kang (2014). Compared to Gray et al. (2011) and Chen and Kang (2014)
the present paper simplifies the argumentation related to the existence and uniqueness
of stationary solutions. Moreover, we calculate the stationary distributions in closed
form. Compared to Roberts and Saha (1999) we analyze the more general model with
saturated incidence and improve the argumentation on existence and uniqueness. In
particular, the effects of boundaries and the possibility of additional weak solutions
is taken into account. Finally, this paper not only analyzes stationary distributions but
also treats exhaustively the limiting behaviour of the process, i.e. theweak convergence
to one of the stationary distributions, depending on the parameter values.

The second case, a diffusion type SIS model with scaled additive noise, approx-
imates a continuous time Markov chain model with discrete state space (number of
infected), which in some sense can be considered as “the” basic SIS model. Impor-
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tant analysis on the discrete state space model has been done in e.g. Barbour (1976),
Kryscio and Lefévre (1989) and the monograph Nasell (2011). There is no nontriv-
ial stationary distribution in the discrete model, so questions about extinction times
and quasi-stationary distributions move to the front. It turns out that SIS models with
scaled additive noise inherit this property from the discrete model. In the present paper
we therefore analyze basic properties of this process, in particular quasi-stationarity
and the related extinction times for the diffusion approximation.

Finally, we analyze (optimal) decision making within the framework of this paper.
The properties of stationary or quasi-stationary distributions can be used to influence
the process parameters β, γ, σ in a favorable (maybe even optimal) way. Our main
results will answer the questions of how to set the parameter values in order to achieve
extinction of the disease. In a separate section we also analyze a decision maker
who is able to influence the level of treatment intensity (recovery rate γ ) and who
aims at minimizing the long term expected average costs for our first model and at
minimizing the long term expected costs from the quasi stationary distribution for our
second model.

Structure

The remaining paper is structured as follows: In Sect. 2 the stochastic SIS model with
saturated incidence it analyzed. In particular we give a deep analysis of the related
stationary (limiting) distributions. In Sect. 3 we apply the Fokker–Planck approach
to the Kramers–Moyal diffusion approximation of the original stochastic SIS model
with discrete state space and analyze the related times to absorption and possible
quasi stationary distributions. Section 4 develops the decision problem of choosing
the optimal level of treatment intensity. The paper is concluded by Sect. 5.

2 A stochastic SIS-model with external parameter noise and saturated
incidence

The stochastic SIS model with saturated incidence by Chen and Kang (2014) can be
formulated using the stochastic differential equation

d X (t) =
(

β
X (t) (N − X (t))

1 + h X (t)
− γ X (t)

)
dt + σ

X (t) (N − X (t))

1 + h X (t)
dW (t) (5)

Clearly the model in Gray et al. (2011) is a special case with h = 0.
Compared to the deterministic model (2), the purely deterministic term βdt in (2) is

formally replaced by the stochastic term βdt +σdW (t). As discussed in the introduc-
tion (case 3. in the introduction), external parameter noise), this models fluctuations
of the parameter β, i.e. uncertainty related to contagion, whereas the length of the
recovery period is still assumed to be deterministic.

We assume that the process X starts within the interval (0, N ). Equation (5) holds
almost surely for any starting value and can be used to describe the process conditional
on starting points X (0) = x0 ∈ (0, N ).
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Because often the starting value X (0) cannot be observed in reality, throughout this
paper we consider X (0) as a random variable with probability density p0(x). The case
of an observable starting value still can be treated as the special case p0(x) = δ(x −x0)
(the point mass at x = x0), where δ denotes the Dirac delta function. In any case we
assume that the process starts in the interval (0, N ], which means that p0(·) equals
zero outside this region.

The nonlinear force of infection used in (5) is known as “saturated incidence” and
was introduced into the epidemiological discussion by Capasso and Serio (1978). In
this way it is possible to model a decline of the strength of infection β/(1 + h X (t))
when the number of infected increases. Such an effect might be caused by more
cautious behaviour and disease control, when the number of infected increases. For
X (t) near zero the force of infection tends to β, whereas for X (t) near N the strength
of infection tends to β/(1 + hN ), which is smaller than β, given that h > 0.

Kolmogorov-forward equation

Denoting the density of any random variable X (t) (number of infected individuals at
time t) by p(x, t), the related Kolmogorov forward, or Fokker–Planck equation (see
e.g. Fleming and Rishel 1975, Theorem IX 8.1), which describes the evolution of the
density p(x, t) over time, is given by

∂p(x, t)

∂t
= − ∂

∂x

[(
β

x (N − x)

1 + hx
− γ x

)
p(x, t)

]
+ 1

2
σ 2 ∂2

∂x2

[
x2 (N − x)2

(1 + hx)2
p(x, t)

]

p(x, 0) = p0(x), (6)

where p0 again denotes the (estimated) initial density of the process. If X (0) = x0 is
known with certainty, the initial condition reduces to p0(x) = δ(x − x0).

We use the notation

A(x) = β
x (N − x)

1 + hx
− γ x

and

B(x) = σ 2 x2 (N − x)2

(1 + hx)2
.

These functions are continuous (therefore alsomeasurable) andboundedon the interval
[0, N ].

