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Abstract We consider the computational complexity of optimizing various classes
of continuous functions over a simplex, hypercube or sphere. These relatively simple
optimization problems arise naturally from diverse applications. We review known
approximation results as well as negative (inapproximability) results from the recent
literature.
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1 Introduction

Consider the generic global optimization problem:

f := min { f (x) : x ∈ K } , (1)

for some continuous f : K �→ R and compact convex set K ⊂ R
n , and let

f̄ := max { f (x) : x ∈ K } .

In this short survey we will consider the computational complexity of computing or
approximating f (or f̄ ) in the case where K is one of the following three sets:
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112 E. de Klerk

• the standard (or unit) simplex:

�n :=
{

x ∈ R
n :

n∑
i=1

xi = 1, x ≥ 0

}
,

• the unit hypercube [0, 1]n ,
• the unit sphere: Sn := {x ∈ R

n : ‖x‖ = 1}.
Problem (1) arises naturally from diverse applications for these choices of K , and we
only mention a few.

For the simplex, and quadratic f , the applications include finding maximum stable
sets in graphs, portfolio optimization, game theory, and population dynamics problems
[see the review paper by Bomze (2002) and the references therein]. A recent application
is the estimation of crossing numbers in certain classes of graphs (de Klerk et al. 2006).
Another application is testing matrix copositivity—recall that an n × n matrix A is
called copositive if minx∈�n xT Ax = 0. Recent seminal work on certifying matrix
copositivity was done by Parrilo (2000), and the topic has also enjoyed attention in
the more general setting of copositive programming; see e.g. Burer (2006) and the
references therein.

The following example is of optimization of a general non-polynomial f over the
simplex, that occurs in multivariate interpolation, and in finite element methods (see
Hesthaven 1998).

Example 1.1 Given is a finite set of interpolation points � ⊂ �n . Denote the funda-
mental Lagrange polynomial associated with an interpolation point θ ∈ � by ��θ . In
other words, for x ∈ �:

��θ (x) =
{

1 if x = θ

0 else.

For a given g : R
n → R, the associated Lagrange interpolant of g with respect

to � is:

L�(g)(x) :=
∑
θ∈�

g(θ)��θ (x).

Note that L�(g) interpolates g at the points in �.
The associated Lebesgue constant is defined as

�(�) := max
x∈�n

∑
θ∈�

∣∣��θ (x)∣∣ .
The Lebesgue constant is important in bounding the error of approximation, since one
can show that

‖L�(g)− g‖∞ ≤ (1 +�(�))‖g − p∗‖∞,
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The complexity of optimizing over a simplex, hypercube or sphere 113

where the norm is the supremum norm on�n , and p∗ is the best possible polynomial
approximation of g of the same degree as L�(g).

Thus, to compute the Lebesgue constant for �, we should maximize f (x) =∑
θ∈� |lθ (x)| over the simplex �n .

For K = [0, 1]n and quadratic f , the examples include the maximum cut problem in
graphs (see below). For general f , it includes many engineering design problems where
simple upper and lower bounds on the variables are given, and no other constraints
are present. These problems are sometimes referred to as “box constrained global
optimization problems”.

For K = Sn (the sphere), problem (1) becomes a minimal eigenvalue problem for a
quadratic form f (x) = xT Qx , by the Rayleigh–Ritz theorem. For general quadratic
functions it contains the trust region problem, that appears in many nonlinear program-
ming algorithms as a sub-problem. For general forms (homogeneous polynomials), it
contains the classical problem of deciding whether a given form is positive semidefi-
nite; see e.g. Parrilo (2000).

2 Models of computation and complexity

Most of the optimization problems we will consider will be NP-hard (in a sense to be
explained below), and we will therefore be interested in approximating the optimal
values as well as possible in polynomial time.

