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Abstract
Phosphorus is an important element for agriculture and industry, but its deposits are not uniformly distributed. Countries 
that do not have primary sources are dependent on imports or regeneration from secondary materials. A widely available 
secondary source is sewage sludge. Used environmental standards govern sludge treatment, but its inclusion in the raw 
material policy is often missing. We focus on the Czech Republic (a European Union member) and Japan, countries with-
out phosphorus deposits. Based on our analysis of sewage sludge flows, legislation, and technologies used, we aimed to 
evaluate approaches towards sustainable phosphorus policy. We figured out that in the Czech Republic, sludge application 
to soil continues due to legislation deregulation and thus, various pollutants enter the soil along with the sludge. In Japan, 
thermal treatment predominates, but ash is not processed, and phosphorus is irreversibly lost in landfills or construction. By 
not implementing a functional P-recovery policy, both countries lose more than 13 % replacement of phosphorus fertilisers 
from their sources.
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Introduction

The scarcity of raw materials has led to materials that were 
previously considered waste coming to the fore. Today, sew-
age sludge is considered a source of phosphorus: one of 
the raw materials on the EU’s list of Critical Raw Materi-
als (European Commission 2020). Phosphorus is essential 
for agriculture and industry, but its price is increasing and 
resources are limited (IndexMundi 2023; Zhang 2019). 
Therefore, P-recovery technologies are becoming more 
critical as phosphorus supplies become scarcer and prices 
rise. Phosphorus from sludge represents a way to ensure at 

least some self-sufficiency. However, it must be recovered 
in a pure (non-hazardous) form.

Traditional sludge disposal techniques, such as applica-
tion to agricultural land, composting, or landfilling of sludge 
or residues after sludge thermal treatment, are beginning to 
be restricted in some countries (Bauer et al. 2020; Hudcová 
et al. 2019; Santos et al. 2021). In order to avoid the spread 
of pollutants in the environment (Huygens et al. 2022), an 
increase in antibiotic resistance (Hubeny et al. 2021; Jau-
regi et al. 2021), eutrophication (Kidd et al. 2007; McBride 
2022), or losses of raw materials is observed. New sludge 
treatment technologies are being implemented, such as 
pyrolysis, carbonisation, and gasification. The proportion 
of mono-incinerated sludge is increasing, and P-recovery 
technologies are gaining strategic importance in the field 
of partially mitigating P import dependence (Hušek et al. 
2022). The legislation can be considered to be the most sig-
nificant driving force in sludge disposal (treatment). Bans, 
new limits, and strategies compel industry and research to 
look for new technologies that meet legislative requirements.

In this article, we present unpublished data on sewage 
sludge treatment from two different and contrasting coun-
tries: the Czech Republic and Japan. The countries differ 
in size, geography, legislation, approach to sewage sludge 
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treatment, and the technologies used. The Czech Republic, 
a member state of the European Union, has long preferred to 
use sewage sludge directly on agricultural land. On the other 
hand, Japan has been indirectly using sludge for construction 
or landfilling in recent years.

Some countries, such as Germany and Switzerland, which 
do not have their own phosphorus sources, have made phos-
phorus recovery from the sludge use mandatory in their 
legislation to improve their raw material security. However, 
in our two target countries, this suitable policy is lacking. 
Therefore, we expect that current Japanese and Czech sludge 
treatment strategies are insufficient to achieve at least partial 
self-sufficiency in phosphorus production.

Literature review

Sewage sludge is generated during wastewater treatment and 
contains organic matter (Carabassa et al. 2018; Romanos 
et al. 2019), nitrogen (Deviatkin et al. 2019; Munasinghe-
Arachchige et al. 2020), phosphorus (Meng et al. 2019; 
Yu et al. 2021), and various pollutants such as heavy met-
als (Buta et al. 2021; Chu and He 2021), pharmaceuticals 
(Ivanová et al. 2018; Silva et al. 2021), endocrine disruptors 
including hormones (Černá et al. 2022; Šauer et al. 2021; 
Wang et al. 2020), PFASs (Fredriksson et al. 2022; Kim 
Lazcano et al. 2019; Semerád et al. 2020), PAHs (Sun et al. 
2019; Tomczyk et al. 2020), pathogens (López et al. 2020; 
Romanos et al. 2019), and microplastics (Corradini et al. 
2019; Koyuncuoğlu and Erden 2021; Pim van den Berg et al. 
2020). The presence of pollutants makes direct application 
on soil imprudent and determines the level and methods 
of sludge disposal (treatment), considering the standards 
for environmental protection and raw material conception 
(P-recovery) in a given country.

