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Abstract The Hurwicz’s criterion is one of the classical decision rules applied in
decision making under uncertainty as a tool enabling to find an optimal pure strategy
both for interval and scenarios uncertainty. The interval uncertainty occurs when the
decision maker knows the range of payoffs for each alternative and all values belonging
to this interval are theoretically probable (the distribution of payoffs is continuous).
The scenarios uncertainty takes place when the result of a decision depends on the
state of nature that will finally occur and the number of possible states of nature is
known and limited (the distribution of payoffs is discrete). In some specific cases the
use of the Hurwicz’s criterion in the scenarios uncertainty may lead to quite illogical
and unexpected results. Therefore, the author presents two new procedures combining
the Hurwicz’s pessimism-optimism index with the Laplace’s approach and using an
additional parameter allowing to set an appropriate width for the ranges of relatively
good and bad payoffs related to a given decision. The author demonstrates both meth-
ods on the basis of an example concerning the choice of an investment project. The
methods described may be used in each decision making process within which each
alternative (decision, strategy) is characterized by only one criterion (or one synthetic
measure).

Keywords Decision making under uncertainty · States of nature ·
Hurwicz’s criterion · Laplace’s criterion · Optimal pure strategy

H. Gaspars-Wieloch (B)
Poznan University of Economics, al. Niepodeglosci 10, 61-875 Poznan, Poland
e-mail: helena.gaspars@ue.poznan.pl

123



780 H. Gaspars-Wieloch

1 Introduction

The Hurwicz’s rule is a procedure applied within the decision making process under
uncertainty (DMUU). This uncertainty is a consequence of the fact that we are not
able to anticipate the future effectively. One may just forecast various phenomena
and events, but in many cases it is extremely difficult to estimate the exact value of
particular parameters (temperature, company profit, size of the mature crops, demand
for a product, product prices, production costs etc.). If these data were known, it would
be easy to indicate the best alternative (decision), e.g. the best investment strategy. But
when many future factors are not deterministic at the time of the decision, the decision
maker (DM) has to choose the appropriate alternative on the basis of some scenarios
(states of nature, events) predicted by experts, him- or herself. Let us add that the
probability of these scenarios may be known or not. The situation where parameters
can be presented by means of random variables is characteristic for the decision making
under risk. When it is impossible to calculate the likelihoods aforementioned the
choice of an alternative is made under uncertainty (Groenewald and Pretorius 2011;
Render et al. 2006; Chronopoulos et al. 2011; Sikora 2008; Trzaskalik 2008). Knight
(1921) first introduced the idea to apply risk and uncertainty in economics, but these
two categories were formally integrated in economic theory by von Neumann and
Morgenstern (1944). In this contribution we will focus on the second case which
seems to be more frequent in realistic decision problems.

The literature offers dozens of procedures applied in DMUU, such as the classical
rules, which will be discussed in Sect. 3, and many diverse extensions or hybrids
of these methods (see e.g. Basili 2006; Basili and Zappia 2010; Basili et al. 2008;
Ghirardato et al. 2004; Ellsberg 2001; Marinacci 2002). One of them is the Hurwicz’s
criterion method (Hurwicz’s Optimism-Pessimism Approach). This procedure usually
leads to reasonable answers, but in some specific situations the Hurwicz’s results may
be astonishing. Therefore, the target of this paper is to present two modified Hurwicz’s
rules which yield more logical results. The first method is designed for passive decision
makers who are only asked to declare their level of pessimism and optimism. The
second one requires an active attitude in the decision making process, i.e. the ability
to analyze the payoffs matrix and to determine some additional parameters.

The remainder of the paper is organized as follows. Section 2 contains a short
description of the decision making under uncertainty and the assumptions adopted in
the contribution. In Sect. 3, the most well-known methods for the DMUU are briefly
discussed. A deeper analysis of the Hurwicz’s criterion procedure is presented in
Sect. 4. The proposed modified Hurwicz’s techniques are demonstrated in Sect. 5.
Finally, conclusions are gathered in Sect. 6.