One encounters two basic models of computation in the optimization literature,
namely the bit (or Turing machine) model (see e.g. Garey and Johnson 1979), and
the real number (or BSS) model (Blum et al. 1989). Both models may be extended to
include randomized algorithms, by allowing a unbiased coin-toss as an operation, see
e.g. Motwani and Raghavan (1995).

2.1 The real number (BSS) model in continuous optimization

In the real number model, the input is a finite set of real numbers, and an arithmetic
operation between two real numbers requires one unit of time. A typical extension of
this model, used in optimization, is the so-called black box optimization model. Here,
typically the time required for evaluation of f is viewed as requiring one unit of time
as well [see e.g. Chap. 6 in Vavasis (1991) as well as Nemirovsky and Yudin (1983)].
This framework allows one to treat very general optimization problems. The black box
models falls in the framework of information-based complexity, see e.g. Traub et al.
(1988). In particular, admissible information operations are specified beforehand, like
evaluating f or a sub-gradient of f at unit cost. The complexity of approximating
the solution to a problem in this model is expressed in terms of the dimension n, the
required accuracy, and the number of admissible information operations that were
performed in obtaining the approximation.

2.2 The Turing (bit) model in continuous optimization

In the bit model, the input of a Turing machine must be encoded as a string of symbols.
This is clearly restrictive when dealing with a large class of objective functions f . Thus
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we are more-or-less limited to polynomials and rational functions which may be coded
in terms of their coefficients in some basis, provided these coefficients are rational.

In this paper, when dealing with the bit model, we will only consider the class of
polynomials with rational coefficients. We do note that it is possible to deal with more
general functions by using the most general theory of polynomial-time computable
functions (see e.g. Weirauch 1998), but this extension in beyond the scope of this
survey.

2.3 Complexity of continuous optimization

We now consider the input data that defines an instance of problem (1) for the two
models of computation. Clearly, an instance is determined by the function f and the
set K .

In the black box model, f enters the input as a black box subroutine that may be
called at unit cost. The set K is represented in the input by the number of variables n.

In the bit model, we need an encoding of f in terms of an alphabet. Since we will
only deal with polynomials in the bit model, this encoding can be a binary encoding
of the coefficients of the polynomial in the standard monomial basis.

Recall that the definition of the complexity class NP is the class of “yes/no” decision
problems where a “yes-instance” has a certificate that may be verified in polynomial
time. In combinatorial optimization, one does not need to distinguish between opti-
mization problems and “yes/no” decision problems from the complexity viewpoint,
but in continuous optimization the situation is more complicated.

If problem (1) is such that suitable necessary and sufficient optimality conditions are
known via duality theory, then one may reformulate problem (1) as a “yes/no” decision
problem. For example, one may formulate a linear programming (LP) problem (i.e.
problem (1) in the special case where f is linear and K a polytope) as: “do there exist
primal and dual feasible solutions with zero duality gap?” In this sense, LP is in NP
in both the bit and real number models. In fact, the LP problem is known to be in P in
the bit model by a celebrated result of Khachiyan (1979). Likewise, convex quadratic
programming (where f is convex quadratic and K a polytope) is known to be in P in
the bit model (see e.g. Chap. 3 in Vavasis 1991). However, the complexity of LP is not
known in the real number model.

In general, though, problem (1) does not allow such a reformulation as a decision
problem, and the complexity of continuous optimization is therefore often studied in
the following “decision version” setting.

Definition 2.1 (Decision version of problem (1)) Given a value γ , as well as input f
and K (coded as described above), does there exist a x̄ ∈ K such that f (x̄) ≤ γ ?

Notice that the value γ is part of the input of this decision problem, and it must be
rational in the bit model.

When we make a statement of the type that problem (1) is NP-hard for some class
of functions and some choice of K , we usually refer to the decision version of the
problem.
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The complexity of optimizing over a simplex, hypercube or sphere 115

This decision problem is clearly in NP for the real number model, but the situation
is much more difficult for the bit model. It is known, but already difficult to show, that
general quadratic programming is in NP in the bit model (see e.g. Chap. 4 in Vavasis
1991). The author is not aware of more general results of this type.