Sludge disposal (treatment) methods have long been pre-
sented at the level of statistical offices or agencies with an 
environmental interest, for example, ANZBP (2022), CEN-
STATD HK (2018), Eurostat (2022), or US EPA (2022). 
However, a trend in applied science and research has also 
been observed in recent years, with individual scientists 
publishing papers with a focus on sewage sludge treatment 
from countries of their interest in the field of sludge mate-
rial flows, composition, post-treatment products (ash and 
sludge-char), available technologies and their limitations, 
and legislation with a frequent focus on phosphorus con-
tent and P-recovery. Amann et al. (2022) described sludge 
treatment methods for more than 600 WWTPs (wastewater 
treatment plants) in Austria with more than 2000 popula-
tion equivalents (PE). Most of the phosphorus ended up in 
landfills or landscaping where it was not used adequately. 
The heavy metals in the applied sewage sludge still contrib-
uted to the contamination (loading) of agricultural soils at 

a rate of approximately 20 % of the heavy metals contained 
in the wastewater. According to Krüger and Adam (2015), 
approximately 13 % of German phosphate rock-based min-
eral fertilisers could be replaced after ash treatment from 
operating sewage sludge mono-incineration. However, as a 
prerequisite, the ash must be safely processed in P-recovery 
plants due to heavy metal content and low P bioavailability. 
In general, thermal treatment of sewage sludge has long been 
the predominant method in Germany, accounting for more 
than 70 % (mono- and co-incineration, cement plants, or 
incinerators) since 2018 (Destatis 2023; Schnell et al. 2020). 
In the future, it is expected that the amount of sludge inciner-
ated in mono-incineration plants will increase at the expense 
of other plants (e.g. cement, co-incineration, or waste) to 
recover phosphorus (Schnell et al. 2020). Smol et al. (2020a) 
analysed sludge ash from 6 of 11 mono-incineration plants in 
Poland for the content of 25 different elements, of which the 
phosphorus content of the ash ranged from 7 to 13 %. Other 
articles on the Poland issue were published by Przydatek and 
Wota (2020), Rosiek (2020), Vambol et al. (2023), or Smol 
et al. (2020b). Chen et al. (2021) published a comprehen-
sive analysis of dewatered sewage sludges from 32 different 
WWTPs in Japan with an average P content in sewage sludge 
of 2.8 % ± 0.7 % (digested and undigested). On the contrary, 
in China, according to Wang et al. (2018), the average phos-
phorus content of sewage sludge was 1.7 % ± 0.5 %. Further-
more, many other country case studies have been published 
in the field of sewage sludge treatment, for example, Bhutan 
(Dorji et al. 2019), Croatia (Đurđević et al. 2022, 2019), 
Egypt (Abdel Wahaab et al. 2020), France (Munoz et al. 
2022; Pradel 2019), Italy (Campo et al. 2021; Mininni et al. 
2019), Morocco (Ghacha et al. 2020), and Nigeria (Nikolo-
poulou et al. 2023).

Compared to our target countries, a phosphorus recov-
ery strategy has been implemented in Switzerland and 
Germany. In Switzerland, sludge application on agricul-
tural land is prohibited (Schinkel et al. 2022), and phos-
phorus recovery from sludge and sludge ash is mandatory 
from 2026 (Mehr et al. 2018). Germany forces the imple-
mentation of P-recovery strategies for WWTP operators, 
depending on the plant size. Plants over 100,000 popula-
tion equivalent (PE), with phosphorus in dry matter > 2 %, 
will be required to recover phosphorus in 2029, and it will 
not be possible to apply sludge on agricultural land. From 
2032, the same will apply to installations above 50,000 PE 
(Mayer et al. 2021; Sichler et al. 2022). In Austria, new 
legislation is being prepared, which, if approved, would 
make sludge incineration and P-recovery mandatory for 
WWTPs above 20,000 EO from 2030 (European Commis-
sion 2022). We believe that P-recovery must be superordi-
nate to other sewage sludge treatment methods to secure 
critical supplies for industry and consumer protection.
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Methodology

Data on sewage sludge production and treatment were 
taken from the Czech Statistical Office (CZSO) and the 
Japan Sewage Works Association (JSWA). Data are based 
on a statistical survey of economic entities of interest 
(reporting units) for a given calendar year or, in the case of 
JSWA, for the fiscal year (FY = April to March). The fiscal 
year 2015 is the period of 1.4.2015–31.3.2016 and 2020 
1.4.2020–31.3.2021. The production and processing tables 
published in the JSWA format are in the Supplementary 
Materials (STable 1). The data in Table 2 were validated, 
paired, and recalculated for use in this article. The thermal 
product quantity and treatment statistics in Chapter 4.3.2 
are only from the state-owned Japanese facilities. Data 
from the private sector are not available.

The legislation of interest was the laws and decrees 
concerning the management of sewage sludge and other 
products made from it (compost, ash, slag, or sludge-char). 
An overview of the technologies used was based on local 
knowledge, stakeholder consultation, and, in Japan, addi-
tionally on the JSWA Yearbook for FY2020 (JSWA 2022).

The amount of phosphorus in Czech sewage sludge was 
determined according to the anaerobic sludge screening 
test by Mercl et al. (2018), with an average P content of 
2.59 wt.% in dry matter. Similarly, the phosphorus content 
of Japanese sludge was set from a publication by Chen 
et al. (2021): in undigested sludge, the P content in dry 
matter was 2.36 wt.% and in digested sludge 3.40 wt.%. In 
the Czech Republic, anaerobic stabilisation is widely used 
due to legislative limits for the content of microorganisms 
in medium and large WWTPs. In Japan, approximately 
one-third of sludge is anaerobically treated (JSWA 2022); 
therefore, a value for the undigested sludge = 2.36 wt.% 
P in dry matter was used. Data on phosphorus fertiliser 
consumption, expressed in  P2O5, were taken from CZSO 
and the International Fertilizer Association (IFA). A value 
of 2.29 was used to relate P to  P2O5.

