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1 Introduction

Credit risk analysis requires modeling of dependent defaults. A classical approach,
due to Merton (1974), employed a stochastic process to describe the (latent) value
of a firm. A default event here is triggered by breaching some specified threshold.
Termed as structural models, they treat credit risk correlation between two debtors
as the correlation between the respective stochastic processes determining values of
the firms. For example, within the CreditMetrics approach, see Gupton et al. (1997),
dependent defaults of several firms are modeled by using a multivariate Gaussian
distribution.

A more realistic and technically sophisticated setting for generating dependent
defaults, so-called reduced form models, allows the default probability to depend on
several economic factors. Some of them are latent while the others may be observ-
able. The total risk is typically decomposed into an idiosyncratic part and a common
component. The latter is often interpreted as a systemic factor. The relative strength of
the components and, consequently, correlations between assets are parameterized by
deterministic weights. Different types of copulae are used. A variety of distributions
have been considered. There are models formulated in discrete as well as in continu-
ous time. For particular examples, see among others Li (2000), Jarrow and Yu (2001),
Hull and White (2001), Bangia et al. (2002), Lando (2004), Hull and White (2004),
McNeil and Wendin (2007), Stefanescu et al. (2009), Choroś-Tomczyk et al. (2013).
Frey and McNeil (2003) analyze and classify the existing approaches to generating
dependent defaults.

Within the CreditMetrics approach, “where migration analysis is a corner stone,
that is, the study of changes in the credit quality of names through time” (see Gupton
et al. 1997, page iv), a (discrete-time) Markovian transition matrix is estimated. It
governs the evolution of a representative debtor through credit classes.

While credit risk models concentrate, typically, on dependent defaults, studies on
systemic risk attempt to analyze the events that precede a default. See Upper (2011)
for a comprehensive analysis of simulation methods in systemic risk analysis. In other
words, thewhole interdependentmigration process of the debtors has to be considered.

TheMarkovianproperty of the credit ratingmigrationprocess, its time-homogeneity
and the discrete-time setting have been criticized and several refinements of it have
been suggested. SeeAltman (1998), Bangia et al. (2002), Lando andSkødeberg (2002),
Frydman and Schuermann (2008), Korolkiewicz and Elliott (2008), Stefanescu et al.
(2009), Xing et al. (2012) among others. Conceptually, dependence of transition prob-
abilities upon macroeconomic factors has been introduced and the corresponding
models have been empirically tested. In technical terms, these refinements relay on
hiddenMarkov models and they employ a variety of estimation techniques. In order to
render models of the migration process more realistic, continuous time settings have
been introduced and estimated.

Taking a credit ratingMarkovian transition matrix as a marginal distribution, a joint
distribution of the whole pool of debtors can be obtained by a coupling scheme. This
possibility of introducing dependence among credit rating migrations of the debtors
constituting a portfolio is analyzed in Kaniovski and Pflug (2007) and in Wozabal and
Hochreiter (2012).
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In both cases, transition probabilities are modified according to binary unobserved
tendency variables, that can be interpreted in a context of business cycles. Every
migration is governed by an idiosyncratic term and a common component. Unlike in
the case of a reduced form model, the weights that determine the relative strength of
the components are random. A tendency variable affects the distribution of the corre-
sponding common component in the following way. For a credit class, conditional on
“favorable” realizations of the corresponding tendency variables, migrations towards
a better credit quality become more likely, whereas worsening of the credit quality
will be less probable.

In Kaniovski and Pflug (2007), the common component remains the same for all
debtors belonging to a credit class irrespective of their industry sectors. Wozabal
and Hochreiter (2012) introduced an alternative coupling scheme. It implies much
weaker dependence among the debtors. In their case, conditional on realizations of
the corresponding tendency variables, the common tendencies affecting a pool of
debtors characterized by a combination of a credit class and an industry sector are
identically distributed and independent.

In what follows next, the model by Kaniovski and Pflug (2007) is referred to as
Scheme 1, Index 2 is assigned to its modification by Wozabal and Hochreiter (2012)
and the coupling techniques introduced here is labeled by 3.

The distributions corresponding to these three coupling techniques are compared.
It is shown that variances of the number of defaults and correlations of credit events
are the largest for first scheme whereas they are the smallest for second one. Conse-
quently, the coupling scheme suggested here takes an intermediate position regarding
the known techniques.

While for one-year correlations of credit events there are explicit formulas, esti-
mating multi-year credit events’ correlations bootstrapping has to be used. In the latter
case, repeated Monte-Carlo runs of the model generate transition sample paths, that
are treated then by a standard statistical algorithm for sample correlation.

Using a Standard and Poor’s (S&P’s) data set, parameters of these coupling models
are estimated. There are two portfolios considered: with 5 andwith 12 industry sectors.
The debtors are classified into two non-default credit classes.

The maximum likelihood estimates are obtained by MATLAB optimization soft-
ware: Interior Point algorithm (IP) and Sequential Quadratic Programming (SQP)
method.