The diffusion term B(x) equals zero at two points, x = 0 and x = N . Because
the process starts within the interval (0, N ), we have to consider the related boundary
conditions. At both boundaries the derivative of B equals zero, so there are prescribed
boundaries: at x = N the drift is negative, A(N ) = −γ N , hence there is an entrance
boundarywhich is never reached.On the other hand, at x = 0wehave A(x) = 0,which
indicates a natural boundary (see e.g. Gardiner 2009, p. 119). In consequence, x = 0
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Fig. 1 First line—Stochastic SIS model with saturated incidence with N = 100, β = 0.013, γ = 1, σ =
0.06, h = 0.05—simulated paths (a) and contour plot (b) of the function p(x, t). Second line—Stochastic
SIS model with saturated incidence with N = 100, β = 0.013, γ = 1, σ = 0.005, h = 0.05—simulated
paths and contour plot of the function p(x, t)

is absorbing but is also never reached. Altogether, by continuity of the sample paths,
any process X (t) starting in (0, N )will stay within this interval forever. Consequently,
because on [0, N ] all parameter functions of the process are Lipschitz continuous and
bounded, there exists a unique strong solution of SDE (5) on this interval (see e.g.
Fleming and Rishel 1975, Theorem V 4.1).

In order to solve the Fokker–Planck equation (6), one has to account for the nature of
the boundary points. In particular, the forwardFokker–Planck equationwith prescribed
boundary conditions requires the additional condition

A(N )p(N , t) − 1

2

∂

∂x
[B(N )p(N , t)] = 0, (7)

(reflecting boundary) at x = N in order to have a unique solution. At zero, no boundary
condition is needed [see Feller (1952) and e.g. the synopsis in Appendix A of Cacio
et al. (2012)].

Figure 1 shows two instances of the process X (t) and the related density function
p(x, t) over time. Parts (a), (c) respectively show two simulated trajectories of the
respective processes, while (b), (d) are contour plots of the time dependent density
function p(x, t). The contour lines depict combinations of x and t with equal density

123



Stochastic contagion models without immunity: their long… 403

p(x, t). Regions with higher density are depicted in darker nuances. The density at
time zero is assumed as a uniform distribution on [1, 10].

While the case N = 100, β = 0.013, γ = 1, σ = 0.06, h = 0.05 shows fast
extinction of the disease, reducing the volatility to σ = 0.005 seemingly leads to
endemic behaviour of the system. We will see in the following that these conjectures
are indeed true.

Stationary distribution

Stationary distributions can be analyzed with the help of the Fokker–Planck equa-
tion. If p(x) = p(x, t) is the density of the stationary distribution, we must have
dp(x,t)

dt = 0. Plugging this into the Fokker–Planck equation (6), we see that the sta-
tionary distribution is a solution of the equation

∂

∂x
[A(x)ps(x)] = 1

2

∂2

∂x2
[B(x)ps(x)] .

This means that the probability flux

J (x, t) = A(x)p(x, t) − 1

2

∂

∂x
[B(x)p(x, t)]

must be constant over x , if p(x, t) = ps(x). Because the boundaries at N and zero are
reflecting, respectively natural, no probabilitymass is lost at any time (i.e. J (x, t) = 0),
so the stationary density ps(·) fulfills

A(x)ps(x) − 1

2

∂

∂x
[B(x)ps(x)] = 0. (8)

Fact 1 Classical, i.e. C2((0, N )), solutions of (8) have the form

pC
s (x) = C · (1 + hx)2e

− 2γ (1+hN )2

Nσ2(N−x) (N − x)
2·

(
1− (hN+1)(N (β+hγ )−γ )

N2σ2

)
x
2·

(
Nβ−γ

N2σ2
−1

)
(9)

with some C > 0. Moreover the equation has also a nontrivial solution on [0,N],
namely the weak solution pW (x) = δ(x), where δ denotes the Dirac delta function.
This is the point mass at zero (“extinction”).

Finally, all linear combinations of pC
s and δ are solutions of (8).

Proof The C2 solution can be checked by plugging (9) into the equation. In order to
see that δ(x) is a weak solution, note that

∫ N

0
A(x)δ(x)ϕ(x)dx − 1

2

∫ N

0
B(x)δ(x)

∂ϕ(x)

∂x
dx = A(0)ϕ(0) − 1

2
B(0)

∂ϕ(0)

∂x
= 0

for any test function ϕ with compact support on (0, N ). Because J acts as a linear
operator on p, all linear combinations of pC

s and δ are solutions of (8). 	
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The Dirac delta function may be interpreted as a generalized density of a random
variable concentrated at x = 0 with probability one and therefore qualifies as a sta-
tionary density on [0, N ]. For the C2 solutions (9) the situation is more complicated.
Choosing a positive constant C ensures nonnegativity of pC

s (x). In order to ensure
that pC

s (·) is a density, C has to be chosen such that

∫ N

0
pC

s (x)dx = 1.

If this is possible, we define ps(x) = pC
s (x). In this case it makes sense to extend

the density to the whole set R by extending it as zero outside D. Note that because
of limx↑N ps(x) = 0, the extension is continuous at x = N . This also ensures that
boundary condition (7) is fulfilled.

These facts imply that either (if ps is not defined) the set I of stationary densities
is given by δ or (if ps is defined) by the set of convex combinations of δ and ps .
Moreover, δ and ps (if defined) are extremals of the setI (i.e., they can not bewritten as
combinations of other invariant measures) and hence the related probability measures
are ergodic invariant measures2, compare Kallenberg (2002, Theorem 10.26).

In the following we will characterize the cases when ps exists and analyze the
question of weak convergence to a stationary distribution.

Asymptotic behavior: convergence to stationary densities and extinction

We can now state a condition for the existence of a nontrivial stationary density, i.e.
an “endemic equilibrium”.