Results

Sludge production and treatment

Czech Republic

The amount of sewage sludge between 2015 and 2020 
(resp. 2021) increased by more than 11  % (Table  1 
and SFigure 1). The number of WWTPs influences the 
increase, along with the total capacity of the WWTPs 
(day.m−3),  BOD5 (t.year−1), and the number of people 

connected to the sewer network. In the long term, two-
thirds of the sludge is processed by direct application in 
agriculture or composting. Less than 10 % is still landfilled 
and the amount of incinerated sludge is gradually increas-
ing (CZSO 2022a, 2021, 2016). Sludge is co-incinerated 
(electricity and heat or cement production) or pyrolysed 
(from 2020 in a unit at the WWTP Bohuslavice–Trutnov 
(Fuka et al. 2021)). Currently, there is no sludge mono-
incineration plant in operation. Most of the sludge pre-
sented in the statistics is treated anaerobically. Anaerobic 
stabilisation is relatively common in medium and large 
WWTPs, as a result of legislative requirements (see Chap-
ter 4.2) and a long tradition of its use.

Japan

Municipalities and the private sector treat sewage sludge 
thermally, in soil, or in some other way (construction, land-
fills, or another way). Thermal treatment exceeds any other 
method and is the critical treatment method for Japanese 
sewage sludge (Table 2 and SFigure 2). Thermal treatment 
also has implications for the large production of thermal 
products such as ash, carbonatised sludge, or slag, which 
have the potential for secondary use (Chapter 4.3.2). The 
treatment of sludge that has not been anaerobically stabilised 
at WWTP remains predominant (JSWA 2022).

The approaches of the two countries are opposed. The 
Czech Republic prefers direct use (compost and agricul-
ture), and the administration has still not managed to divert 
sludge from landfills. Japan’s predominant approach is ther-
mal treatment (mono-incineration, co-incineration, cement 
production, melting, or carbonisation).

Regarding statistics and their formation, the Czech one is 
relatively simple, but limited by the number of respondents. 
Japanese is broad, but with insufficient linkage to the private 
sector and data validation on a pan-Japanese scale. Both 
lack a comprehensive and valid approach presenting the total 
material flow: from primary sludge producers to processors 
(bigger WWTP, thermal, or compost plants) and place uti-
lisation or disposal. However, the attitude to implementing 
such a policy, the way statistics are kept, is the responsibility 
of public administration (government).

Legislation

Limits for the use of sewage sludge on agricultural land

The use of sewage sludge on agricultural land is allowed 
in both the Czech Republic and Japan. In the field of sew-
age sludge treatment, the Czech Republic’s legislation, 
as a member state of the European Union (EU), is based 
on Directive 86/278/EEC, which sets limits for individual 
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pollutants (only heavy metal) in sludge (Table 3) and the 
soil on which the sludge will be applied. Individual mem-
ber states may tighten and extend their limits beyond those 
set out by the European Union. The Czech Republic tight-
ened its limits for heavy metals and established limits for 
organic pollutants and pathogens (Table 3 and STable 2); the 
maximum sludge dose is 5  tDM.ha−1 once every three years 
or 10  tDM.ha−1 if the pollutant content is half (Regulation 
No. 273/2021 Coll.). Limits for pollutant content in the soil 
can be found in STables 3 and 4—Supplementary Materi-
als, along with a list of other restrictions (areas, agriculture 
type, or soil pH).

Japan has limits for the agricultural use of sewage sludge 
that apply to heavy metals. Organic pollutants and pathogens 
have no direct limits (Table 3). However, sludge must meet 
the judgement criteria for industrial waste containing metal 
and other contaminants—leaching test (STable 5) and plant 
damage test—ecotoxicology (see Supplementary Materials). 
Following the accident at the Fukushima Daiichi Nuclear Ta
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Table 3  Limits of pollutants in sludge for agricultural use

a Sum of 7 congeners: 28 + 52 + 101 + 118 + 138 + 153 + 180
b Sum of anthracene, benzo(a)anthracene, benzo(b)fluoranthene, 
benzo(k)fluoranthene, benzo(a)pyrene, benzo(ghi)perylene, phenan-
threne, fluoranthene, chrysene, indeno(1,2,3–cd)pyrene, naphthalene, 
and pyrene
c Radioactive caesium concentration in Bq.kg−1 (MAFF 2022a, 2012), 
content is measured in the raw (wet) state (e.g. dewatered sludge or 
ash), only applies to Iwate prefecture, Miyagi prefecture, Akita pre-
fecture, Yamagata prefecture, Fukushima prefecture, Ibaraki prefec-
ture, Tochigi prefecture, Gunma prefecture, Saitama prefecture, Chiba 
prefecture, Tokyo, Kanagawa prefecture, Nagano prefecture, Yama-
nashi prefecture, Shizuoka prefecture, and Niigata prefecture (MAFF 
2022b)

European Union Czech Republic Japan
mg.kg−1 DM

Cd 20.0–40.0 5.00 5.00
Cu 1,000–1,750 500 –
Ni 300–400 100 300
Pb 750–1,200 200 100
Zn 2,500–4,000 2,500 –
Hg 16.0–25.0 4.00 2.00
Cr – 200 500
As – 30.0 50.0
AOX – 500 –
PCB – 0.60a –
PAH – 10.0b –
radioactive Cs – – 200c

pathogen limits – Yes –
leach test – – Yes
ecotoxicology – – Yes

Directive
86/278/EEC

Regulation
No. 273/2021 Coll

Fertiliser
Control Act
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Power Plant, a limit for radioactive Cs was introduced in 
selected prefectures (MAFF 2022a, 2012). Doses and appli-
cations are not restricted and sludge can be applied to fields 
where crops are grown. The amount of selected pollutants in 
the soil (STable 6) has a target level (environmental stand-
ards), but the testing frequency is not specified (Environmen-
tal Agency Notification No. 46).