2 Coupling schemes

Consider a portfolio containing debtors that are non-homogeneous in their credit rat-
ings and industry sectors. Let there be M ≥ 2 non-default credit classes. Numbering
them in a descending order, we assign 1 to the most secure assets, while the next to
default credit class is indexed by M . Defaulted firms receive the index M + 1. There
are S ≥ 1 industry sectors. Following the CreditMetrics approach, see Gupton et al.
(1997), it is assumed that credit rating migrations are governed by an M × (M + 1)
Markovian transition matrix P with elements pi, j . That is, pi, j stands the probability
of a transition within one year, from i th credit rating to j th. Since M +1 is an absorb-
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ing state of the corresponding Markov chain, pM+1,i = I{i=M+1}. Here I{A} denotes
the indicator function of a statement A,

I{A} =
{
1 if A holds true,
0 if A is false.

The credit rating migrations occur at times t = 1, 2, . . .. Set Nk,i (t) for the number
of debtors from industry sector k in credit class i at time t . At the beginning there are
N (1) = ∑M

i=1
∑S

k=1 N
k,i (1) debtors in the portfolio.

The coupling techniques generate counts Nk,i (t), t > 1 such that:

• the evolutions of debtors through credit classes are dependent;
• the corresponding random process of credit rating transitions is time homogeneous
and every individual migration is governed by the same Markovian transition
matrix P .

Assign a number n = 1, 2, . . . ,N (1) to every debtor in the portfolio at time t = 1.
Set Xn(t) for the credit rating at time t ≥ 1 of the firm numbered by n. Then Xn(t) is
a discrete-time Markov chain with M + 1 states. Its transient states are 1, 2, . . . , M .

Denote by s(n) the industry sector of firm n. The rating randomly changes in time,
becoming Xn(2) at time t = 2, while the assignment to the sector s(n) remains
constant. The evolution of the whole portfolio is captured by a multi-dimensional ran-
dom process �X(t) = (X1(t), X2(t), . . . , XN (1)(t))whose components are identically
distributed and dependent. Let us look at a transition from time t = 1 to time t = 2.

First introduce independent random variables ξn, n = 1, 2, . . . ,N (1). Each of
them assumes values 1, 2, . . . , M + 1. The corresponding probabilities read:

P{ξn = j} = pXn(1), j .

Conceptually, ξn represents an idiosyncratic component of a move from Xn(1) to
Xn(2). Its impact is determined by a Bernoulli random variable δn according to the
formula:

Xn(2) = δnξn + (1 − δn)ηn .

Here ηn stands for a common component in the transition from Xn(1) to Xn(2). It intro-
duces a dependence mechanism among Xn(2). Random variables {ξn}, {ηn} and {δn}
are independent. Since all debtors are assumed to be governed by the sameMarkovian
transition matrix,

P{ηn = j} = pXn(1), j .

Random variables δn are independent in n and P{δn = 1} = qXn(1),s(n).
Denote by {0, 1}M the set of all possible vectors �χ = (χ1, . . . , χM ), where χi = 0

or 1. Introduce a random vector �� = (�1, . . . ,�M ) with values in {0, 1}M , termed
as a tendency vector. Denote by π(·) the distribution of ��, i.e.

P{ �� = �χ} = π( �χ)

for all �χ ∈ {0, 1}M . The distribution π(·) is given as an input parameter for the
simulation and may be determined by estimation from observed data.
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The common component has the following structure. When χi = 1, all of the
random variables ηn , such that Xn(1) = i , cannot assume values larger than i . If
the credit class transitions of every debtor belonging to credit class i were governed
exclusively by the corresponding ηn , this would mean that the credit rating of such
debtors may not worsen. For this reason, the situation when χi = 1 is termed as a
non-deteriorating tendency. In the same way, χi = 0 implies that all of the random
variables {ηn}, such that Xn(1) = i , take on exclusively the values exceeding i . This
is a deterioration (of their credit ratings).

There are three possibilities for the dependencemechanism. For Scheme 2,Wozabal
and Hochreiter (2012) assume that, conditionally on ��, ηn are independent in n. A
unique common component governs all debtors belonging a credit class and these
random variables are conditionally on �� independent for different credit classes in
Scheme 1, see Kaniovski and Pflug (2007). (More formally: random variables ηn and
ηl are conditionally on �� independent for Xn(1) �= Xl(1), while ηn = ηl for Xn(1) =
Xl(1).) Here an intermediate variant is introduced. For Scheme 3 it is assumed that all
debtors which belong to the same combination of credit rating and industry sector are
affected by the same common component and these random variables are independent
for different combinations. (In short: ηn = ηl if Xn(1) = Xl(1) and s(n) = s(l),
otherwise random variables ηn and ηl are conditionally on �� independent.)

The conditional distribution of ηn is defined as follows:

P{ηn = j | �χ} = pXn(1), j (χXn(1)),

where conditional probabilities pi, j (·) read:

pi, j (1) =
{
pi, j/p

+
i if j ≤ i,

0 if j > i; and pi, j (0) =
{
pi, j/p

−
i if j > i,

0 if j ≤ i.

Here p+
i = pi,1 + pi,2 + . . . + pi,i and p−

1 = 1 − p+
i .

Counts Nk,i (2) at time t = 2 are obtained by the following formula:

Nk,i (2) =
N (1)∑
n=1

I{Xn(2)=i,s(n)=k}.

Denote by Dk,i (2) the number of debtors from industry sector k defaulted at time 2
that had credit rating i at time 1. Then

Dk,i (2) =
N (1)∑
n=1

I{s(n)=k}I{Xn(1)=i}I{Xn(2)=M+1}.