Proposition 1 pC
s (x) in (9) is integrable (i.e. there exists a C such that ps(x) =

pC
s (x)) is a density) if and only if the modified basic reproduction number R1 fulfills3

R1 := R0 − 1

2

N 2σ 2

γ
> 1, (10)

with R0 as defined in (3).

Proof This can be seen from the fact that (10) is equivalent tom = 2
(
1 − Nβ−γ

N2σ 2

)
< 1,

which implies finiteness of the integral
∫ N
0

1
xm dx and therefore—by the limit compar-

ison test—finiteness of
∫ N
0 pC

s (x)dx . With C =
(∫ N

0 pC
s (x)dx

)−1
we get that ps(x)

is a density. 	


2 Recall that a measure P is called ergodic if P(A) ∈ {0, 1} for every measurable set A which is invariant
under the system dynamics. In our case the invariant sets are given by {0} and (0, N ).

3 Note that (10) is reduced to the simpler R1 = β̂− 1
2 σ̂2

γ , if β is defined frequency dependent with parameter

β̂ (compare footnote 1) and σ = σ̂ /N .
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Observe that for a fixed σ 2 the basic reproduction number R0 (which does not
depend on σ 2) must be higher in order to achieve a stationary density than it has
to be in the deterministic model to achieve an endemic equilibrium. Also note that
the critical inequality (10) does not depend on the saturation parameter h. Hence
models with (h > 0) and without saturation (h = 0) show qualitatively the same
asymptotic behaviour, although the exact form of the stationary density (9) depends
on the saturation parameter h.

If (10) holds, the stationary density ps(x) converges to zero when x goes to N as
pointed out above. However, varying behaviour is possible at x = 0, depending on
the exact values of the parameters.

Proposition 2 If

R2 := R0 − N 2σ 2

γ
≥ 1, (11)

then there is a stationary density ps(x) and we have

lim
x→0+ ps(x) =

⎧⎨
⎩
0 if R0 − N2σ 2

γ
> 1

C · e− 2(1+hN )2
R−1 N

2·
(
1− (hN+1)(N (β+hγ )−γ )

N2σ2

)
if R0 − N2σ 2

γ
= 1.

Proof Condition (11) implies (10), the condition for a density ps(x). With D =
βN−γ

N2σ 2 − 1 ≥ 0 that x2D = 1 for x > 0 and D = 0, and limx−>0+ x2D = 0 if D > 0.
This gives the two cases in (12). 	


In the first case the (extended) density is continuous at zero, in the second case it
converges to a finite value from the right. If (11) is violated, we have limx→0 ps(x) =
+∞ but ps(x) is still integrable.

Finally, if (10) is violated, no classical solution exists for the flux-equation (8),
because then (9) is not integrable between zero and N . Still there is the weak solution
δ(x), which represents the discrete distribution concentrated almost surely at x = 0,
i.e. complete extinction of the disease.

While we have identified the possible stationary solutions, the question remains
whether the densities p(x, s) converge to one of the densities ps(x) or δ(x) if t goes
to infinity. First, observe that the considered model fulfills the conditions of Theorem
2.1 in Zhang and Chen (2013) on the open interval D = (0, N ). In particular D is an
irreducible set of recurrent states. Therefore there exists a unique limiting stationary
distribution.

This is true for any parameter constellation. However, a decision maker would like
to knowmore. In particular it would be important to knowwhether there are parameter
constellations that lead to extinction of the disease (which is a stationary case as shown
above) in the long run.

The following theorem gives the answer that the densities p(·, t) converge (depend-
ing on the exact parameter values) to one of the two ergodic invariant cases δ

(extinction) or ps (endemic distribution). Moreover, in order to achieve asymptotic
extinction of the disease, the transmission coefficient β, the recovery rate γ and the
volatility parameter σ have to be set such that the modified basic reproduction num-
ber R1—see (10)—becomes smaller or equal to one. This holds independently of
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the starting distribution. In practice this can be achieved by preventive activities (β),
e.g. education and vaccination, and by influencing the recovery process (γ ), e.g. by
increasing the efficiency of treatment. Usually it will not be easy to influence the uncer-
tainty in parameter β, modelled by the volatility parameter σ . Finally, the saturation
parameter h does not play a role in the basic criterion for extinction.

Theorem 1 If the relation
R1 > 1, (12)

(the condition of Proposition 1) holds, the density p(x, t) converges to the stationary
density ps(x) as t goes to infinity,

(A) lim
t→∞ p(x, t) = ps(x).

If (12) is violated, then

(B) lim
t→∞ p(x, t) = δ(x).

Proof If (10) holds then the classical solution ps(x) exists. Moreover, any classical
solution of the Fokker Planck equation (6)—in fact the density p(x, t)—is defined on
(0, N ) and can be written (see e.g. Gardiner 2009, 5.4.1 and 5.4.2) as

p(x, t) =
∞∑

i=0

Hi p̄i (x)e−λi t , (13)

where the λi and p̄i (z) are the eigenvalues and the related eigenfunctions of the
eigenvalue equations

− ∂

∂x
[A(x)pi (x)] + 1

2

∂2

∂x2
[B(x)pi (x)] = −λi pi (x). (14)

The coefficients Hi are given by

Hi =
∫ N

0
q̄i (x)p0(x) dx

and the functions q̄i are solutions of the dual eigenvalue equations

A(x)
∂

∂x
qi (x) + 1

2
B(x)

∂2

∂x2
qi (x) = −λi qi (x). (15)

Note that (see e.g. Risken 1989) the sets of eigenvalues coincide for (14) and (15). The
eigenvalues are nonnegative real and can be assumed to be sorted in ascending order
in the following. The stationary distribution ps(x) is the (normalized) eigenfunction
p̄0 related to the eigenvalue λ0 = 0. Moreover, q̄0 = 1 and therefore H0 = 1, see e.g.
Gardiner (2009, p. 125).
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Fig. 2 Three stationary densities (number of infected at the horizontal axis) with N = 100, β =
0.013, γ = 1, h = 0.05, but different volatility parameter σ

Putting these facts together, it can be seen that

lim
t→∞ p(z, t) = ps(x) + lim

t→∞

∞∑
i=1

Hi p̄i (x)e−λi t = ps(x).