Japan and the Czech Republic have a similar approach to 
heavy metal limits. The Czech Republic also directly limits 
the content of certain organic pollutants (PCBs, PAHs, and 
AOX) and pathogenic organisms (Salmonella sp., Escheri-
chia coli/enterococci, and thermophilic coliform bacteria) 
depending on the sludge category. Japan, in addition, con-
trols the content of radioactive Cs in selected prefectures 
and establishes a plant damage test and leachate test (heavy 
metals and a range of organic pollutants). Other organic pol-
lutants that are not monitored in Czech sludge, unlike other 
countries, include nonylphenols, bis(2-ethylhexyl) phtha-
late, linear alkylbenzene sulphonates, PFASs, or dioxins 
and furans (Collivignarelli et al. 2019; Gianico et al. 2021). 
Current Japanese and Czech limits (tests) do not control the 
long-term accumulation of persistent substances such as 
antibiotics, PFASs, or microplastics that can accumulate in 
the environment and additionally cause problems for plants, 
animals, or human health (food chain) (Bolan et al. 2021; 
Buta et al. 2021; Hušek et al. 2022). The lack of a maximum 
application rate and the absence of regular soil monitoring 
for heavy metals after sludge application in Japan may also 
contribute to heavy metal accumulation (Swain et al. 2021).

Limits for the use of compost with sewage sludge 
in agriculture

Czech legislation regulates compost use, depending on the 
location, by two decrees (Regulation), resulting in inconsist-
ent legislative requirements. Composts intended for green 
areas in sports and recreational facilities (Group II, Class 
I) are controlled in more parameters and more strictly than 
composts for agricultural and forest land (Group I) (STa-
ble 7). The Japanese legislation deals with the quality of 
compost in a similar way to that of sewage sludge for direct 
use on soil (Chapter 4.2.1). The individual applicable limits 
and quality requirements for sludge composts are given in 
the Supplementary Materials in Chapter 2.2. In neither case 
are the limits for halogenated organics or antibiotic resist-
ance genes limited, which are not sufficiently degraded dur-
ing composting (Lü et al. 2021).

Limits for ash, sludge‑char, and slag in agriculture

The Czech Republic and Japan allow and use sludge ash, 
char, and slag in the soil. Both regulate the content of heavy 
metals and selected organic pollutants (direct limits or 

leachate test)—Supplementary Materials Chapter 2.3. These 
thermally treated sludge products are an alternative to direct 
application and compost production as a source of phospho-
rus for plants. With proper operation (sufficient temperature 
and residence time), organic pollutants are removed (Alipour 
et al. 2022; Kwapinski et al. 2021). However, heavy metal 
concentration in ash and char is one of the obstacles, along 
with the low bioavailability of phosphorus (Hauck et al. 
2022; Herzel et al. 2016; Krüger et al. 2014). Therefore, 
replacing conventional commercial P-fertilisers with these 
thermal products is problematic. We believe that the ash 
should only be an intermediate product between the sludge 
mono-incineration and P-recovery processes. Sludge-char 
(pyrolysis product) should be produced from sludge with a 
low heavy metal content at a temperature of at least 500 °C 
(ideally 600 °C) to sufficiently remove organic pollutants 
(Buss 2021; Moško et al. 2021a, b). Sludge-char used in 
agriculture is still questionable: although the sludge used 
for production has a low heavy metals content, metals are 
still present. For this reason, sludge-char should be used 
primarily as a soil improver in soil reclamation (mines or old 
environmental loads) where there is no risk of widespread 
primary contamination.

In contrast to Switzerland or Germany, neither the Czech 
Republic nor Japan has introduced a strategy for P-recover-
ing. Sludge as a fertiliser does not achieve similar results to 
commercial fertilisers (Christiansen et al. 2020; Lemming 
et al. 2017). Tools to recover phosphorus in a pure, uncon-
taminated form are not legislated. Losses of phosphorus to 
landfills, ash (co-incineration), or construction commonly 
occur.

Sludge (thermal) treatment and P‑recovery 
technologies in use

Sludge thermal treatment and P-recovery technologies are 
closely linked. Ash, after mono-incineration, presents input 
material to the processing plant. Slag or sludge-char are 
products after melting or pyrolysis (carbonisation) intended 
for direct use as a soil improver. According to the STRU-
BIAS report (Huygens et al. 2019), there are three different 
methods (categories) for manufacturing and placing fertiliser 
from biowaste and other secondary raw materials onto the 
EU market under Fertilising Products Regulation (Regula-
tion (EU) 2019/1009). They are the precipitation of phos-
phate salts, thermal oxidation (also followed by wet chemi-
cal or thermal processes), and pyrolysis and gasification.