Since �X(t) is a time-homogeneous randomprocess, �X(t) (aswell as the correspond-
ing counts Nk,i (t) and Dk,i (t)) can be defined analogously for t ≥ 3. We summarize
the three models in Table 1.
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Table 1 The three models

Model Reference Dependency of ηn and ηl (conditioned on
tendency vector ��)

Model 1 Kaniovski and Pflug (2007) Identical, if n and l belong to the same rating
class, independent otherwise

Model 2 Wozabal and Hochreiter (2012) Always independent

Model 3 This paper Identical, if n and l belong to the same rating
class and the same industry sector,
otherwise independent

3 Input parameters

In order to run the model, the following inputs are required:

• a M × (M + 1) Markovian transition matrix P;
• a distribution π(·) of the tendency vector;
• a M × S matrix Q whose entries qi,s are probabilities of success of Bernoulli
random variables {δn}.
Since

p+
i =

∑
�χ∈{0,1}M :χi=1

π( �χ), (1)

P and π(·) are related. However these M relations are not sufficient neither to identify
a Markovian matrix P given a distribution π(·) nor for finding a π(·) given a P . See
Bahadur (1961) for an exhaustive characterization of distributions on binary strings.

Given a Markovian matrix P and a M × M matrix of correlation coefficients

ci, j =
∑

�χ∈{0,1}M :χi=χ j=1 π( �χ) − p+
i p+

j√
p+
i (1 − p+

i )p+
j (1 − p+

j )
,

Kaniovski and Pflug (2007) introduced a quadratic optimization problem in order to
find a distribution π(·). Note that only for M = 2 there is an explicit formula for π(·),
because

π(1, 1) = p+
1 p+

2 + c1,2

√
p+
1 (1 − p+

1 )p+
2 (1 − p+

2 ).

Given migration counts, Wozabal and Hochreiter (2012), employing a heuristic global
optimization technique, identifyπ(·) for a given P by themaximum likelihoodmethod.
Since rating agencies report their (annual) Markovian transition matrices, convention-
ally a transitionmatrix P is assumed to be known and all estimation efforts concentrate
on finding Q and π(·) as factors determining dependencies among components of a
portfolio.
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4 Distributions of defaults

Let us denote by
−−→
Mul(N , p1, . . . , pk) a multinomial distribution with probabilities

of success pi and number of trials N as well as a k-dimensional random vector with
this distribution. At time t = 2, debtors are allocated to credit classes according to a
randomization of the following distributions:

• Model 2: a convolution,

S∑
k=1

M∑
i=1

−−→
Mul(Nk,i (1), qi,k pi,1 + (1 − qi,k)pi,1(χi ), . . . , qi,k pi,M+1

+ (1 − qi,k)pi,M+1(χi ));

• Model 3: a convolution of mixtures,

S∑
k=1

M∑
i=1

M+1∑
j=1

pi, j (χi )
−−→
Mul(Nk,i (1), qi,k pi,1, . . . , qi,k pi, j−1, qi,k pi, j

+1 − qi,k, qi,k pi, j+1, . . . , qi,k pi,M+1);

• Model 1: a convolution of mixtures of convolutions,

M∑
i=1

M+1∑
j=1

pi, j (χi )

S∑
k=1

−−→
Mul(Nk,i (1), qi,k pi,1, . . . , qi,k pi, j−1, qi,k pi, j

+1 − qi,k, qi,k pi, j+1, . . . , qi,k pi,M+1).

The corresponding weights are π( �χ).
In order to compare variances of these randomized distributions, observe that the

contributions due to debtors with credit rating i to the variances of j-th coordinate are
related as follows:

Vari, j3 (χi ) = Vari, j2 (χi ) + pi, j (χi )[1 − pi, j (χi )]
S∑

k=1

(1 − qi,k)
2Nk,i (1)[Nk,i (1) − 1],

Vari, j1 (χi ) = Vari, j3 (χi ) + 2

⎧⎨
⎩pi, j (χi )

S∑
k=1

(qi,k pi, j + 1 − qi,k)N
k,i (1)

S∑
r=k+1

(qi,r pi, j

+1 − qi,r )N
r,i (1) + [1 − pi, j (χi )]p2i, j

S∑
k=1

qi,k N
k,i (1)

S∑
r=k+1

qi,r N
r,i (1)

⎫⎬
⎭ ,

where i = 1, . . . , M , j = 1, . . . , M + 1. Consequently, Scheme 2 (1) implies the
smallest (largest) variances.
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5 Likelihood functions and optimization problems

The likelihood function for Scheme 2 is given in Wozabal and Hochreiter (2012) by

I × L2(π(·), Q),

where

I =
T∏
t=1

S∏
s=1

M∏
m1=1

M+1∏
m2=1

pI
t (s,m1,m2)

m1,m2
,

L2(π(·), Q) =
T∏
t=1

∑
�χ∈{0,1}M

π( �χ)

S∏
s=1

M∏
m1=1

M+1∏
m2=1

f (s, �χ,m1,m2, Q)I
t (s,m1,m2),

f (s, �χ,m1,m2, Q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1−qm1,s p−
m1

p+
m1

, if m1 ≥ m2, χm1 = 1,

1−qm1,s p+
m1

p−
m1

, if m1 < m2, χm1 = 0,

qm1,s, otherwise.