2 Decision making under uncertainty: characteristics and assumptions

As it was mentioned in the previous section the result of the choice made by the
decision maker under uncertainty depends on two factors: which alternative will be
selected and which scenario (state of nature) will occur in the future. The consequence
of any decision is determined not just by the decision itself but also by an external
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Hurwicz’s decision rule 781

Table 1 Profit matrix/decision
table (general case)

Scenarios and alternatives I1 I j In

S1 a11 a1 j a1n

Si ai1 ai j ain

Sm am1 amj amn

factor which is beyond the control of the decision maker. The true state of nature is
determined by prices, taxes, exchange rates, unemployment rates, by external micro-
and macroeconomic decisions, by weather conditions and by many unpredictable
events. If he or she knew the state of nature which will actually hold, he or she could
predict the consequence of any alternative with certainty. The DMUU may be presented
with the aid of a profits matrix (Table 1) where m is the number of mutually exclusive
scenarios (let us denote them by S1, S2, . . ., Sm). n signifies the number of alternatives
(I1, I2, . . ., In) and ai j is the profit connected with the scenario Si and alternative I j .
The goal of the DM consists in selecting this decision which maximizes the profit.

Notice that the decision making under uncertainty may not necessarily signify the
occurrence of a finite number of scenarios with a set of m profits for each decision.
In the other concept of DMUU it is assumed that the exact profit connected with the
alternative I j is not known, but belongs to an interval [w j , m j ] and then we deal with
the decision making under interval uncertainty (Huynh et al. 2007). In such a case each
value from this interval is probable. In this contribution we will consider the scenarios’
approach for DMMU which is characterized by a lower degree of uncertainty than the
interval approach because only several values from this range are probable.

In the uncertainty case the decision maker may search an optimal pure strategy
or an optimal mixed strategy. A pure strategy, in contradiction to a mixed strategy,
is a solution assuming that the decision maker chooses and completely executes one
and only one alternative. Meanwhile the mixed strategy allows the decision maker
to select and perform a weighted combination of several accessible alternatives. The
whole paper concerns techniques dedicated for optimal pure strategy’s searching.

When talking about the selection of an optimal alternative we must be aware of
the fact that each decision may be defined by a vector of values representing the
performance of different criteria and then the DMUU is brought to a multicriteria
decision making under uncertainty—MDMUU (Dominiak 2006, 2009). Here we will
assume that each alternative may be characterized either by one essential criterion’s
value or by one synthetic aggregated value denoting the overall realization of all
significant criteria. Therefore only one-criterion problems will be discussed in this
article.

3 The most well-known methods for the decision making under uncertainty

This section contains a brief description of possible classical approaches applied in
DMUU with scenarios when the decision maker is interested in finding an optimal pure
strategy (Ignasiak 1996; Kaufmann and Faure 1974; Pazek and Rozman 2009; Sikora
2008; Trzaskalik 2008). Let us recall that in the scenarios’ approach decision makers
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have to choose one of a set number of alternatives with complete information about
their outcomes but in the absence of any information or data about the probabilities of
the various states of nature (Pazek and Rozman 2009). The decision rules presented
below prescribe how an individual faced with a decision under uncertainty should go
about choosing a course of action consistent with the individual’s basic judgments and
preferences (Pazek and Rozman 2009).

Wald’s maximin criterion (Wald 1950a, b; Wen and Iwamura 2008) is a very pes-
simistic approach assuming that the worst will happen and that the smaller payoffs
may have a higher probability of occurrence. Under the alternative I j the worst con-
sequence that can occur has a value of

w j = min
i

{ai j } (1)

where w j is the Wald’s measure or the security level of I j . Wald suggested that he or
she choose this decision that has as large security level as possible:

w∗
j = max

j
{w j } = max

j
min

i
{ai j } (2)

The maximax criterion is a very optimistic approach for gamblers attracted by high
payoffs. Under I j the best consequence that can occur has a value of

m j = max
i

{ai j } (3)

where m j is the optimism level of I j . According to the maximax criterion it is recom-
mended to choose this alternative that fulfills the condition (4):

m∗
j = max

j
{m j } = max

j
max

i
{ai j } (4)

Hurwicz (1951; 1952) argued that the decision maker should rank alternatives accord-
ing to the weighted average of the security and the optimism levels:

h j = α · w j + (1 − α) · m j (5)

where h j is the Hurwicz’s criterion and α is the coefficient of pessimism which ful-
fills the following condition: α ∈ [0, 1]. The parameter α is close to 0 for extreme
optimists, i.e. adventurous decision makers (risk-prone behavior), and it tends to 1 for
radical pessimists, i.e. cautious decision makers (risk-averse behavior). The optimal
alternative should satisfy the Eq. (6):

h∗
j = max

j
{h j } = max

j
{α · w j + (1 − α) · m j } (6)