Czech Republic

Initially, the same microbiological criteria for composts 
(STable 8) were to be applied from January 1, 2023, for 
sludge used on agricultural land, increasing the pressure 
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on WWTP operators to provide more advanced hygienisa-
tion methods such as dryers, incinerators, or pyrolysis units. 
However, the decree (Regulation No. 273/2021 Coll.) was 
amended at the end of 2022, and more benevolent pathogen 
limits were established (STable 2). This change (deregula-
tion) maintains the status quo, yet several projects have been 
installed or begun construction (preparation).

Currently, a solar dryer (Mariánské Lázně), four low-
temperature dryers (Přerov, Karlovy Vary-Drahovice, 
Šumperk, and Bohuslavice–Trutnov), and a pyrolysis unit 
(Bohuslavice–Trutnov) are in operation. The dryer in the 
Brno-Modřice WWTP is being prepared to replace the 
paddle dryer with a low-temperature dryer. Four more low-
temperature dryers are under construction, and others are in 
preparation, including a pyrolysis unit (Tábor). Supplemen-
tary Materials (STable 12 and SFigure 3) give their loca-
tions and a general overview. After legislative amendment, 
the reason for constructing such facilities for the WWTP 
operators remains sludge weight reduction. Our investigation 
shows that operators expect to use dried sludge in incinera-
tion units. There is no sludge mono-incinerator, compared to 
few thermal technologies in operations co-incinerate sludge. 
Therefore, irreversible losses in the ash of phosphorus con-
tained in co-incinerated sludge can be expected. The pyroly-
sis unit at the Bohuslavice–Trutnov WWTP is the only tech-
nology for producing secondary material with high P content 
in the Czech Republic.

Japan

Unlike the Czech Republic, Japan has an extensive network 
of drying and thermal plants processing sewage sludge. The 
municipality and prefectures or the private sector operate the 
individual sludge terminals of the various WWTPs. Infor-
mation is limited if the sludge is treated in the private sec-
tor. Therefore, we have focused primarily on municipal and 
prefecture-run plants and identified the generated products’ 
material flows, locations, and disposal methods.

Sludge thermal treatment

Drying units are present at many WWTPs as part of the pro-
cessing chain or as an end-of-line technology. Flash dryers, 
indirect heat dryers, or hot air rotary dryers with stirrers are 

commonly used. Solar drying accounts for a minority share 
of total dry sludge production and is used mainly in southern 
Japan in Kyushu and Okinawa (JSWA 2022).

Sludge melting plants

Sewage sludge (ash) melting treatment is Japanese-specific: 
the shortage of raw materials and landfill sites. However, its 
share is gradually decreasing, with old units being decom-
missioned one by one at the end of their service life and new 
ones not being opened due to high energy consumption. In 
FY2020, six state-owned plants with 16 units were in opera-
tion. In comparison, 29 state-owned units were operated 
in FY2011. Nowadays, surface melting, coke bed melting, 
swirling melting, or a combination of pyrolysis + swirl-
ing ash melting are used JSWA (2022). The slag produced 
is used mainly in civil engineering (Table 4), resulting in 
phosphorus loss. Individual state plants’ capacity and loca-
tion are in the Supplementary Materials (STable 13 and 
SFigure 4).

Carbonisation plants

The amount of treated sludge in carbonisation plants has 
increased by more than 95 % compared to 2015 (Table 2). 
Produced carbonised sludge is mainly used as a fuel substi-
tute in coal-fired power stations (Table 5). Leading to the 
loss of phosphorus and the spread of present heavy metals 
into ash and flue gas. Depending on the plant, the sludge 
is carbonised at temperatures ranging from 300 to 880 °C. 
A portion of approximately 13 % is used in cement produc-
tion. Direct (agricultural) use has a negligible share. Charac-
teristics of individual plants in Supplementary Materials—
STable 14 and SFigure 4. JSWA (2022).

Table 4  Quantities and methods of processing slag from state melting plants JSWA, (2022)

Asphalt filler Fired brick Backfill Secondary concrete product In-field stock Port land reclamation In total

tons of dry matter
1,002
(7.7 %)

107
(0.8 %)

999
(7.7 %)

2,357
(18 %)

607
(4.7 %)

7,980
(61 %)

13,052

Table 5  Quantities and methods of processing char from state car-
bonisation plants JSWA, (2022)

Fertiliser Soil improver Solid fuel Cement raw 
materials

Other In total

tons of dry matter

58.1
(0.2 %)

44.0
(0.1 %)

22,111
(83 %)

3,568
(13 %)

791
(3.0 %)

26,572
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Mono‑incineration plants

Almost two-thirds of sludge is mono-incinerated in Japan 
(Table 2), and more than 155,000 tons of ash (sum of the 
own production and processed imported sludge) from state-
owned mono-incinerators is produced yearly. Fluidised bed 
boilers are used in the vast majority (STable 15) because of 
their suitable properties for incinerated sewage sludge: high 
fuel and operation flexibility, easy control, and high process 
efficiency (Hušek et al. 2022). Most of the ash is used in the 
construction industry (47 %) or landfilled (36 %)—build-
ing artificial islands in the sea (28 %) or landfills (8.4 %) 
(Table 6), resulting in losses of phosphorus and other raw 
materials. Sludge ash contains a significant mineral con-
tent that can be used in construction (Ottosen et al. 2022), 
but this step should precede the regeneration of phosphorus 
and other substances. A list of individual state operations 
is available in the Supplementary Materials (STable 15 and 
SFigure 5) JSWA (2022).