Time instants from t = 1 through t = T correspond to the period of observation.
I t (s,m1,m2) denotes the number of companies in sector s that have moved from
credit class m1 to credit class m2 in period t . Containing no unknowns, the multiplier
I cannot affect the outcome of maximization the likelihood function. It is ignored in
the calculations reported next.

By a similar argument that is sketched in “Appendix”, likelihood functions for
models 1 and 3 are obtained as

I × L1(π(·), Q),

and
I × L3(π(·), Q),

respectively. Here

L1(π(·), Q) =
T∏
t=1

∑
�χ∈{0,1}M

π( �χ)

M∏
m1=1

g(t, �χ,m1, Q),

L3(π(·), Q) =
T∏
t=1

∑
�χ∈{0,1}M

π( �χ)

S∏
s=1

M∏
m1=1

v(t, s, �χ,m1, Q),

g(t, �χ,m1, Q) =
M+1∑
i=1

pm1,i (χm1 )

S∏
s=1

(
qm1,s + 1 − qm1,s

pm1,i

)I t (s,m1,i) M+1∏
m2=1,m2 �=i

q I t (s,m1,m2)
m1,s ,

v(t, s, �χ,m1, Q) =
M+1∑
m2=1

pm1,m2 (χm1 )

(
qm1,s + 1 − qm1,s

pm1,m2

)I t (s,m1,m2) M+1∏
j=1, j �=m2

q I t (s,m1, j)
m1,s .
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The components of Q and π(·) belong to [0, 1]. There are linear constrains:
∑

�χ∈{0,1}M
π( �χ) = 1, (2)

∑
�χ∈{0,1}M , χi=1

π( �χ) = p+
i , i = 1, 2, . . . , M. (3)

The first one states that the values π(·) form a probability distribution, while the
remaining equalities are relations (1). Conceptually they mean that i th coordinate of
a feasible tendency vector takes value 1 with probability p+

i .

6 Input data

Using a S&P’s data set covering 10,413 firms from 30 OECD countries for T = 16
years, from 1991 through 2006, two cases, with S = 5 and with S = 12 industry
sectors, are analyzed. There are M = 2 non-default credit classes: investment grade
and non-investment grade debtors. The investment grade debtors are characterized
by S&P’s ratings from AAA to BBB, while the non-investment grade ones occupy
ratings from BB downward. An investment grade debtor, a non-investment grade one
and a defaulted debtor are indexed by 1, 2 and 3, respectively.

The first pool of debtorsmimics the portfolio generating theDow Jones iTraxx EUR
market index. It comprises a part of the data set represented by debtors belonging to
the following industry sectors:

1 – auto and industrial
2 – consumer
3 – energy with utilities
4 – finance and insurance
5 – telecommunications, media and technology.

The second pool contains all debtors of the data set, classified into the following
industries:

1 – aero, auto, capital goods, metal
2 – consumer, service
3 – energy, natural resources
4 – financial institutions
5 – forest and building products, homebuilders
6 – health care, chemicals
7 – high technology, computers, office equipment
8 – insurance, real estate
9 – leisure time, media
10 – telecommunications
11 – transportation
12 – utilities.
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The same list of twelve industry sectors was analyzed by Nagpal and Bahar (2001),
who dealt with a S&P’s data set covering American firms for the period from 1991
through 1999. They reported one-, five- and seven-year default correlations and sug-
gested practical applications to credit risk analysis based on them. Using a traditional
statistical technique, these authors encountered a natural pitfall: “too few defaults
(seven) to draw any meaningful conclusions” in sector of telecommunications. See
Nagpal and Bahar (2001), p. 94. Their results serve as a benchmark for the estimates
of credit event correlations suggested here.

7 Estimates and their interpretation

Applying time averages, the following Markovian matrix is obtained:

P =
(
0.9733 (0.1613) 0.0257 (0.1582) 0.0010 (0.0322)
0.0882 (0.2836) 0.8865 (0.3172) 0.0253 (0.1571)

)
.

The values in parentheses are standard deviations of the respective probabilities.
Logarithms of Li (π(·), Q) have to be maximized in a unit hypercube subject to

constraints (2) and (3). According to Allman et al. (2009), statistical estimation prob-
lems of this kind have typically multiple solutions. Given this, a variety of methods
and initial approximations have to be tried, including the use of a solution obtained
by one of the methods as a starting point for the rest.

UnlikeWozabal and Hochreiter (2012), who maximized L2(π(·), Q) by a heuristic
global optimization method tailored for this case, here standard constrained optimiza-
tion programs of MATLAB are used. The package contains two suitable methods: IP
and SQP algorithms. In all cases the optimal values and the corresponding solutions
were identical for both algorithms. Each time a maximum point was found in a cou-
ple of seconds. The gradient and the Hessian matrix were estimated numerically. In
order to find a solution, the SQP method required some 30% less iterations than the
IP algorithm. This is consistent with what is reported in the literature on constrained
optimization. See, for example, Nocedal and Wright (2006). Given an initial point,
the (local) maximum value found by the SQP algorithm, was at least as good as the
solution of the IP algorithm. That is, typically a maximum point reported below was
“discovered” by the SQP algorithm and then “confirmed” by the IP method.