Notice that one may find in the literature examples where the parameter α describes
the user’s degree of optimism (Groenewald and Pretorius 2011; Huynh et al. 2007;
Pazek and Rozman 2009) and not the pessimism index.
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Hurwicz’s decision rule 783

The Savage’s minimax regret criterion (Savage 1961) appeals to cautious people.
Savage suggested to replace the payoffs matrix with a new regrets table computed
according to the formula (7) and to assign an index to each decision on the basis of
the Eq. (8) which represents the worst regret from the alternative I j :

ri j = max
j

{ai j } − ai j (7)

s j = max
i

{ri j } (8)

where ri j denotes the non-negative opportunity loss. Within the Savage’s criterion it
is recommended to choose this decision that has as low index as possible:

s∗
j = min

j
{s j } (9)

Laplace argued that if one knows nothing at all about the true scenario, it means that
all states have an equal probability (Render et al. 2006). That means that the decision
maker faces an expected value of his choice and ought to select the alternative fulfilling
the Eqs. (10) and (11):

l j = 1

m

∑

i

ai j (10)

l∗j = max
j

{l j } (11)

The use of expected values distinguishes this approach from the criteria using only
extreme payoffs. This characteristic makes the procedure similar to the decision mak-
ing under risk (Pazek and Rozman 2009).

At the end of this section it is worth emphasizing that all criteria of choice may
suggest a different optimal strategy for the same problem.

Notice that the first four rules find application when the decision maker intends to
perform the selected alternative only once. When he or she contemplates to realize
this decision many times, it is recommended to use the Laplace’s criterion.

Let us also add that the rules aforementioned were described for problems with
a target maximized (profits, effects, sales). When the objective function tends to the
minimum (cost, time etc.), i.e. when payoffs are given as negative-flow rewards, one
should apply one of the approaches suggested in Gaspars-Wieloch (2012).

4 Hurwicz’s criterion method: a case study analysis

In this section we are going to apply the classical Hurwicz’s rule in a case study
concerning the choice of an optimal investment project. Assume that an investor wants
to select the best investment project from three possible business plans. Table 2 presents
profits (they are given in million dollars) connected with projects P1, P2 and P3,
respectively. These payoffs (rewards) narrowly depend on the scenarios which will
finally take place (S1, S2, S3, S4 or S5).

Let us have a look on these data. The profits related to P1 belong to the largest
interval [w1, m1] = [1, 10] and in one out of five scenarios this project gives the
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Table 2 Payoffs matrix—case
study

Investment projects P1 P2 P3

Scenarios

S1 10 1 4

S2 1 9.5 5

S3 1 9.5 2

S4 1 9.5 5

S5 1 9.5 4

Table 3 Hurwicz’s measures for projects P1, P2 and P3 (optimist and pessimist type)

Decision maker DM A
(optimist type)

DM B
(pessimist type)

Project

P1 h A
P1 = 0.3 × 1 + 0.7 × 10 = 7.3 h B

P1 = 0.7 × 1 + 0.3 × 10 = 3.7

P2 h A
P2 = 0.3 × 1 + 0.7 × 9.5 = 6.95 h B

P2 = 0.7 × 1 + 0.3 × 9.5 = 3.55

P3 h A
P3 = 0.3 × 2 + 0.7 × 5 = 4.1 h B

P3 = 0.7 × 2 + 0.3 × 5 = 2.9

highest benefit. The project P2, with an interval [w2, m2] = [1, 9.5], is the best in
four out of five states of nature. The last business plan (P3) yields, independently on
the situation, quite congenial and relatively low gains ([w3, m3] = [2, 5]).

Now, let us analyze the results obtained with the aid of the Hurwicz’s criterion for
two decision maker’s types (A and B). The first one is rather an optimist (αA = 0.3).
The second person is a moderate pessimist (αB = 0.7). The Hurwicz’s measures for
all potential business plans are gathered in Table 3.

According to the Eq. (6) both decision makers (the optimist and the pessimist one)
ought to select the first project since in both cases its Hurwicz’s measures attend the
highest values. Have we expected such results? Are they rational and logical? Probably
rather not. Why are we so surprised with the answer given by the Hurwicz’s rule? There
are at least three reasons:

1. The project P1 yields a very high profit only in the first scenario. In the four
remaining states of nature it leads to the worst gains. For an optimist decision
maker, prone to risk, this alternative seems to be the most appropriate. But let us
focus on the pessimist one. If he or she assumes that the probability of the worst
value is equal 0.7 (i.e. quite much), it would be more reasonable to choose P3 for
which the worst value w3 is twice as high as w1. That is why we state that the
optimal pure strategy set for the pessimist decision maker does not reflect his or her
risk aversion. If the scenario S2, S3, S4 or S5 occurs, the loss of the pessimist DM
choosing P1 will be in most cases higher than it would be if P2 or P3 were selected.