If (10) is violated, then (13) still holds, but there is no eigenvalue zero. This means
that limt→∞ p(z, t) = 0 for any x ∈ (0, N ): there is no stationary distribution on
(0, N ). The probability mass therefore must be concentrated in the points x = 0 and
x = N . However, it is not possible that in the limit there is a positive probability
at x = N , because this is an entrance boundary. Therefore, in the limit the whole
probability mass is concentrated at x = 0, i.e. the delta function δ(x) then remains as
the only limiting stationary (generalized) density on [0, N ]. 	

Remark 1 Because of (13), convergence to the disease free equilibrium is exponential
with rate λ1 > 0, the smalles positive eigenvalue of (14).

Altogether we can distinguish four cases: If (11) holds, a nontrivial stationary
density exists. If x goes to zero this density either converges to zero, goes to a positive
finite value, or to infinity. Which case is relevant, depends on the two cases in (12).
If (11) is not fulfilled, but still (10) holds, a nontrivial stationary density exists, but
it is unbounded at x = 0. Finally, if (10) is violated, no normalizing constant exists,
(9) is not related to a stationary density and the stationary distribution is given by the
disease free equilibrium.

Figure 2 shows the three cases of (classic) stationary density functions by example.
The parameters N , β, γ, h are fixed at the same values as before. The first case, σ =
0.005, in fact is the second case of Fig. 1 and fulfills (11), so we actually have a
stationary density for this example. The second case, σ ≈ 0.00548, which still leads
to integrability, fulfills (11) with equality, see also the second case in (12). The final
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case, σ = 0.007 violates (11) but still fulfills the critical integrability condition (10).
Clearly the first case of Fig. 1 violates the critical condition, hence no normalizable
density exists.

The behavior of the density ps(x) at x = 0 can be analyzed further. To this end,
observe

∂ps(x)

∂x
= −2e

− 2γ
Nσ2(N−x) (N − x)

2γ−2βN
N2σ2

−4
x

2βN−2γ
N2σ2

−3 (
γ + (N − x)

(
σ 2(N − 2x) − β

))

σ 2 .

(16)
Consider now the limit x ↓ 0. The last factor in (16) stays negative in the case (A) of
(12), it is positive if (11) is violated (but (10) still holds) and equals zero in the case

(B) of (12). Moreover, x
2βN−2γ

N2σ2
−3 goes to zero if R0 − 3

2
N2σ 2

γ
> 1, goes to infinity

if R0 − 3
2

N2σ 2

γ
< 1 and goes to one if R0 − 3

2
N2σ 2

γ
= 1. The other factors in (16)

converge to positive (finite) numbers. Together this means that in the first case of (12)
the slope of ps at zero is zero, +∞ or a finite positive value, depending on the value
of R0 − 3

2
N2σ 2

γ
. If a density ps(x) exists but (11) is violated, then the slope is −∞

and in in the second case of (12) the slope is zero. Note also that in view of (16) (and
depending on the concrete values of the parameters β, γ and σ ) the density ps(x)

may possess up to two peaks.

3 A stochastic model with scaled additive noise

Consider now the stochastic differential equation

d Z(t) = [
βZ(t) (1 − Z(t)) − γ Z(t)

]
dt +

√
βZ(t) (1 − Z(t)) + γ Z(t)√

N
dW (t)

Z(0) = x0 ∈ (0, N ], (17)

with the related Fokker–Planck equation

∂p(z, t)

∂t
= − ∂

∂z

[
(βz (1 − z) − γ z) p(z, t)

] + 1

2N

∂2

∂z2
[
(βz (1 − z) + γ z) p(z, t)

]

p(z, 0) = p0(z). (18)

This model can be used to describe the dynamics of the fraction Z(t) = X (t)
N of

infected individuals in a population of size N .
This is a model with scaled additive noise (case 2. in the classification at page 4).

While the stochastic model in the previous section can be derived from a deterministic
model by introducing randomness in one of the parameters, (17) does not need such
external effects and can be derived from a genuinely stochastic model with the same
parameters β, γ . In fact, consider a continuous timeMarkov chain, where the number
of infected individuals X (t) takes values in {0, 1, . . . , N }, the process X (t) has right
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continuous sample paths and a probability measure P is related such that

P
[
Xt+h = xt + 1 | Xt = xt

] = β

N
xt (N − xt ) h + o(h),

P
[
Xt+h = xt − 1 | Xt = xt

] = γ xt h + o(h)

P
[
Xt+h = xt | Xt = xt

] = 1 − β

N
xt (N − xt ) h − γ xt h + o(h) (19)

and P
[
Xt+h = xt + k | Xt = xt

] = o(h) in all other cases k /∈ {0, 1,−1}.
Starting with (19) and going to fractions Z instead of absolute numbers X , the

Fokker–Planck equation (18) can be derived as the Kramers–Moyal expansion of the
Master equation related to the Markov chain (19). Finally is the SDE related to the
Fokker–Planck equation. See e.g. section 11.2 of Gardiner (2009) for the general
approach, or section 4.3 in Fuchs (2013), which also includes further examples from
epidemiology.