Five industry sectors. For Scheme 2 the following Q(2) and π(2)(·) came out:

(
1.0000 1.0000 1.0000 1.0000 1.0000
0.6224 0.4532 0.6607 0.6139 1.0000

)
,

(π(2)(1, 1), π(2)(1, 0), π(2)(0, 1), π(2)(0, 0)) = (0.9733, 0.0000, 0.0014, 0.0253).

Also c(2)
1,2 = 0.9727, where c(2)

1,2 stands for Corr(�(2)
1 ,�

(2)
2 ). Probabilities q(3)

i,s and

π(3)(·) read:
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(
0.9560 0.9852 0.9270 0.9774 0.9984
0.6240 0.4584 0.5967 0.6140 0.8155

)
,

(0.9480, 0.0253, 0.0267, 0.0000) with c(3)
1,2 = −0.0267.

For Scheme 1 the estimates are:

(
1.0000 1.0000 1.0000 1.0000 0.9693
1.0000 1.0000 1.0000 1.0000 0.8155

)
,

(0.9483, 0.0251, 0.0264, 0.0002) with c(1)
1,2 = −0.0170.

Since for two Bernoulli random variables lack of correlation is equivalent to indepen-
dence, small in absolute value c(1)

1,2 and c
(3)
1,2 mean that coordinates of ��(1) and ��(3) are

almost independent. In other words, hidden tendencies governing investment grade
debtors depend veryweakly on the corresponding tendencies for non-investment grade
debtors. The sign minus may indicate a mismatch among the trends.

Turning to matrices Q(i), note that the larger qXn(1),s(n) is, the weaker will be the
impact of the common tendency on the evolution of debtor n. Investment grade debtors
appear to be affected almost exclusively by idiosyncratic factors. Second and third
schemes seem to imply a stronger dependence on common factors than first one. This
conclusion does not contradict to the claim that Scheme 1 (2) generates the strongest
(weakest) dependence pattern for a fixed set of parameters. In fact, here distributions
π(i)(·) are different for all cases and this prevents a comparison of matrices Q(i).
Moreover, the reported estimates represent a “reaction” of the corresponding model
to the actually observed counts. That is, if distributions π(i)(·) were the same for all
schemes, in order to reproduce a given dependence pattern, Scheme 1 could have
required a weaker impact of common components and, consequently, larger entries of
matrix Q(1) than Schemes 2 and 3.

The quality of the estimates for π(·) and Q depends upon the following three
factors. First, entries of P can be evaluated with errors. Their magnitude depends
upon numbers of migrations in the data set. In fact, some of the standard deviations
quoted above do not look negligible in comparison with the corresponding transition
probabilities. Facing a sample of counts, one has to ignore this factor taking matrix P
as a given input. Second, it is not guaranteed that the numerical methods, if even both
of them arrive at the same result, find a global maximum point. Third, sixteen years
of observation may be insufficient for achieving a good precision even if the (global)
maximum points were found correctly. In fact, the (sample) likelihood function in
hand is based on a finite sample of counts I t (s,m1,m2). Consequently, there can be
a bias between the true parameter values and the numerically found maximum points.

For the above transition matrix P , simulations have been run for different values of
Q and π(·), each time 100 trials for 5 industry sectors and 16 years. At the beginning
of every time instant t in each credit class i and in each industry sector k there were
Nk,i (t) = 100 debtors. In otherwords, newfirmswere added into the portfolio in order
to substitute defaulted ones. In every run both of the optimization algorithmswere used
to improve each other. For schemes in hand, the deviation between the estimates and
the true values was approximately 0.1. The bias appears to be attributable to a finite
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sample size rather than to an error in finding a global maximum point of a (sample)
likelihood function. Carreira-Perpiñán and Renals (2000) in a similar numerical study
demonstrate that the known theoretical complexity of such statistical settings does not
prevent from successful applications of them.

Twelve industry sectors. For Scheme 2 the following π(2)(·) and Q(2) were found:
(
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.6224 0.4532 0.3936 0.9002 0.5101 0.4427 0.7762 1.0000 0.4050 1.0000 0.5883 1.0000

)
,

(0.9733, 0.0000, 0.0014, 0.0253), c(2)
1,2 = 0.9727.

In the case of Scheme 3 the same distribution π(·) came out, while Q(3) reads:
(
1.0000 1.0000 0.5819 0.2135 1.0000 1.0000 1.0000 1.0000 1.0000 0.7287 1.0000 0.7662
0.6240 0.4584 0.3975 0.9265 0.5252 0.4429 0.7804 0.8176 0.4051 1.0000 0.5904 0.7265

)
.

For Scheme 1 the results are:
(
1.0000 1.0000 0.5819 0.2135 1.0000 1.0000 1.0000 1.0000 1.0000 0.7287 1.0000 0.7662
0.9758 0.9852 0.9836 0.9916 0.9622 0.9810 0.9062 0.8428 0.9834 0.8671 0.9514 0.9553

)
,

(0.9480, 0.0253, 0.0267, 0.0000), c(1)
1,2 = −0.0267.

As compared with the case of five industries, only for Scheme 3, distributions
π(3)(·) differ profoundly. In fact, a slight mismatch transforms into nearly perfect
synchronicity of trends.

Matrices Q(i) estimated here give rise to awider scope of conceptual interpretations
than those in the situation with five industries. In general, the contribution of common
tendencies seems tobe stronger.Because the correspondingdistributionsπ(·) coincide,
matrices Q(2) and Q(3) can be compared.