Due to the change in legislation in the Czech Republic 
(loosening of microbial limits), the only motive to install 
thermal treatment, mainly drying, for WWTP operators 
remains weight reduction and thus reduction in the disposal 
fee. Capacities for mono-incineration are lacking. Dry 
sludge co-incineration with coal or biomass can be assumed 
in the medium term.

Japan already has a network of drying and mono-incin-
eration plants supplemented by sludge carbonisation and 
melting plants. However, the products from these facilities 
are primarily diverted to the construction industry and land-
fills, which results in an irreversible loss of phosphorus. The 
implementation of a phosphorus management strategy is a 
necessity. The size and ruggedness of Japan and the spread 
of cities and conurbations will be an obstacle to implement-
ing a single centralised approach. Nevertheless, through 
centralisation and cooperation at the prefectural level and 
between the private and municipal sectors, it would be pos-
sible to find an effective solution for the location of P-recov-
ery facilities complemented by existing carbonisation and 
melting plants. Slag and carbonised sludge (char) should 

be certified as a soil improvement. If carbonised sludge or 
slag does not meet the limits, it should be treated in the 
mono-incinerator with the sludge. The construction industry 
should subsequently be linked to P-recovery plants and use 
residual mineral content.

P‑recovery technologies

Some P-recovery technologies are already used in Japan, 
although their share is a minority. Two groups of technolo-
gies are generally used to extract phosphorus and produce 
phosphorus-rich materials: struvite precipitation (sludge and 
wastewater) and sludge thermal treatment into products (char 
and slag) or intermediate products (ash) processed in P-recov-
ery technology. The first group includes the technologies in 
Kobe, digested sludge treatment to form struvite (Koga 2019), 
Fukuoka, and Matsue, extraction of struvite from water after 
digested sludge dewatering (Nättorp et al. 2019). The second 
group (article focus) includes Nippon Phosphoric Acid Co. 
(NPA), Kubota, and Metawater Co. (Ohtake and Tsuneda 
2018). During the NPA process (the current state could not 
be verified), sludge ash is mixed with the phosphorus rock at 
a maximum dose of 2.5 wt% treated in a sulphuric acid solu-
tion. The ash dose is limited to avoid affecting the production 
or contaminating phosphoric acid and gypsum products. For 
more information on the process, see Mochiyama (2019).

The Kubota process is based on sludge (ash) treatment in 
a melting furnace. The sludge (ash) is treated at high tem-
peratures (around 1300 °C) to form a slag in which 90 % 
phosphorus is covered. Organic pollutants are decomposed, 
and heavy metals are volatilised and collected in exhaust gas 
treatment. Subsequently, the slag produced could be used as 
a P-fertiliser. However, slag is currently only used in civil 
engineering (asphalt filter, backfill, or secondary concrete 
product), resulting in irreversible losses in phosphorus. Reg-
istration of slag as a fertiliser or soil improver is required. The 
preparatory stages for fertiliser production at the facilities are 
underway in Toyama Prefecture (Nijo Wastewater Treatment 
Centre and Left Bank of the Jinzu River). A more detailed 
description of the technology is available in Hosho (2019).

Table 6  Quantities and methods 
of processing ash from state 
mono-incineration plants JSWA, 
(2022)

Pavement
material

Asphalt
filler

Cement raw
materials

Construction mate-
rial use (Other)

Backfill Secondary con-
crete product

Melting

tons of dry matter
278
(0.2 %)

818
(0.5 %)

45,566
(29 %)

9,939
(6,4 %)

15,006
(9.7 %)

1,192
(0.8 %)

287
(0.2 %)

Soil
improver

Fertiliser Artificial
soils

Landfill
sea

Landfill
land

Other In total

tons of dry matter
6,364
(4.1 %)

126
(0.1 %)

252
(0.2 %)

42,873
(28 %)

13,019
(8.4 %)

19,640
(13 %)

155,360
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The latest technology comes from Metawater Co., which 
has plants in Gifu City and Tottori (occasional operation), 
where P-recovery lines are installed. The ash is mixed 
with NaOH and raised solution (without solid particles) 
with Ca(OH)2 to form  Ca3(PO4)2. The resulting product is 
processed: washed, dried, and sold in the form of calcium 
hydroxyapatite with a process efficiency of 30–40 %. The 
product is used as an ingredient in commercial fertilisers 
(from Gifu City named Gifu-no-daichiⓇ). Annual produc-
tion in Gifu is around 100 tons of P-product from processed 
sludge ashes from Gifu City. The solid residue, after pro-
cessing, is treated with a sulphuric acid solution to remove 
heavy metals. Solid-treated residues can be used as a con-
struction material. For a more in-depth description of the 
technology, see Nakagawa and Ohta 2019 and Sonoda 2019.