2.4 Notions of approximation

One has to be careful when defining the notion of an approximation to an optimal
solution of problem (1). The reason is that we usually do not know the range f̄ − f

of function values on K in advance. If f̄ − f is small compared to a given ε, then it
is not satisfactory to only compute some x ∈ K with the property that f (x)− f < ε.

It is therefore better to find an x ∈ K such that f (x)− f < ε( f̄ − f ), since we then
know that f (x) belongs to the ε fraction of lowest function values.

The next definition is based on this idea, and has been used by several authors,
including Ausiello et al. (1980), Bellare and Rogaway (1995), Bomze and De Klerk
(2002), de Klerk et al. (2007b), Nesterov et al. (2000), and Vavasis (1992).

Definition 2.2 A value ψε is called a (1 − ε)-approximation of f for a given
ε ∈ [0, 1] if

|ψε − f | ≤ ε( f̄ − f ). (2)

If we replace condition (2) by the condition

|ψε − f | ≤ ε, (3)

then we speak of a (1 − ε)-approximation of f in the weak sense.

The following definitions are essentially from de Klerk et al. (2007b), and are
consistent with the corresponding definitions in combinatorial optimization (see e.g.
Garey and Johnson 1979, Sect. 6.1).

Definition 2.3 (Polynomial time approximation algorithm) Fix ε > 0 and a class
of continuous functions on K , say F . An algorithm Aε is called a polynomial time
(1 − ε)-approximation algorithm for problem (1) for the function class F , if the
following holds:

1. For any instance f ∈ F , Aε takes f and K as input and computes an xε ∈ K
such that f (xε) is a (1 − ε)-approximation of f ;

2. the number of operations required for the computation of xε is bounded by a
polynomial in n, and

• in the bit model: in the bit size of f ;
• in the real number model: in the number of operations performed in evaluating

f and its subgradients/derivatives where applicable;
• in the black box model: in the number of admissible information operations

(like evaluating f ) that are performed.
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Definition 2.4 (PTAS) We say that problem (1) allows a polynomial time approxima-
tion scheme (PTAS) for a function class F , if for every ε > 0, it has a polynomial
time (1 − ε)-approximation algorithm.

Definition 2.5 (FPTAS) An algorithm A is called a fully polynomial time approxi-
mation scheme (FPTAS) for problem (1) for the function class F , if the following
holds:

1. For any instance f ∈ F and any ε > 0, A takes f , ε, and K as input and computes
an xε ∈ K such that f (xε) is a (1 − ε)-approximation of f ;

2. the number of operations required for the computation of xε is bounded by a
polynomial in n, 1/ε, and
• in the bit model: in the bit size of f ;
• in the real number model: in the number of operations performed in evaluating

f and its subgradients/derivatives where applicable;
• in the black box model: in the number of admissible information operations

(like evaluating f ) that are performed.

These definitions can be adapted in an obvious way for maximization problems, or
if the approximations are in the weak sense of (3).

3 Inapproximability results

We first review negative approximation results for problem (1). We will see that, in
a well-defined sense, optimization over the hypercube is much harder than over the
simplex, while the complexity of optimization over a sphere is somewhere in between.
In what follows, if the model of computation is not specified, then the bit model is
assumed.

3.1 The case of the simplex

If K = �n , then computing f is an NP-hard problem, already for quadratic polyno-
mials, as it contains the maximum stable set problem as a special case. (Recall that a
stable set of a graph is a subset of vertices such that no two vertices in this subset are
adjoint, and that a maximum stable set is a stable set of maximum cardinality.)