Since the observed dependence pattern, as characterized by the transition counts,
is identical for both schemes, intuitively the entries of Q(2) should not exceed their
counterparts of Q(3). (Remember, an identical parametrization implies a stronger, as
compared with Scheme 2, dependence for Scheme 3 only between debtors belonging
to the same credit class and the same industry sector. Then, in order to produce the
observed “strength” of dependence, one would expect the corresponding elements of
Q(2) to be smaller than their analogs of Q(3).) Among 24 entries of Q(3), 6 or 25% are
not consistent with this intuition. Considering the two credit classes separately, reveals
that the situation is better, 2 out 12 against 4 out 12 values, respectively 17 and 33%,
in the case of non-investment grade debtors. However, interpreting these values, one
has to take into account that they are obtained numerically, using a procedure, where
precision of the estimates cannot be guaranteed. Among the most evident factors
affecting the final result are different numbers of counts for different industries. In
particular, counts in industry sector 8 exceed 40 times counts in sector 10.

Whole economy. Since Nagpal and Bahar (2001) analyze default correlations for
the whole economy, in order to obtain counterparts of their estimates, π(·) and Q char-
acterizing the whole data set were found. That is, here S = 1 and the required counts
obtain by summing up the corresponding numbers of transitions over all industries.
Scheme 2:
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Table 2 Logarithm of
likelihood ratio

i\ j 1 2 3

1 0/0/0 480/581/437 327/305/0

2 1420/5169/1089 0/0/0 1136/2148/1089

3 93/164/0 571/790/437 0/0/0

(
1.0000
1.0000

)
, (0.9733, 0.0000, 0.0014, 0.0253), c(2)

1,2 = 0.9727;

Schemes 1 and 3 coincide in the case of a single industry sector. The corresponding
estimates read:

(
0.9845
0.8601

)
, (0.9480, 0.0253, 0.0267, 0.0000), c(1)

1,2 = −0.0267.

Since the distributions corresponding to the three schemes are different, it is not
possible to decide which of them fits the best to the data set. However, assuming that
one of them is the true distribution, the likelihood ratio can be used in order to rank
the remaining two according to their similarity to the true one.

For estimates π(i)(·) and Q(i) given above set

li, j = log Li (π
(i)(·), Q(i)) − log Li (π

( j)(·), Q( j)).

These values for five and twelve industry sectors as well as for the whole economy,
separated by a slash, are given in the following table (Table 2):

Intuitively, considering a true statistical model and its alternatives, the smallest
likelihood ratio, or, equivalently, its logarithm, can indicate the most similar of them
to the true one. In particular, if Scheme 1 is the correct model, Scheme 3 fits data in
hand better than Scheme 2. In the same way, considering Scheme 2 as the true model,
we see that Scheme 3would bemore suitable than Scheme 1. Finally, if Scheme 3were
the correct model, Scheme 1 would be preferred to Scheme 2. This informal argument
based on likelihood ratios shows, that, once again, Scheme 3 takes an intermediate
position between Schemes 1 and 2.

8 Correlations of credit events

Set Ak
i,I (T ) the event that a debtor in sector k moves from credit class i to credit class

I in T -year time. Then

Corr
(
I{Ak

i,I (T )}, I{Alj,J (T ′)}
)

=
EI{Ak

i,I (T )}I{Alj,J (T ′)} − EI{Ak
i,I (T )}EI{Alj,J (T ′)}√

EI{Ak
i,I (T )}[1 − EI{Ak

i,I (T )}]EI{Alj,J (T ′)}[1 − EI{Alj,J (T ′)}]

is termed as correlation of credit events Ak
i,I (T ) and Al

j,J (T
′). If I = J = M + 1 this

is a default correlation. If T = T ′, let us denote it by ρ
k,l
i, j (T ).
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For debtors numbered by n and r ,

ρ
k,l
i, j (1) = (1 − qi,k)(1 − q j,l)

(
EI{ηn=I }I{ηr=J } − pi,I p j,J

)
√
pi,I (1 − pi,I )p j,J (1 − p j,J )

, (4)

if the following relations hold true:

s(n) = k, s(r) = l, Xn(1) = i, Xr (1) = j.

Note that

EI{ηn=I }I{ηr=J } = E(I{ηn=I }I{ηr=J } | χi = 1, χ j = 1)P{�i = 1, � j = 1}
+E(I{ηn=I }I{ηr=J } | χi = 1, χ j = 0)P{�i = 1, � j = 0}
+E(I{ηn=I }I{ηr=J } | χi = 0, χ j = 1)P{�i = 0, � j = 1}
+E(I{ηn=I }I{ηr=J } | χi = 0, χ j = 0)P{�i = 0, � j = 0}.

Schemes 1–3 imply that, respectively:

EI{ηn=M+1}I{ηr=M+1} =
⎧⎨
⎩

pi,M+1 p j,M+1

p−
i p−

j
P{�i = 0, � j = 0}, if i �= j,

p2i,M+1

p−
i

, if i = j;

EI{ηn=M+1}I{ηr=M+1} =

⎧⎪⎪⎨
⎪⎪⎩

pi,M+1 p j,M+1

p−
i p−

j
P{�i = 0, � j = 0}, if i �= j,

p2i,M+1

p−
i

, if i = j, k �= s,

pi,M+1, if i = j, k = s;

and

EI{ηn=M+1}I{ηr=M+1} =
{ pi,M+1 p j,M+1

p−
i p−

j
P{�i = 0, � j = 0}, if i �= j,

pi,M+1, if i = j.