It should be noted that the continuous state space model (17) as an expansion of
the discrete state space model (19) works well only if the volatility parameter σ is not
too large. See e.g. Ovaskainen and Meerson (2010) on the Kramers–Moyal approach
and alternative expansions in ecological modelling.

In the following we use the notation

A(z) = βz (1 − z) − γ z

and

B(z) = βz (1 − z) + γ z

N
.

Looking at the drift term of (17), this is definitely a SIS model. However, now the
process Z(t) denotes the proportion of infected individuals in a population of size N ,
i.e. Z(t) = X (t)/N . We have B(z) = 0 at z = 0 and at z = 1 + γ /β. If p0(·) has its
support in [0, 1 + γ /β], then the process will stay in this interval at any time t ≥ 0.
Using the Yamada–Watanabe condition (Yamada and Watanabe (1971)) it is possible
to show that because A(·) is Lipschitz continuous and √

B(·) is Hölder continuous on
the interval [0, 1 + γ /β], solutions of (17) are pathwise unique (see e.g. Altay and
Schmock 2013, Corollary 2.19).

In order to use the Fokker–Planck equation (18) one has to combine it with the
boundary conditions p(0, t) = 0 (an absorbing state at x = 0). The second boundary
condition J (1 + γ /β) = 0 (a reflecting boundary at 1 + γ /β) is always true for (20)
and (20).

While the extension of the state space to the larger interval [0, 1 + γ /β] is an
unpleasant fact, it can be seen easily that for x > 1 − γ /β—which would be the
deterministic (i.e. for σ = 0) endemic equilibrium—the drift term A(z) is negative
and its magnitude increases with z, whereas the diffusion term

√
B(z) decreases to

zero, when z approaches 1 + γ /β.
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A nontrivial stationary distribution does not exist

Note that the Markov chain (19) has a finite state space and all states—with the excep-
tion of zero—are transient. Zero is the only absorbing state and it is reachable from
the other states. As a result, the stationary distribution of the Markov chain is trivial,
because irrespectively of the starting point the process finally is absorbed at zero. It
is possible to be absorbed at zero in finite time, which is a main distinction from the
stochastic model with saturated incidence (5) and also the simple deterministic model
(2). As wewill see, the approximating stochastic model (17), (18) keeps this important
property of the Markov chain (19), which is not true for some other approximation
methods like e.g. the Van Kampen system size expansion.

There exists no stationary density on the interval (0, 1 + γ /β). In fact, using (20),
(20), the classical solution of the flux equation (8) is given by

ps(z) = C · Ne2N z(β + γ − βz)
4Nγ

β
−1

z
. (20)

However, (20) is not integrable on (0, 1 + γ /β) because of the factor 1/z and hence C
cannot be chosen to normalize ps(z) as a density. On the other hand the flux equation
still has theweak solution ps(z) = δ(z), as (10) also holds when A(·), B(·) are defined
by (20) and (20).

Again, δ(x) fulfills the Fokker–Planck equation and is therefore the only (general-
ized) stationary density of (17).

Quasi-stationary distributions and the Yaglom-Limit

In the following we denote by G(t) = ∫ 1+γ /β

0 p(z, t) dz for t > 0 the probability of
being not absorbed at the disease free state x = 0 up to time t , i.e. the probability that
X (t) > 0. The probability distribution of Z(t) can be described by the generalized
density

P(z, t) = p(z, t) + (1 − G(t))δ(z).

Figure 3 shows three examples for the development of p(x, t) over time. In the first
case, (a) and (b), extinction of the disease happens very slowly, whereas the cases (c)
and (d) show quick extinction.

The qualitative differences in long-term behaviour can be analyzed further. An
important question is the existence of a quasi-stationary density p̄(·) : (0, 1+γ /β) →
R

+
0 , i.e. a time independent density for the conditional distribution of Z(t) given that

extinction has not occurred at time t , i.e.

p̄(z) = p(z, t)

G(t)
. (21)

Closely linked is the question, whether such a quasi-stationary distribution can be
obtained as a Yaglom-limit, i.e. that regardless of the start distribution p0 we have
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Fig. 3 Contour plots of the function p(x, t) for different models. First line: Markov chain approximation
with β = 1.1, γ = 0.8 and N = 100. Plot (a) seems to show the building-up of a stationary distribution.
Over a longer time horizon, (b) demonstrates that probability mass is lost over time, and there is no
stationary distribution. In the second line (c) depicts the development for the model with β = 0.8, γ = 1.1
and N = 100, and (d) shows the model β = γ = 0.9, N = 100. Both cases show quick extinction of the
disease

p̄(z) = lim
t→∞

p(z, t)

G(t)
. (22)

See e.g. Meleard (2012) and Collet et al. (2012) for these and further related notions.
Using (21), we substitute p(x, t) = p̄(x)G(t) into the Fokker–Planck equation

(18) and get (after dividing by G(t))

p̄(z)
∂G(t)

G(t)∂t
= − ∂

∂z

[
(βz (1 − z) − γ z) p̄(z)

] + 1

2N

∂2

∂z2
[
(βz (1 − z) + γ z) p̄(z)

]

(23)
for potential quasi-stationary distributions.