For technologies in which struvite is precipitated, it must 
be ensured that it complies with the applicable limits. How-
ever, struvite may contain pollutants (inorganic, organic, or 
microplastics) transferred from wastewater or sludge. From 
our perspective, struvite should be processed by P-recovery 
plants as soon as these facilities are available, producing 
uncontaminated fertiliser or pure  H3PO4. Unlike ash, struvite 
will not contain a significant ballast mineral content.

In commercial technologies (phosphate rock processing), 
heavy metals in the ash present a problematic issue (Lan-
geveld 2019; Schipper 2019). Limiting the amount of ash 
dose is necessary to ensure that the metals do not affect the 
production process and product quality. Pyrolysis, with its 
smaller capacity and ability to concentrate heavy metals in 
char (Mancinelli et al. 2016; Zhang et al. 2021), is a suitable 
technology for remote areas with annual sludge production 
of at least  500tDM where the sludge is not burdened by heavy 
sludge. Unlike melting furnaces, which allow the process-
ing of large quantities of sludge to form slag without heavy 
metal pollution and with bioavailable phosphorus (high cit-
ric acid-solubility and pot test—Hosho (2019)). However, 
the high operating temperature of the melting furnaces and 
associated running and equipment costs present a limitation. 
Strangely, if phosphorus is bioavailable (Hosho 2019) and 
heavy metals are removed, slag is not used as a fertiliser in 
agriculture today in Japan, but finds its application in the 
construction industry, where phosphorus is irreversibly lost. 
Wet chemical ash treatment by Metawater Co. after sludge 
mono-incineration is a long-used technology in Japan, char-
acterised by lower efficiency but long-lasting operation. In 
Europe, an increase can be seen in the use of wet-chemical 
technologies that treat sludge ash after mono-incineration 
to obtain phosphorus in acid or solid form together with 
other raw materials (minerals, silica sand, gypsum, iron or 
aluminium salts, and heavy metal concentrates) (Hušek et al. 
2022). However, the technologies in operation are limited 
in number as opposed to the number in semi-operational or 
research scale, but their development can be expected in the 

future as individual state P-strategies are adopted and will 
come into force (ESPP et al. 2023).

P-recovery technologies represent an additional cost in 
wastewater treatment (Nättorp et al. 2017), and their imple-
mentation in commercial forms is still being implemented 
(ESPP et al. 2023). A sufficient and clearly defined transition 
period is needed to allow the private and public sectors to 
prepare. In Germany, the transition period ends in 2029 for 
the largest WWTPs (over 100,000 PE) (Sichler et al. 2022) 
and Switzerland introduces an obligation to recover phos-
phorus from sludge and sludge ash from 2026 (Mehr et al. 
2018). Although Japan produces significant amounts of ash, 
it does not have such legislation. Ash is mainly landfilled or 
processed in the construction industry. We believe that ash 
storage should be initiated for the necessary time before the 
required P-recovery technologies are built to prevent its loss.

Sludge composition

The presence of different elements in the sewage sludge is 
not uniform and is influenced by many variables, for exam-
ple, coagulants used at WWTP (Fu et al. 2021; Ooi et al. 
2018), industry (Hubeny et al. 2021; Lee et al. 2019; Sundha 
et al. 2022; Tytła, 2019), healthcare (Ajala et al. 2022; Aji-
bola and Zwiener 2022; Mackuľak et  al. 2019), season 
(Arhoun et al. 2019; Kasina et al. 2017; Uogintė et al. 2022), 
or the buildings and households themselves (Dokulilová 
et al. 2018; Hoang et al. 2022; Tang et al. 2020).

The composition of the sludge can also be changed by 
mixing it with other sludge at the WWTP. In the Czech 
Republic, sludge from small WWTPs sludge that do not 
have technologies for sludge hygienisation and stabilisa-
tion is mixed with untreated sludge at medium or larger 
WWTPs. Subsequently, it is processed with local sludge to 
meet hygiene parameters, and because the added sludge has 
a different composition, the overall composition changes.

Compared to the unique pollutant content of each WWTP, 
the phosphorus content can be generalised. Because the 
phosphorus occurrence depends on human faeces (Harder 
et al. 2019) and the amount of detergents containing phos-
phorus used (Ekman Burgman and Wallsten 2021) and not 
on local specificities. Phosphorus becomes part of bio-
mass (activated sludge) during biological water treatment 
by incorporation into biomass and chemical precipitation 
(if used). The final phosphorus content can vary depend-
ing on the technologies used (e.g. chemical precipitation), 
plant size due to the stricter discharge water quality require-
ments for medium and large WWTPs (higher P removal 
efficiency is required) (Directive 91/271/EEC), or anaerobic 
sludge stabilisation (concentration in sludge, recirculation of 
sludge water) (Kroiss et al. 2011; Morse et al. 1998; Wang 
et al. 2014). Using a P-free detergent, a certain reduction 
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in the phosphorus load on WWTP from this source can be 
expected (Chen et al. 2022; Puijenbroek et al. 2019).

P‑recovery rate

To calculate the possible amount of recoverable phospho-
rus (Table 7), we considered the intended Austrian model 
based on mono-incineration followed by wet chemical treat-
ment: from January 1, 2030, sewage sludge incineration and 
P-recovery will be mandatory (if approved) for Austrian 
WWTPs with more than 20,000 PE. The P-recovery rate 
from the ash must be at least 80 % or, alternatively, recovery 
of 60 % of the P influent is necessary at WWTP (European 
Commission 2022).