2. The project P2 gives the best results in four out of five states of nature. We intu-
itively conclude that this strategy should be safer for the pessimist decision maker
than the project P1 which is the best merely in one out of five scenarios. Thus, it
is fairly difficult to understand why P2 has obtained a lower Hurwicz’s measure
than P1, especially in the pessimist case.
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Table 4 Hurwicz’s measures
for project P1, P2, P3
(for different values of α)

α P1 P2 P3

0.00 10.00 9.50 5.00

0.10 9.10 8.65 4.70

0.20 8.20 7.80 4.40

0.30 7.30 6.95 4.10

0.40 6.40 6.10 3.80

0.50 5.50 5.25 3.50

0.60 4.60 4.40 3.20

0.70 3.70 3.55 2.90

0.80 2.80 2.70 2.60

0.83 2.50 2.42 2.50

0.90 1.90 1.85 2.30

1.00 1.00 1.00 2.00

3. We are surprised not only with the optimal pure strategy selected by Hurwicz’s
rule, but also with the ranking of projects. The order is totally the same for both
pessimism indices (P1 dominates P2 and P2 is better than P3). This conclusion is
astonishing as well since the parameters α are significantly different.

Table 4 presents the Hurwicz’s measures for different values of α and enables to
make some additional conclusions:

1. The order of projects changes only when α is higher than 0.8! P3 is the best only
for decision makers whose coefficient of pessimism exceeds 0.8.

2. Despite the fact that P1 and P2 are Pareto-optimal and that P2 offers the highest
payoffs in four out of five scenarios, the project P2 according to the Hurwicz’s
rule does never take the first place in the ranking and does never obtain a higher
index than the P1 measure.

3. When the parameter α equals 83.3 %, the Hurwicz’s rule treats the project P1 on
equal terms with the project P3, though the first one is much more risky than the
third one.

Usually the Hurwicz’s criterion leads to sensible results in the DMUU process, but
in this particular case the answer seems to be contradictory with the logic and does
not reflect decision maker’s preferences. What are the reasons of such a defect? The
factors are quite obvious:

1. The Hurwicz’s rule takes only extreme payoffs into consideration. Transitional val-
ues, i.e. ai j ∈ (w j , m j ), are ignored. This state entails the following consequence.
The position of an alternative in the ranking is merely determined by parameters
w j and m j . This factor explains why, according to the Hurwicz’s rule, the project
P2 is always dominated by P1 in the problem discussed:

(w1 = w2) ∧ (m1 > m2) ⇒ (h1 > h2) (12)

(w1 > w2) ∧ (m1 = m2) ⇒ (h1 > h2) (13)
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2. The Hurwicz’s criterion does not take into account the frequency of relatively high
and small payoffs belonging to the set of all profits assigned to a given alternative.
Therefore, two decisions with the same minimal and maximal profits always obtain
an identical Hurwicz’s index, even if one of them contains many small payoffs and
the second one—many high payoffs:

(w1 = w2) ∧ (m1 = m2) ⇒ (h1 = h2) (14)

For example, if the decision maker may choose one out of two alternatives: A1
with rewards 5,1,1,1,1 and A2 with rewards 5,5,5,5,1, the Hurwicz’s rule gives the
same value for both: h A1 = h A2 = α · 1 + (1 − α) · 5 = 5 − 4α, which is rather
unfair for the second one.

As within the classical Hurwicz’s procedure the DM’s utility function only uses
extreme profits, one may put forward a hypothesis that this rule ought to be applied
exclusively in two cases:

1. in problems with an even distribution of payoffs for each alternative, i.e. when the
number of rather optimistic scenarios is similar to the number of scenarios with
rather bad results or

2. in the process of decision making under interval uncertainty, i.e. when merely
the parameters w j and m j are known and when each value between them may
theoretically occur.

Two modified Hurwicz’s criteria for scenarios DMMU are proposed in Sect. 5. In
contradiction to the original method, they take into consideration both the level of
pessimism and how the payoffs related to a given decision are distributed.