Clearly the trivial solution p̄(z) = δ(z) is a solution of (23). Nontrivial solution
only may exist for constant

∂G(t)

G(t)∂t
=: −λ. (24)
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This means that nontrivial quasi-stationary densities must be eigenfunctions of the
operator A defined by

A f (z) = − ∂

∂z

[
(βz (1 − z) − γ z) f̄ (z)

] + 1

2N

∂2

∂z2
[
(βz (1 − z) + γ z) f̄ (z)

]
,

i.e. they fulfil the eigenvalue equation

− λ p̄(z) = − ∂

∂z

[
(βz (1 − z) − γ z) p̄(z)

] + 1

2N

∂2

∂z2
[
(βz (1 − z) + γ z) p̄(z)

]

(25)
with boundary condition p̄(0) = 0 to ensure absorption at zero and p̄(1 + γ /β) = 0
which follows from the zero-flux condition, ensuring a reflecting boundary at 1+γ /β.

Therefore, any nonnegative eigenfunction p̄i ofA with related (real) eigenvalue λi

that can be normalized is a candidate for a quasi-stationary density. Moreover, from
(24) we see that the only survival probability Gi consistent with λi and p̄i is given by

Gi (t) = e−λi t . (26)

3.1 The Yaglom-limit

The question remains, what happens, when t goes to infinity. Recall that the eigen-
values λi are nonnegative (see e.g. Risken 1989) and in fact positive: there is no
eigenvalue λ = 0 because the related eigenfunction is (20), which can not be normal-
ized. In the following we consider the eigenvalues λi as ordered, such that λ1 is the
smallest eigenvalue. The following proposition describes the asymptotic behavior of
the process.

Proposition 3 Consider the SIS model (18). The density function p(x, t) converges
to the Dirac delta function, i.e.

lim
t→∞ p(x, t) = δ(x). (27)

If the—normalized—eigenfunction p̄1 is a density then it is the Yaglom-limit of the
process Z(t), i.e. (22) holds. Moreover, λ1 is the rate at which the survival probability
G(t) = e−λ1t decreases exponentially.

Proof Define a function q such that

p(z, t) = p̄1(z)q(z, t), (28)

which (after substitution into the Fokker–Planck equation (18)) satisfies the backward
equation

∂q(z, t)

∂t
= A(z)

∂

∂z
q(z, t) + 1

2N
B(z)

∂2

∂z2
q(z, t).
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We are interested in solutions of the form

q(z, t) = q̄i (z)e
−λi , (29)

which satisfy the eigenvalue equation

− λi q̄i = A(z)
∂

∂z
q̄i (z) + 1

2N
B(z)

∂2

∂z2
q̄i (z). (30)

Using (21), (26), (28) and (29) we get

p̄i (z) = p̄1(z)q̄i (z). (31)

Based on (25) and (30) it can be shown that p̄ and q̄ form a bi-orthogonal system,
in particular ∫ 1+γ /β

0
p̄i (z)q̄ j (z) = δi j . (32)

Using this fact, we can write any solution of the Fokker–Planck equation (18) as a
linear combination of the eigenfunctions, i.e.

p(z, t) = p̄1(z)e
−λ1t +

∞∑
i=2

Hi p̄i (z)e
−λi t , (33)

where the coefficients Hi depend on the initial condition in the following way:

Ai =
∫ 1+γ /β

0
q̄i (z)p1(z) dz. (34)

Note that because of (31) for i = 1 we have q̄i (z) = 1 and (34) reduces to H1 = 1.
From (33) it can be seen that the smallest eigenvalue allows to estimate the speed of
convergence to the disease free state.

Recall now that the eigenvalues are ranked and positive. From (33) we can conclude
limt→∞ p(x, t) = 0 for z ∈ (0, 1). Again, x = 0 is the only point left, where the
probability mass is concentrated in the limit, i.e. (27) must hold.

Moreover, because of

lim
t→∞

p(z, t)

e−λ1
= lim

t→∞ p̂1(z) +
∞∑

i=2

Ai p̂i (z)e
(−λi +λ1)t = p̂1(z),

we can conclude that the quasi stationary density p̂1(z) in fact is the Yaglom-limit
of the process and e−λ1t is the related survival function. Note that no other function
e−λi t , i �= 1 can be used as survival function even if the related normalized function
p̄i would qualify as a quasi stationary density, because the related limit would be
infinity. 	
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Fig. 4 Quasi-stationary density (and Yaglom-limit) of the process with β = 1.1, γ = 0.8 and N = 100,
see also the first line of Fig. 3. The related eigenvalue is given by λ1 ≈ 0.00293006

Using numerical methods (see e.g. Ishikawa 2007) we calculated eigenvalues and
eigenfunctions for the three processes shown in Fig. 3. Only for the process with
β = 1.1, γ = 0.8 and N = 100 (first line of Fig. 3) the smallest eigenvalue has
an eigenfunction that can be normalized to a density p̄1. So in this case the quasi
stationary density p̄1, which is shown in Fig. 4, is also the Yaglom-limit. The value
of the smallest eigenvalue, λ1 ≈ 0.00293006 shows slow decay to the disease free
distribution.

The smallest eigenvalue for the models with β = 0.8, γ = 1.1, N = 100 and
β = γ = 0.9, N = 100 are λ1 ≈ 0.929041, respectively λ1 ≈ 0.100599. Hence in
both cases we have quick decay to the disease free distribution.