For fixed P , Q and π(·), these relations imply that ρ
k,l
i, j (1) coincide for the three

coupling schemes as long as debtors have different credit ratings, that is, i �= j . If
these correlations are not equal to zero, then theywill be positive of negative depending
upon the sign of

P{�i = 0, � j = 0} − p−
i p−

j .

If debtors have the same credit rating, then all ρk,l
i,i (1) are non-negative: the largest for

Scheme 1 and the smallest for Scheme 2. Scheme 3 is characterized by intermediate
values: if debtors are from different industry sectors, default correlations are identi-
cal to those for Scheme 2, while if debtors belong to the same industry sector, the
correlations coincide with their counterparts for Scheme 1.
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Table 3 Default correlations expressed in percent, whole database

One year, formula One year Five years Seven years

ρ1,1(1) ρ1,2(1) ρ2,2(1) ρ1,1(1) ρ1,2(1) ρ2,2(1) ρ1,1(5) ρ1,2(5) ρ2,2(5) ρ1,1(7) ρ1,2(7) ρ2,2(7)

0.02 0.00 1.96 0.80 0.04 1.89 −0.70 −0.30 1.50 0.44 0.66 1.52

Table 4 Default correlations expressed in percent, five industry sectors

s One year, formula One year Five years Seven years

ρ
s,s
1,1(1) ρ

s,s
1,2(1) ρ

s,s
2,2(1) ρ

s,s
1,1(1) ρ

s,s
1,2(1) ρ

s,s
2,2(1) ρ

s,s
1,1(5) ρ

s,s
1,2(5) ρ

s,s
2,2(5) ρ

s,s
1,1(7) ρ

s,s
1,2(7) ρ

s,s
2,2(7)

1 0.19 0.00 14.14 −0.08 0.23 15.65 0.50 1.48 12.04 0.70 2.25 11.38

2 0.02 0.00 29.33 −0.09 0.15 27.84 1.80 4.76 25.90 1.47 4.57 23.17

3 0.53 −0.02 16.27 −0.11 −0.16 17.42 1.38 2.89 14.51 1.14 2.46 12.13

4 0.05 −0.01 14.90 −0.12 0.18 14.84 0.98 2.24 13.00 1.12 2.27 12.33

5 0.00 0.00 3.40 1.02 0.36 3.39 −0.18 0.24 2.89 0.42 0.46 3.44

Turning to the case in hand, note that whenever an entry of Q equals 1, all default
correlations involving the corresponding debtors will be 0. Moreover, if π(0, 0) = 0,
as it is the case for first coupling scheme, then

ρ
k,l
i, j (1) =

{
−(1 − qi,k)(1 − q j,l)

√
pi,M+1 p j,M+1

(1−pi,M+1)(1−p j,M+1)
, if i �= j,

(1 − qi,k)(1 − qi,l), if i = j.

Having a triple P , Q and π(·) and substituting these inputs in relations (4), one-
year default correlations can be found, while multi-year events correlations can be
estimated by a traditional statistical technique based on repeated runs of the model, in
other words, Monte-Carlo simulations. Note that the actual iTraxx portfolio contains
only investment grade titles.

Default correlations corresponding to the triples estimated for coupling Scheme
3 are summarized in the next three tables. The columns One year, formula contain
the values obtained by formula (4), while the other correlations are estimated using
averages based on100000 independent observations of the respective randomvariables
(Tables 3, 4, 5).

The tables demonstrate, that analytically evaluated default correlations follow very
well their sample counterparts, as long as these values are not too small. In particular,
this is the case for non-investment grade debtors. The poor match for the correlations
close to 0 is caused by the multiplier 1 − qi,k . It makes the correlations evaluated
according to formula (4) equal to 0, if qi,k is sufficiently close to 1.

9 Conclusions

Distributions, their variances, in particular variances of the number of defaults, as
well as default correlations were compared for three coupling methods: for the one
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Table 5 Default correlations expressed in percent, twelve industry sectors

s One year, formula One year Five years Seven years

ρ
s,s
1,1(1) ρ

s,s
1,2(1) ρ

s,s
2,2(1) ρ

s,s
1,1(1) ρ

s,s
1,2(1) ρ

s,s
2,2(1) ρ

s,s
1,1(5) ρ

s,s
1,2(5) ρ

s,s
2,2(5) ρ

s,s
1,1(7) ρ

s,s
1,2(7) ρ

s,s
2,2(7)