Indeed, let G be a graph with adjacency matrix A and let I denote the identity
matrix; then the maximum size α(G) of a stable set in G can be expressed as

1

α(G)
= min

x∈�|V |
xT (I + A)x

by a theorem of Motzkin and Straus (1965). Moreover, this problem cannot have a
FPTAS, unless all problems in NP can be solved in randomized polynomial time; this
is due to a inapproximability result for the maximum stable set problem by Håstad
(1999).
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The complexity of optimizing over a simplex, hypercube or sphere 117

Before stating the result, recall that ZPP is the class of problems that may be solved
by a randomized (Las Vegas) algorithm running in expected polynomial time; for a
more precise definition see Motwani and Raghavan (1995).

Theorem 3.1 (Håstad) Unless NP = ZPP, one cannot approximate α(G) to within a
factor |V |(1−ε) for any ε > 0.

Corollary 3.1 Unless NP = ZPP, there is no FPTAS for problem (1) for the class of
quadratic functions and K = �n.

3.2 The case of the hypercube

If K = [0, 1]n and f quadratic, then problem (1) contains the maximum cut problem
in graphs as a special case. Indeed, for a graph G = (V, E) with Laplacian matrix L ,
the size of the maximum cut is given by (see Goemans and Williamson 1995; Nesterov
1998):

|maximum cut| = max
x∈[−1,1]|V |

1

4
xT Lx = max

x∈[0,1]|V |
1

4
(2x − e)T L(2x − e), (4)

where e is the all-ones vector. The maximum cut problem does not allow a PTAS, as
the following theorem shows.

Theorem 3.2 (Håstad 2001) Unless P = NP, there is no polynomial time
16/17-approximation algorithm for the maximum cut problem (4).

It follows that problem (1) does not allow a PTAS for any class of functions that
includes the quadratic polynomials if K = [0, 1]n .

A related negative result is due to Bellare and Rogaway (1995), who proved that if
P 
= NP and ε ∈ (0, 1/3), there is no polynomial time (1−ε)-approximation algorithm
in the weak sense for the problem of minimizing a polynomial of total degree d ≥ 2
over all sets of the form K = {x ∈ [0, 1]n | Ax ≤ b}.

A general (negative) result in the black box model is the following.

Theorem 3.3 (Theorem 6.1 in Vavasis 1991) For K = [0, 1]n and the class of f with
Lipschitz constant L, the worst case complexity of computing a (1−ε)-approximation
of f in the weak sense is between

(
L

2ε

)n

and

(
L

2ε
+ 1

)n

in the black box model.

More results of this type may be found in Novak (1988) and Horn (2006).
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3.3 The case of the sphere

Nesterov (2003) showed that maximizing a cubic form (homogeneous polynomial) on
the unit sphere is an NP-hard problem, using a reduction from the maximum stable
set problem.

Theorem 3.4 (Nesterov) Consider a graph G = (V, E) with stability number α(G).
One has

√
1 − 1

α(G)
= 3

√
3 max

‖x‖2+‖y‖2=1

∑
i< j

{i, j}/∈E

yi j xi x j .

Note that this indeed involves maximizing a (square free) form of degree 3 in the
variables x and y over the unit sphere. Also note that the number of variables is
polynomial in |V |, since the x variables correspond to the vertices of G, and the y
variables correspond to the edges of the complement of G.

In view of the inapproximability result for the maximum stable set problem in
Theorem 3.1, we have the following corollary.

Corollary 3.2 Unless NP = ZPP, there is no FPTAS for minimizing square free degree
3 forms over the unit sphere.

4 Approximation results

4.1 The case of the simplex

We now consider the complexity of (approximately) solving problem (1) for K = �n .