3.2 Time until absorption

In order to complement the analysis of quasi-stationarity, we analyze the expected
time until absorption at zero (mean exit time, mean first passage times) when starting
at x . If the random variable τ denotes the first time at which the process hits zero,
i.e. τ = inf {t : Z(t) = 0} then the expected absorption time is given by T (z) =
E [τ |X (0) = z] and the expectation T (z) fulfills the differential equation [see e.g.
Gardiner (2009) section 5.5.2, for another application to an epidemiological model
see van Herwaarden (1997)]

A(z)
∂T (z)

∂z
+ 1

2
B(z)

∂2T (z)

∂z2
+ 1 = 0

with boundary conditions ∂T
∂z (1 + γ /β) = 0 and T (0) = 0. With

ψ(z) = exp

[
2

∫ z

0
A(y)/B(y) dy

]
= e2N z

(
β · (1 − z) + γ

β + γ

) 4γ N
β
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Fig. 5 Expected time until absorption at zero as a function of the starting value. a Slow extinction of the
disease: model β = 1.1, γ = 0.8 and N = 100. b Quick extinction: The model β = 0.8, γ = 1.1 and N
= 100

the solution can be written as

T (z) = 2
∫ z

0

1

ψ(y)

∫ 1+γ /β

y

ψ(x)

B(x)
dx dy.

Figure 5 shows the expected time to absorption at zero as a function of the starting
value for two of the models, already depicted in Fig. 3.

4 Taking decisions on treatment intensity

In the following we assume that a decision maker is able to take a decision on the size
of the recovery rate γ . This can be e.g. related to investment into treatment capacity
or treatment efficiency. Increasing the recovery rate leads to costs, while on the other
hand infected individuals also create costs like e.g. the costs of lost working time. The
aim is then to find an optimal size of the recovery rate in terms of the related costs.

We assume that the decision has to be taken “here and now” at the beginning of
the (infinite) planning horizon, and that it cannot be reconsidered later. Moreover we
neglect the effect of interest yields (or alternatively we may assume that the transition
to the stationary distribution is quick). For a stochastic control model related to the
dynamics (5) (with h = 0) over a finite time horizon with discounting see Grandits
et al. (2016).

We start with redefining the recovery rate as

γ = γ0 + u,

where γ0 is the “natural” recovery rate without additional measures, and u ≥ 0 denotes
the additional size of the treatment effect, chosen by the decision maker. It is assumed
that γ = γ0 fulfills condition (10), which means that we have a choice between
accepting some stationary distribution ps(x) and full extinction of the disease, when
choosing u. For fixed u we denote the process described by (5) by Xu(t) and the related
stationary density by ps(x; u).

In order to model costs and the objective function, we assume that increasing the
natural recovery rate by an additional amount of u results in costs K (Xu(t), u) at time
t .
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4.1 The model with external parameter noise and saturated incidence

When analyzing the model with saturated incidence (5), we look directly at the sta-
tionary distribution (9), respectively δ(x), depending on the parameter values. Clearly
this is a simplification, but also has the advantage that optimization can be done by
standard numerical methods. In particular we use the ergodicity of the process (see the
discussion after Fact 1) and aim at minimizing the (long run) expected average costs
per unit time E AC :

When (10) is fulfilled for nonnegative u, i.e.

0 ≤ u < Nβ − 1

2
N 2σ 2 − γ0,

then we can use the ergodicity properties of the process Xγ (t), which leads to

E AC(u) = E AC1(u) = lim
T →∞

1

T
E

[∫ T

0
K (Xu(t), u)

]
= Es [Xu]

=
∫ N

0
K (x, u) ps(x; u) dx . (35)

If (10) is violated, i.e. if

u ≥ Nβ − 1

2
N 2σ 2 − γ0

then we have

E AC(u) = E AC2(u) = lim
T →∞

1

T
E

[∫ T

0
K (Xu(t), u)

]

=
∫ N

0
K (x, u) δ(x) dx = K (0, u). (36)

Clearly the cost function K has to be chosen such that the expectation at the right
hand side of (35) is finite. This is the case for a reasonable class of of cost functions.

Proposition 4 Let (for any u ∈ I = [0, Nβ− 1
2 N 2σ 2−γ0]) the cost function K (x, u)

be continuous almost everywhere, monotonically increasing in x for x ∈ [0, N ] and
bounded on [0, N ]. Then we have

E[K (Xu, u)] =
∫ N

0
|K (x, u)| ps(x; u) dx < ∞,

Moreover, if Xu has stationary distribution ps(x; u) as defined in Proposition 1,
then all noncentral moments E

[
(Xu)k

]
, k ∈ N (and consequently also all central

moments) are finite.
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Proof Using monotonicity and boundedness we get

∫ N

0
|K (x, u)| ps(x) dx ≤ |K (N , u)| < ∞.

The functions K (x, u) = xk, k ∈ N fulfills the assumptions of the corollary, which
implies existence of moments. 	

In addition to the requirements of Proposition 4, it is reasonable to use functions that
are convex in u and x , although this does not guarantee convexity of the objective
function (in u which is an argument of the cost function but also a parameter of the
stationary density ps).

The disease becomes extincted already for u = Nβ − 1
2 N 2σ 2 − γ0 and any higher

value of u would just lead to extinction at higher expected average costs. Taking
this into account, one has to decide whether it is cheaper to accept some endemic
distribution of the disease or to erase it fully.

Taking into account the cases (35) and (36) and denoting

Γ =
{

u ∈ R : 0 ≤ u ≤ Nβ − 1

2
N 2σ 2 − γ0

}
.

the optimization problem (minimizing the expected average costs) can be written
as

min
u∈Γ

E AC(u). (37)

Three cases have to be compared for finding the minimizer: the lower bound u = 0,
the upper bound u = Nβ − 1

2 N 2σ 2 − γ0 and a possible inner solution 0 < u <

Nβ − 1
2 N 2σ 2 − γ0.