5 Two modified Hurwicz’s criteria

The observations aforementioned encourage us to create a new method (or new meth-
ods) which takes into consideration both the minimal and the maximal value for each
alternative and the frequency of the worst and the best payoffs. The Sects. 5.1 and 5.2
contain a description of both proposed modified Hurwicz’s methods. The first tech-
nique (the APO method) is designed for a passive decision maker who is not interested
in carrying out a meticulous analysis of the payoffs matrix. The second procedure (the
SAPO method) takes better into account the DM’s preferences, but requires a more
active and conscious attitude in the decision making process.

5.1 Method I (the averages of good and bad results weighted by the pessimism and
optimism index: APO)

The first approach (the APO method) suggested combines elements of the Hurwicz’s
and the Laplace’s criterion. The procedure consists of five steps:

1. For each alternative I j present the payoffs as a non-increasing sequence Sq j =
(a1 j , . . . , as j , . . . , amj ) containing m terms (where m still denotes the number of
scenarios and s is the number of the term).
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2. Fix the value of the parameter C which signifies the number of good and bad terms
in the sequences [Eq. (15)]:

C = max{1, �m · min{α, 1 − α}�} (15)

3. For each alternative calculate the average of good results and the average of bad
results according to the Eqs. (16)–(17).

AI,max
j = 1

C

C∑

s=1

as j j = 1, . . . , n (16)

AI,min
j = 1

C

m∑

s=m−C+1

as j j = 1, . . . , n (17)

4. For each decision calculate the modified Hurwicz’s measure (H I) using the fol-
lowing expression:

H I
j = α · AI,min

j + (1 − α) · AI,max
j (18)

5. Select the strategy fulfilling the condition (19):

H I ∗
j = max

j
{H I

j } (19)

As mentioned before the technique presented above is similar both to the Hurwicz’s
rule and to the Laplace’s rule. On one side, the APO method takes advantage of
the pessimism index. On the other side, it consists in calculating the mean value
on the basis of all (when α equals 0.5) or almost all payoffs (when the decision
maker is a moderate optimist or pessimist) connected with a given alternative.

In the formulas (16) and (17) the averages of good and bad results are reduced to the
values m j and w j , respectively (i.e. the maximal and minimal payoff) when C = 1.
Such a situation occurs for min{α, 1 − α} ≤ 1

m .
The condition (15) allows to fit the cardinality (i.e. the number of elements) of the

subsequence of good and bad results to the level of optimism and pessimism. Thus, a
radical optimist or pessimist calculates the averages only on the basis of the extreme
values of particular alternatives, whereas the quantity of terms considered in both
averages is pointedly larger for moderate decision makers, which means that in the
second case the transitional values ai j ∈ (w j , m j ) have an influence on the modified
Hurwicz’s measure.

5.2 Method II (the shortened averages of good and bad results weighted
by the pessimism and optimism index: SAPO)

In the first suggested method the subsequences of good and bad payoffs are determined
by the level of the parameter α. It is a quite comfortable technique, nevertheless such
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an approach entails the risk of inserting rather bad results in the “good” subsequence
or rather good results in the “bad” subsequence. For example, if α = 0.4 and the
rewards of the alternative A1 are 5,1,1,1,1, the average of good results will include
two payoffs: 5 and 1, though the second value is not high at all.

In the second technique (the SAPO method) the cardinality of both subsequences
is determined by the level of the pessimism index (α) and by an additional parameter
allowing the decision maker to specify which range of values is really attractive for
him or her (“good” range) and which range of values is treated as a bad one (“bad”
range). The initial range may be determined by means of diverse procedures:

Method II.A. Separately for each alternative in a relative way (using deviation
degrees).
Method II.B. Separately for each alternative in an absolute way (using bounds).
Method II.C. Together for all alternatives in a relative way (using deviation
degrees).
Method II.D. Together for all alternatives in an absolute way (using bounds).

When the initial ranges are set in a relative way one can use parameters dmax
j and

dmin
j which signify the allowable degree of deviation from m j and w j , respectively

(where m j and w j still denote the maximal and the minimal payoff for the alternative
I j ). When the initial ranges are set together, then for all alternatives the deviation
degrees are dmax and dmin.

When the initial ranges are calculated in an absolute way one may use parameters
bmax

j and bmin
j which signify the lower bound of the “good” range and the upper

bound of the “bad” range, respectively. If the initial ranges are defined together for all
alternatives, then the bounds are the same and equal to bmax and bmin.