Easy cases

Problem (1) can be solved in polynomial time or allows a PTAS for the following
classes of functions:

• f is concave; in this case the global minimum of f is attained at one of the n
extreme points of �n ;

• f is convex quadratic; here problem (1) is a special case of the general convex
quadratic programming problem, that may be solved in polynomial time in the bit
model; see e.g. Chap. 3 in Vavasis (1991);

• in the black box model, if f is convex with Lipschitz constant L and both f and
its (sub)gradient may be evaluated with unit cost (by a black box) at any x ∈ �n ,
then the ellipsoid algorithm of Yudin and Nemirovski (see e.g. Nemirovsky and
Yudin 1983) yields an x̄ ∈ �n such that f (x̄)− f ≤ ε in at most

2n(n + 1)(ln(L/ε)+ ln n)+ 2
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The complexity of optimizing over a simplex, hypercube or sphere 119

iterations. Each iteration requires one function evaluation and one (sub)gradient
evaluation (see Sect. 6.3 in Vavasis 1991).
This remains true if K is the unit hypercube or unit ball. In summary, we may state
this as a theorem.

Theorem 4.1 (Yudin-Nemirovski) In the black box model, problem (1) allows a
FPTAS in the weak sense for the class of convex, Lipschitz continuous functions
with a given (fixed) Lipschitz constant, for K = �n, K = [0, 1]n or K the unit
ball in R

n.

Results for polynomial f

Bomze and De Klerk (2002) showed that, for K = �n and f quadratic, problem
(1) allows a PTAS. One of the PTAS algorithms that they considered is particularly
simple: it evaluates f on the regular grid

�(n,m) := {
x ∈ �n : mx ∈ N

n
0

}
,

and returns the lowest value. In other words, it computes the value

f�(n,m) := min
x∈�(n,m) f (x).

Note that |�(n,m)| = (n+m−1
m

)
which is a polynomial in n for fixed m.

Bomze and De Klerk (2002) showed the following.

Theorem 4.2 (Bomze, De Klerk) Let f be quadratic. One has

f�(n,m) − f ≤ 1

m
( f̄ − f ) (5)

for any m ≥ 1.

Corollary 4.1 (Bomze, De Klerk) There exists a PTAS for minimizing quadratic poly-
nomials over the unit simplex.

This PTAS result was extended to polynomials of fixed degree by de Klerk et al.
(2007b). Earlier, related results were obtained by Faybusovich (2004).

Theorem 4.3 (de Klerk et al. 2007b) Let f (x) be a form of degree d and r ≥ 0 an
integer. Then,

f�(n,r+d) − f ≤ (1 − wr (d))

(
2d − 1

d

)
dd( f̄ − f ), (6)

where

wr (d) := (r + d)!
r !(r + d)d

=
d−1∏
i=1

(
1 − i

r + d

)
. (7)
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One can verify that

1 −
(

d

2

)
1

r + d
≤ wr (d) ≤ 1,

which implies that limr→∞wr (d) = 1.

Corollary 4.2 (de Klerk et al. 2007b) Fix d ∈ N. There exists a PTAS for minimizing
forms of degree d over the unit simplex.

The optimization algorithm that evaluates f on a regular grid was studied in detail by
Nemirovsky and Yudin (1983) in a more general context in the black box model. In
particular, they showed that this algorithm has the best worst case complexity in some
situations. The interested reader is referred to Nemirovsky and Yudin (1983) and to
Traub et al. (1988), Chap. 8.

There also exist more sophisticated (and practical) PTAS algorithms for minimizing
forms of fixed degree over the simplex that employ linear or semidefinite programming.
For example, the authors of de Klerk et al. (2007b) consider

f (r)min,LP := max λ s.t. the polynomial

(
n∑

i=1

xi

)r
⎛
⎝ f (x)− λ

(
n∑

i=1

xi

)d
⎞
⎠

has nonnegative coefficients (r = 0, 1, . . .)

Note these bounds may be computed using LP, and this computation may be performed
in polynomial time when r and d are fixed. Moreover, it is shown in de Klerk et al.
(2007b) that

0 ≤ f − f (r)min,LP ≤
(

1

wr (d)
− 1

) (
2d − 1

d

)
dd( f̄ − f ), (r = 0, 1, . . .),

where wr (d) was defined in (7). Thus the values f (r)min,LP also provide a PTAS, since

lim
r→∞wr (d) = 1.