1 0.00 0.00 14.14 −0.10 −0.51 15.09 −0.04 1.46 11.40 1.56 2.14 11.08

2 0.00 0.00 29.34 0.90 0.10 28.22 0.92 4.07 25.47 1.59 3.71 22.91

3 17.48 4.68 36.31 22.15 5.94 35.75 13.67 10.69 31.68 13.73 10.78 30.72

4 61.86 1.07 0.54 64.97 1.12 0.24 29.68 2.86 1.05 24.12 3.34 0.52

5 0.00 0.00 22.54 −0.09 −0.48 22.05 −0.04 3.45 18.58 0.48 3.39 17.14

6 0.00 0.00 31.04 −0.10 −0.10 30.40 0.70 3.31 26.46 1.29 5.55 24.71

7 0.00 0.00 4.82 −0.12 0.16 5.98 0.00 0.91 3.88 −0.65 0.76 4.65

8 0.00 0.00 3.33 −0.08 −0.45 2.42 −0.04 1.15 2.50 0.50 0.90 1.95

9 0.00 3.00 35.40 −0.11 −0.33 34.15 0.86 3.97 31.18 1.10 5.04 29.25

10 7.36 0.00 0.00 5.91 0.11 −0.06 3.81 0.16 0.50 2.84 0.92 0.40

11 0.00 0.00 16.78 −0.10 −0.09 16.40 0.98 2.86 13.51 −0.53 1.81 12.67

12 5.47 1.19 7.48 3.25 1.22 7.14 3.64 2.27 6.74 2.42 2.47 5.69

introduced by Wozabal and Hochreiter (2012) (Kaniovski and Pflug (2007)) the vari-
ances and the correlations were the smallest (largest), the scheme suggested in this
paper takes an intermediate position. Using real data concerning OSCD countries,
parameters of the models were estimated by standard optimization methods available
in MATLAB for two portfolios. One of them mimics the Dow Jones iTraxx EUR
market index. The other one, covering the same industry sectors as a study of Nagpal
and Bahar (2001), who analyzed American firms, allows a quantitative comparison of
the corresponding dependence patters in these two economic environments. A boot-
strap procedure was suggested in order to estimate correlations of credit events. The
corresponding Monte-Carlo estimates match their counterparts obtained analytically.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

In both cases the argument follows very closely the proof by Wozabal and Hochreiter
(2012). The Markov property implies the product in t . Consequently, it is enough to
consider a single time instant t . The sum in �χ accounts for all possible realizations of
the tendency vector. Fix a realization �χ . Consider migrations starting at a credit rating
m1.

In the case of Scheme 1, if the corresponding common component assumes value
i , all credit ratings different from i in all industry sectors are reachable from m1 only
through idiosyncratic moves. By independence of such moves, this event occurs with
probability
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S∏
s=1

M+1∏
m2=1, m2 �=i

(qm1,s pm1,m2)
I t (s,m1,m2).

On the other hand, each of I t (s,m1, i) debtors in industry sector s, migrating to
rating i , is driven either by the common or by the idiosyncratic component. The
corresponding events occur with probabilities 1 − qm1,s or qm1,s pm1,i , respectively.
Since these migrations are independent in s, all transitions from m1 to i occur with
probability

S∏
s=1

(qm1,s pm1,i + 1 − qm1,s)
I t (s,m1,i).

By these two observations, probability of all transitions starting at m1 reads

M+1∑
i=1

pm1,i (χm1)

S∏
s=1

(qm1,s pm1,i + 1 − qm1,s)
I t (s,m1,i)

×
M+1∏

m2=1, m2 �=i

(qm1,s pm1,m2)
I t (s,m1,m2).

Since, given a realization �χ , common components are independent in m1, the cor-
responding terms have to be multiplied. Then the whole evolution at time t takes place
with probability

π( �χ)

M∏
m1=1

M+1∑
i=1

pm1,i (χm1)

S∏
s=1

(qm1,s pm1,i + 1 − qm1,s)
I t (s,m1,i)

×
M+1∏

m2=1, m2 �=i

(qm1,s pm1,m2)
I t (s,m1,m2)

= I (t) × π( �χ)

M∏
m1=1

M+1∑
i=1

pm1,i (χm1)

S∏
s=1

(
qm1,s + 1 − qm1,s

pm1,i

)I t (s,m1,i)

×
M+1∏

m2=1, m2 �=i

q I t (s,m1,m2)
m1,s .

Here

I (t) =
S∏

s=1

M∏
m1=1

M+1∏
i=1

pI
t (s,m1,i)

m1,i
.

In the case of Scheme 3, common components are independent in s and i . Therefore
the products over all industry sectors and over all non-default credit classes come to
exist. For industry s, the sum in m2 corresponds to mutually exclusive events

Am2 = {The respective common component assumes the value m2.}
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Conditional on Am2 , credit ratingm2 is reachable either, with probability qm1,s pm1,m2 ,
through an idiosyncratic move, or, with probability 1 − qm1,s , through the common
component. All other credit ratings, j �= m2, are reachable in this case only by
idiosyncratic moves and the corresponding probabilities are (qm1,s pm1, j )

I t (s,m1, j). By
independence, multiplying the respective probabilities, the following term is obtained

π( �χ)

S∏
s=1

M∏
m1=1

M+1∑
m2=1

pm1,m2(χm1)(qm1,s pm1,m2 + 1 − qm1,s)
I t (s,m1,m2)

×
M+1∏

j=1, j �=m2

(qm1,s pm1, j )
I t (s,m1, j)

= I (t) × π( �χ)

S∏
s=1

M∏
m1=1

M+1∑
m2=1

pm1,m2(χm1)

(
qm1,s + 1 − qm1,s

pm1,m2

)I t (s,m1,m2)

×
M+1∏

j=1, j �=m2

q I t (s,m1, j)
m1,s .
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