The parameters dmax
j and dmin

j or bmax
j and bmin

j are set arbitrarily by the decision

maker. The connection between parameters dmax
j , dmin

j and bmax
j , bmin

j is shown by
the Eqs. (20)–(21).

dmax
j = m j − bmax

j

m j − w j
(20)

dmin
j = bmin

j − w j

m j − w j
(21)

Remember that the parameters bmax
j , bmin

j , dmax
j and dmin

j ought to satisfy the follow-
ing conditions:

w j ≤ bmin
j < bmax

j ≤ m j (22)

dmax
j + dmin

j < 1 (23)

dmax
j , dmin

j ≥ 0 (24)

Of course, the methods II.A and II.D are these approaches which enable, in some
specific cases, to obtain a similar order of magnitude for each “good” range and for
each “bad” range. For example, if n = 2, w1 = 4, w2 = 3, m1 = 20, m2 =
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13, bmax = 12, bmin = 8, dmax
1 = 0.5, dmin

1 = 0.25, dmax
2 = 0.1, dmin

2 = 0.5, then
the initial ranges are the same for the relative (II.A) and absolute (II.D) approach:
[4;8] and [12;20] for the first alternative and [3;8] and [12;13] for the second one.
Analogical remarks may be formulated for the pair of methods II.B and II.C.

Here, for simplicity’s sake, we will discuss only the case when the “good” and
the “bad” range is defined by means of deviation degrees and these relative ranges
have the same allowable deviations for all alternatives. In such a situation we need
only two parameters: dmax and dmin, since dmax

1 = dmax
2 = . . . = dmax

j = dmax and

dmin
1 = dmin

2 = . . . = dmin
j = dmin.

Remark that the final ranges of “good” and “bad” results are usually shorter than
the initial ones due to the parameter α which represents the DM’s risk aversion and
has an impact on C (see the second step of the following method).

In this case the procedure consists of five steps:

1. For each alternative I j present the payoffs as a non-increasing sequence Sq j =
(a1 j , . . . , as j , . . . , amj ) containing m terms (where m still denotes the number of
scenarios and s is the number of the term).

2. For each alternative generate the subsequence of good results (SSqmax
j ) and the

subsequence of bad results (SSqmin
j ) using Eqs. (25) and (26):

SSqmax
j =

{
as j ∈ Sq j : (m j − dmax(m j − w j ) ≤ as j ≤m j ) ∧

(∣∣∣SSqmax
j

∣∣∣≤C
)

∧(as j → max)
}

j = 1, . . . , n (25)

SSqmin
j =

{
as j ∈ Sq j : (w j ≤ as j ≤w j + dmin(m j − w j )) ∧

(∣∣∣SSqmin
j

∣∣∣≤C
)

∧(as j → min)
}

j = 1, . . . , n (26)

where |SSqmax
j | and |SSqmin

j | signify the final cardinalities of both subsequences
and the parameter C is computed according to the constraint (15).
The Eq. (25) allows the decision maker to include in the subsequence SSqmax

j only
these elements of the whole sequence which belong to the range determined by the
deviation degree dmax. For example, if dmax = 0.2, m j = 20, w j = 5, then the
elements of SSqmax

j should satisfy the following constraint as j ∈ [20 − 0.2(20 −
5); 20] = [17; 20]. Notice that the final cardinality of SSqmax

j is additionally
limited by C which depends on the pessimism and optimism indices. Closer to 0
and 1 they are, less elements the subsequence SSqmax

j may contain. Such a relation
may be explained by the fact that more radical the decision maker is, more likely,
in his or her opinion, one of the extreme values is. If m = 10 and α = 0.2, SSqmax

j
may constist of at least two elements which, due to the last part of the Eq. (25),
must be the highest. Thanks to the parameters dmax and α the decision maker is
able to set a subsequence SSqmax

j which, from his or her point of view, is composed
of appropriate payoffs, because the formula (25) takes into consideration both the
subjective evaluation of “good” values and the DM’s risk aversion. The Eq. (26)
has an analogical interpretation.
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3. For each alternative calculate the average of good results and the average of bad
results, see Eqs. (27)–(28).