One may also define semidefinite programming (SDP) based bounds that are at
least as strong as the LP ones:

f (r)min,SDP := max λ s.t. the polynomial

(
n∑

i=1

x2
i

)r
⎛
⎝ f (x ◦ x)− λ

(
n∑

i=1

x2
i

)d
⎞
⎠

is a sum of squares of polynomials (r = 0, 1, . . .),

where “◦” is the component-wise (Hadamard) product. Note that f ≥ f (r)min,SDP ≥
f (r)min,LP.
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Results for non-polynomial f

Recently, de Klerk et al. (2007a) derived approximation results for (not necessarily
polynomial) functions that meet a Lipschitz condition of given order.

Once again, the underlying algorithm is simply the evaluation of f on a suitable
regular grid.

Before defining this class of functions, recall that the modulus of continuity of
f on a compact convex set K is defined by

ω( f, δ) := max
x,y∈K

‖x−y‖≤δ
| f (x)− f (y)|.

We now define the class LipL(α) of functions that meet the Lipschitz condition of
given order α > 0 with respect to a given constant L > 0:

LipL(α) := {
f ∈ C(�n) : ω( f, δ) ≤ δαL

}
. (8)

This condition is also called a Hölder continuity condition. (Some authors reserve the
term “Lipschitz” for the case α = 1.)

Theorem 4.4 (De Klerk, Elabwabi, Den Hertog) Let ε > 0, α > 0, and L > 0 be
fixed and assume f ∈ LipL(α) [see (8)].

Then, for

m =
⌈(

2L

ε

) 1
2α

⌉
,

one has

f�(n,m) − f ≤ ε,

where f�(n,m) := minx∈�(n,m) f (x) requires a number of function evaluations that is
bounded by a polynomial in n.

This theorem implies a PTAS in the weak sense for minimizing functions from the
class LipL(α) over �n , for fixed L and α, in the black box model.

If we compare this result with the corresponding result for the hypercube
(Theorem 3.3), we see that the worst-case complexity is exponential in n for the
hypercube, but polynomial in n for the simplex. This illustrates again the stark differ-
ence in complexity between the two cases.

Note that Theorem 4.4 does not imply Corollary 4.2. de Klerk et al. (2007a) also
identified a further class of functions that allow a PTAS in the black box model. This
class includes the polynomials of fixed degree, and is defined in terms of suitable
bounds on the higher order derivatives of f . The interested reader is referred to de
Klerk et al. (2007a) for more details.

It is still an open question to completely classify the classes of functions that allow
a PTAS.
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4.2 The case of the hypercube

For the maximum cut problem there is a celebrated polynomial time 0.878-
approximation algorithm due to Goemans and Williamson (1995), who suggested
the following SDP relaxation of the maximum cut problem (4):

|maximum cut| ≤ OPT := max
X

{
1

4
trace(L X) | diag(X) = e, X 
 0

}
, (9)

where e is the all-ones vector, and X 
 0 means that X is a symmetric positive
semidefinite matrix.

Goemans and Williamson (1995) also devised a randomized rounding scheme that
uses the optimal solution of (9) to generate cuts in the graph. Their algorithm produces
a cut of cardinality at least 0.878 OPT ≥ 0.878|maximum cut|.

Related approximation results for quadratic optimization over a hypercube were
given by Nesterov (1998) and Nesterov et al. (2000). In particular, Nesterov showed
the following.

Theorem 4.5 (Nesterov 1998) There exists a (randomized) polynomial time 2/π
approximation algorithm for the problem of maximizing a convex quadratic function
over [0, 1]n.

Notice that the objective function in the maximum cut problem (4) is convex
quadratic, since the Laplacian matrix of a graph is always positive semidefinite. Thus
the theorem by Nesterov covers a larger class of problems than maximum cut, but
the 2/π constant is significantly lower than the 0.878 obtained by Goemans and
Williamson.