Unfortunately it is not possible to guarantee any nice properties like convexity for
problem (37). Moreover, an analytic treatment is not possible. The difficulties come
from the fact that there is no analytic solution known for the integrals of the stationary
distribution ps(x; u) defined in (9). In particular, even the normalizing constant C(u)

has to be calculated numerically for possible values of u. As will be shown in an
example below, the usual case comes down to a comparison between u = 0 and
u = Nβ − 1

2 N 2σ 2 − γ0.

4.2 A note on the model with scaled additive noise

No stationary distribution exists for the model (17) as pointed out above. Nevertheless,
the optimization approach described in the previous subsection can be extended in a
simple way in order to deal with this situation.

Assuming that the limiting quasi stationary distribution quickly dominates the
decomposition (33), which is in particular the case if the eigenvalue λ1 is sufficiently
small compared to the other eigenvalues, we focus on the analysis of the quasi sta-
tionary distribution instead of the stationary distribution.
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In such a situation we may neglect the second part, i.e. asymptotically we have

p(z, t) � p̄1(z)e
−λ1t .

The main part of expected costs then (again neglecting interest) can be written as

EC(u) =
∫ ∞

0

∫ N

0
K (x, u)p(x, t) dxdt =

∫ ∞

0

[∫ N

0
K (x, u) p̄1(x) dx

]
e−λ1(u)t dt

= EQ(u)0 [K (X, u)]

λ1(u)
,

where EQ(u) [K (X, u)] = ∫ ∞
0 K (x, u) p̄1(z) dt is the expectation of the quasi station-

ary distribution with density p̄1(z). The notation Q(u) emphasizes the fact that the
stationary density depends on u—in particular it involves a normalizing factor that
depends also on u.

Maximizing EC(u)with respect to the constraint u ≥ 0 is a fractional optimization
problem. Again, the exact properties (e.g. possible pseudoconcavity of the objectve)
of this problem is unknown.

4.3 A numerical example

For a numerical example we use the simple cost function

K (x, u) = c0u + c1xu + c2x, (38)

where c2 denotes cost per infected individual (e.g. costs for sickness leaves or the
value of lost labour), c0 is cost for an increase of the recovery rate (e.g. investment
costs for additional treatment capacity, depreciation) and c1 denotes treatment costs
per individual, time unit and level of recovery rate. Clearly, in a more refined model,
the relation between treatment intensity and the recovery rate could be modeled by a
nonlinear function.

This cost function is applied to the process with parameter values N = 100, β =
0.013, γ = 1, h = 0.05 and σ = 0.005, which was analyzed earlier, see Fig. 2. The
resulting expected average costs for two cost structures (c0 = 5, c1 = 0.5, c2 = 0.5
and c0 = 15, c1 = 0.5, c2 = 0.25) can be seen in Fig. 6. In this case the optimal
decisions are at the boundary of the feasible region: in the first case it is optimal to use
the full capacity of treatment and to extinct the disease. In the second case treatment
intensity is too expensive and it is optimal to stay at the natural level of recovery.
Empirically, this pattern seems to be valid also for other parameter values for the
process and the cost function (38).

5 Conclusions

We analyzed two kinds of stochastic SIS models in order to derive some of their
basic properties from the related Fokker–Planck equations. The first type of model
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Fig. 6 Expected average costs, depending on the additional recovery rate u, for the model N = 100, β =
0.013, γ = 1, h = 0.05, σ = 0.005 and two cost structures (see the legend)

was recently presented in Chen and Kang (2014): a model with saturated incidence,
augmented with random disturbances of the strength of infection β. It turns out that
under a suitable condition (10) on the risk adjusted basic reproduction number there
is a well behaved stationary density related to the process of infected individuals.
Besides the pure question of existence, it is possible to calculate the stationary density
explicitly. Moreover, the shape of the density, in particular its behaviour at zero, was
analyzed further. If the basic condition (10) is violated, the only possible (generalized)
density is given by the Dirac delta function at zero, which indicates that the process of
infected individuals converges (almost surely) to zero. Briefly worded, the stochastic
model here shows weak convergence to either a stochastic endemic equilibrium or to
extinction. In principle this resembles the two possible cases—endemic equilibrium
and extinction—for deterministic versions of the SIS model with saturated incidence.

The second type of model treated in this paper can be derived from a continuous
time Markov chain approach by applying the Kramers–Moyal approximation. No
stationary density except the Dirac delta function exists in this case. Convergence of
the process of infected to zero—extinction of the disease—happens almost surely and
for each time t > 0 there is a positive probability for extinction of the disease. This
behaviour is quite different from the case with extinction in the first model. In fact, the
stochastic diffusion approximation inherits this property from the underlying Markov
chain. Still it is possible to analyze quasi-stationary densities and the Yaglom-limit
and to calculate quantities like the expected time until extinction.

Finally, we analyzed the decision problem of choosing the optimal level of the
treatment intensity (recovery rate) and gave some numerical example.

Many open question remain for further research. The overall approach can be
applied to higher dimensional models with more than two relevant classes of indi-
viduals. Furthermore, several other approximation methods can be compared to the
Kramers–Moyal approximation used for the secondmodel in the present paper. Finally,
the optimization approach here was static so far. A genuinely dynamic extension of
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the treatment decision in terms of stochastic optimal control will definitely be an
interesting topic for further studies.
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