AI I,max
j = 1∣∣∣SSqmax

j

∣∣∣

∑

as j ∈SSqmax
j

as j j = 1, . . . , n (27)

AI I,min
j = 1∣∣∣SSqmin

j

∣∣∣

∑

as j ∈SSqmin
j

as j j = 1, . . . , n (28)

4. For each decision compute the modified Hurwicz’s measure (H II) using the fol-
lowing expression:

H I I
j = α · m+1−

∣∣∣SSqmin
j

∣∣∣
m AI I,min

j + (1 − α) · m−1+
∣∣∣SSqmax

j

∣∣∣
m AI I,max

j

(29)

The parameters m,

∣∣∣SSqmin
j

∣∣∣ ,
∣∣∣SSqmax

j

∣∣∣ inserted in the condition (29) enable to

take into consideration the size of both subsequences, i.e. the frequency of par-
ticular payoffs. As one can see the index H I I

j is proportional to the number of
good payoffs, i.e. the final cardinality of SSqmax

j , and inversely proportional to the

number of bad values, i.e. the final cardinality of SSqmin
j , because a given alter-

native is more attractive when it contains many high profits and few low results.

The fractions
m+1−

∣∣∣SSqmin
j

∣∣∣
m and

m−1+
∣∣∣SSqmax

j

∣∣∣
m are equal to 1 when particular subse-

quences consist of one term. If |SSqmin
j | increases, then the first fraction is smaller

than 1, but bigger than 0. The weight
m+1−

∣∣∣SSqmin
j

∣∣∣
m is a kind of punishment for

the alternative which number of bad results is high because such a distribution
of payoffs is not desirable for the decision maker. On the other hand, if |SSqmax

j |
increases, then the second fraction is bigger than 1, but smaller than 2. The weight
m−1+

∣∣∣SSqmax
j

∣∣∣
m is a kind of bonus for the alternative which number of good results

is high because such a distribution of payoffs is much-desired.
5. Select the strategy fulfilling the condition (30):

H I I ∗
j = max

j
{H I I

j } (30)

5.3 Demonstration and results

Let us analyze the results generated by both modified Hurwicz’s criteria (APO and
SAPO) for the case presented in Sect. 4 (Table 2). The first decision maker (A) was
an optimist (αA = 0.3). The second one (B) was a moderate pessimist (αB = 0.7).
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Table 5 Modified Hurwicz’s measures (H I) for projects P1, P2, P3 (optimist and pessimist type)—method
I (APO)

Decision maker DM A
(optimist type)

DM B
(pessimist type)

Project

P1 hI,A
P1 = 0.3 × 1 + 0.7 × 5.5 = 4.15 hI,B

P1 = 0.7 × 1 + 0.3 × 5.5 = 2.35

P2 hI,A
P2 = 0.3 × 5.25 + 0.7 × 9.5 = 8.23 hI,B

P2 = 0.7 × 5.25 + 0.3 × 9.5 = 6.53

P3 hI,A
P3 = 0.3 × 3 + 0.7 × 5 = 4.4 hI,B

P3 = 0.7 × 3 + 0.3 × 5 = 3.6

Method I.

1. The non-increasing sequences of payoffs:

SqP1 = (10, 1, 1, 1, 1) SqP2 = (9.5, 9.5, 9.5, 9.5, 1) SqP3 = (5, 5, 4, 4, 2)

2. The parameters C are the same for both decision makers:

C A = max {1, �5 · min {0.3, 0.7}�} = 2, C B = max {1, �5 · min {0.7, 0.3}�} = 2,

3. The average of good and bad results (see Eqs. 16–17):

AI,max
P1 = 1

2
(10 + 1) = 5.5 AI,min

P1 = 1

2
(1 + 1) = 1

AI,max
P2 = 9.5 AI,min

P2 = 5.25

AI,max
P3 = 5 AI,min

P3 = 3

4. Table 5 presents the modified Hurwicz’s measures H I
j for all business plans (see

Eq. 18).
5. In both cases (optimist and pessimist type) the alternative fulfilling the condition

(19) is the project P2. The ranking of projects changes depending on the value
of the pessimism index because in this example: AI,max

P2 > AI,max
P1 > AI,max

P3 and

AI,min
P2 > AI,min

P3 > AI,min
P1 .

Notice that according to the method I the project P1 could have been the best for the
optimist type of decision maker if at least one following condition had been satisfied:

• its highest value had significantly exceeded the highest payoffs of other projects.
• its highest value had occurred in more than one state of nature.
• the parameter α had been close to 0 (radical optimist).