4.3 The case of the sphere

The complexity of optimization over the sphere is still relatively poorly understood,
compared to the simplex or hypercube. To be more precise, there still is a big gap
between approximation and inapproximability results.

Easy case: quadratic optimization over the unit ball

Consider the problem of minimizing a quadratic function f (x) = xT Bx + 2aT x + α
over the unit ball ‖x‖ ≤ 1. By the S-procedure of Yakubovich (1973) (see also Polyak
1998, and the recent survey Pólik and Terlaky 2007) this problem may be rewritten as
a semidefinite program as follows.

min‖x‖≤1
f (x) = max

β,τ≥0
β

subject to [
B a

aT α − β

]

 τ

[−I 0
0T 1

]
.

123



The complexity of optimizing over a simplex, hypercube or sphere 123

In fact, one may show (see Sect. 4.3 in Vavasis 1991), that the problem is polynomially
solvable in the bit model. [This is a stronger statement, since the complexity of SDP
is only known to be either in NP ∩ co − NP or not in NP ∪ co − NP in the bit model,
and to be in NP ∩ co − NP in the real number model Ramana (1997).]

Results for polynomial objective functions

The result in Corollary 4.2 implies that there exists a PTAS for minimizing even forms
of fixed degree on the unit sphere. (Recall that a form is called even if all exponents
are even.)

Recently, Barvinok (2007) has proved another partial result: one may derive a
randomized PTAS for maximizing a form on the sphere for a special class of forms
called (δ, N )-focused forms.

Definition 4.1 (Barvinok) Assume f is a form of degree d. Fix a number 0 < δ ≤ 1
and a positive integer N > d. We say that f : R

n → R is (δ, N )-focused if there exist
N unit vectors c1, . . . , cN in R

n such that cT
i c j ≥ δ for all i, j ∈ {1, . . . , N }, such

that the form f can be written as

f (x) =
∑

I⊂{1,...,N }
|I |=d

αI

∏
i∈I

cT
i x,

for some nonnegative scalars αI .

Theorem 4.6 (Barvinok) There exists an absolute constant γ > 0 with the following
property. For any δ > 0, for any positive integer N, for any (δ, N )-focused form
f : R

n → R of degree d, for any ε > 0, and any positive integer

k ≥ γ ε−2δ−2 ln(N + 2),

the inequality

(1 − ε)d/2 max
x∈Sn∩L

f (x) ≤
(

k

n

)d/2

f̄ ≤ (1 − ε)−d/2 max
x∈Sn∩L

f (x)

holds with probability at least 2/3 for a random k-dimensional subspace L ⊂ R
n.

One may solve the problem maxx∈Sn∩L f (x) in polynomial time using techniques
from computational algebraic geometry, since L is of fixed dimension, and therefore
the number of variables in the resulting optimization problem is in fact fixed. Thus we
obtain the following corollary.

Corollary 4.3 (Barvinok) Fix δ > 0, N ∈ N, and d ∈ N. There exists a (randomized)
PTAS for minimizing (δ, N )-focused forms of degree d over the unit sphere.

It is still an open question whether this result can be extended to all forms of fixed
degree.
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5 Conclusion and discussion

Approximation algorithms have been studied extensively for combinatorial optimiza-
tion problems, but have not received the same attention for NP-hard continuous
optimization problems. Indeed, most of the early, seminal results on approximation
in continuous optimization have focused on the convex case, and most of the results
described in this survey for non-convex global optimization were obtained in the last
decade.

There is also not much computational experience yet with approximation algorithms
for nonlinear programming in the non-convex case. The only significant exception so
far is for semidefinite programming relaxations for quadratic optimization on the
simplex or the hypercube.

It is therefore the hope of this author that this relatively young research area will
attract both theoretically and computationally minded researchers.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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