As one can see the first modified Hurwicz’s rule is a little bit similar to the Laplace’s
approach, since it is based on an average of almost all payoffs treated as equally likely.
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Table 6 Modified Hurwicz’s measures (H II) for projects P1, P2, P3 (optimist and pessimist type)—method
II (SAPO)

Decision
maker

DM A
(optimist type)

DM B
(pessimist type)

Project

P1 H I I,A
P1 = 0.3 × 4

5 × 1 + 0.7 × 5
5 × 10 = 7.24 H I I,B

P1 = 0.7 × 4
5 × 1 + 0.3 × 5

5 × 10 = 3.56

P2 H I I,A
P2 = 0.3 × 5

5 × 1 + 0.7 × 6
5 × 9.5 = 8.28 H I I,B

P2 = 0.7 × 5
5 × 1 + 0.3 × 6

5 × 9.5 = 4.12

P3 H I I,A
P3 = 0.3 × 5

5 × 2 + 0.7 × 6
5 × 5 = 4.8 H I I,A

P3 = 0.7 × 5
5 × 2 + 0.3 × 6

5 × 5 = 3.2

Method II.

We will assume that dmax = dmin = 0.35.

1. The non-increasing sequences of payoffs:

SqP1 = (10, 1, 1, 1, 1) SqP2 = (9.5, 9.5, 9.5, 9.5, 1) SqP3 = (5, 5, 4, 4, 2)

2. The parameter C is still equal to 2:

C A = max{1, �5 · min{0.3, 0.7}�} = 2, C B = max{1, �5 · min{0.7, 0.3}�} = 2

The subsequences of good and bad results (see Eqs. 25–26):

SSqmax
P1 = {

as,P1 ∈ SqP1 : (10 − 0.35(10 − 1) ≤ as,P1 ≤ 10) ∧ ∣∣SSqmax
P1

∣∣
≤ 2 ∧ (as,P1 → max) } = (10)

SSqmin
P1 =

{
as,P1 ∈ SqP1 : (1 ≤ as,P1 ≤ 1 + 0.35(10 − 1)) ∧

∣∣∣SSqmin
P1

∣∣∣
≤ 2 ∧ (as,P1 → min) } = (1, 1)

SSqmax
P2 = (9.5, 9.5) SSqmin

P2 = (1)

SSqmax
P3 = (5, 5) SSqmin

P3 = (2)

3. The averages of good and bad results (see Eqs. 27–28):

AI I,max
P1 = 10 AI I,min

P1 = 1 AI I,max
P2 = 9.5 AI I,min

P2 = 1 AI I,max
P3 = 5

AI I,min
P3 = 2

4. Table 6 presents the modified Hurwicz’s measures H I I
j for all business plans (see

Eq. 29).
5. Here again the project P2 wins in both cases, but it is worth underlying that the

ranking changes depending on the parameters α and d.

Therefore for a radical pessimist (α = 1) the ranking is P3, P1 and P2. Meanwhile for
an extreme optimist (α = 0) the order is P1, P2, P3. For these two particular situations
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C = 1 and the frequency of the good and bad payoffs is always equal to 1/m. When
the parameter α is close to 0 or 1, or the parameters dmax and dmin are close to 0, then
the second modified Hurwicz’s criterion is reduced to the classical Hurwicz’s decision
rule.

6 Conclusions

The contribution concerns the Hurwicz’s criterion and its limited application for the
scenarios’ approach in decision making under uncertainty. As it was stated this rule
leads to more logical and rational results when instead of several possible scenarios’
payoffs each value from a given interval is theoretically probable or when the discrete
distribution of payoffs is rather uniform. Therefore, two new procedures designed for
DMMU with states of nature are proposed in the article. Both procedures enable to take
into consideration not only the extreme rewards connected with each decision, but also
these payoffs which are close to the minimal and maximal values. The first technique
proposed (the APO method) is designed for passive decision makers, i.e. for people
interested in getting a quick answer about the best decision just on the basis of their
level of risk aversion. The second procedure suggested (the SAPO method) allows to
better control the width and the contents of the range of good and bad results considered
in the modified Hurwicz’s measure. Nevertheless, this time the decision maker must
present a more active and conscious attitude in the decision making process. He or
she has to carefully analyze the payoffs assigned to each alternative and to determine
the width of the “good” and “bad” intervals by means of bounds or deviation degrees.
Here, we analyzed a case concerning the choice of an investment project, but actually
the methods described may be used in each decision making process within which
each alternative is characterized by only one criterion (or one synthetic measure) and
the goal of the decision maker is to find the optimal pure strategy.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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