We assume the amount of sludge treated in this way to 
be 75 %, primarily from large and medium WWTPs. Due to 
disproportionate transport costs or small production, a part 
of the sludge (the remaining 25 %) will be treated in other 
ways by melting and pyrolysis (carbonisation) or local use 
(agriculture or land reclamation). The average amount of 
phosphorus in sludge for the calculation was 2.59 wt.% in 
dry matter for the Czech Republic (Mercl et al. 2018) and 
2.36 wt% P in dry matter for Japan (Chen et al. 2021).

Replacing more than 13 % of  P2O5 fertiliser consumption 
is possible in both countries (Table 7). Depending on the 
technology, phosphorus can be recovered in different forms, 
such as  H3PO4, mono/dicalcium phosphate, or directly as a 
commercial P-fertiliser. Other raw materials co-produced 
with phosphorus may include iron or aluminium compounds, 
metal concentrate, gypsum, or minerals (treated ash). Alu-
minium or iron components can be reused as coagulates in 
WWTPs, mineral fractions in the construction industry, or 
cement production. Compared to the direct use of ash in con-
struction, the mineral output of P-recovery is not contami-
nated because the technologies in the preparation already 
allow the concentration of heavy metals outside the mineral 
fraction. More information on P-recovery technologies is 
described in our review by Hušek et al. (2022).

Discussion

It cannot be assumed that there will be similar restrictions 
on using sewage sludge on agricultural land in Japan and the 
Czech Republic as in the Netherlands or Switzerland (Bauer 
et al. 2020; Mehr et al. 2018). In our opinion, approximately 
25 % of sludge will always be treated in a way other than 
mono-incineration, either due to high transport costs, other 
thermal methods in use, or the application of sludge from 
small WWTPs to land (< 20,000 PE), where it will be pos-
sible to hygienise the sludge. From our point of view, these 
sludge and the sludge compost produced should be tested 
for pathogens (guaranteed hygienisation), heavy metals, 
total elements such as Br and F (indicative of flame retard-
ants, PFASs, pesticides, and pharmaceuticals), and selected 
organic pollutants (PCBs, PAHs, PFASs, and AOX). At 
the same time, limits for microplastic content should be 
introduced once a validated methodology (Koyuncuoğlu 
and Erden 2021) for their determination has been created 
and adopted. For thermal products, it is necessary to main-
tain limits for heavy metals and selected organic pollutants 
(PAHs and PCBs), the detection of which would indicate 
poor functioning of the thermal unit. For pyrolysis, we rec-
ommend a minimum temperature of 500 °C, with a nomi-
nal output at 600 °C and a minimum sludge/sludge-char 
residence time of 10 min in the pyrolyser (Moško et al. 
2021a, b). In addition to the removal of organic pollutants, 
sludge-based biochar with sufficiently developed structural 
properties (porous properties) can be produced under such 
conditions (Moško et al. 2021b). At the same time, the 
energy of the primary pyrolysis gas can be used to meet the 
energy requirements of pyrolysis with excess heat available 
for sludge pre-drying. However, mono-incineration should 
remain the basis of the entire sewage sludge treatment sys-
tem: a primary, centralised, thermal treatment of large quan-
tities of sludge to produce an ash suitable for treatment in 
P-recovery technology.

Table 7  Determination of the 
minimum replacement rate for 
 P2O5 fertiliser consumption

Czech Republic Japan

Sludge production (t) 196,577 Table 1 1,650,283 Table 2
75 % of production (t) 147,418 1,237,712
P content([wt.%) 2.59 Mercl et al. (2018) 2.36 Chen et al. (2021)
P in sludge
(t)

3,818 29,210

P2O5 in sludge (t) 8,743 P2O5 = 2.29P 66,890 P2O5 = 2.29P
80% efficiency
(tP2O5)

6,994 53,513

P2O5 fertiliser consumption (t) 51,617 CZSO (2022b) 320,000 IFA (2023)
Minimal replacement rate (%) 13.5 16,7
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After deregulation of the legislation in the Czech Repub-
lic, the discussion of the issue of sewage sludge thermal 
treatment has been muted, affecting the introduction of 
P-recovery technologies and strategy. The lack of legisla-
tive support and concepts for critical resource management 
and concern for soil conservation will hardly convince the 
private sector and municipalities to invest into new tech-
nologies, with a typical higher gate fee, beyond established 
standards. The use of sewage sludge on agricultural land and 
composts can be expected to persist. In comparison, Japan’s 
dependence on imported phosphorus (phosphate rock) and 
its increasing price have led to the formation of a study 
group under the Ministry of Land, Infrastructure, Transport 
and Tourism (see MLIT 2022) to address the broader use of 
sewage sludge on agricultural land to provide more organic 
matter and phosphorus for soil (plants). However, based on 
current developments, the prevailing tendency is to deregu-
late sewage sludge used on agricultural land at the expense 
of the use and process of products after sludge thermal treat-
ment to form raw P-products or soil improvers (slag or char). 
To date, the MLIT group has relied on examples of good 
practices from Japan: sludge application, compost produc-
tion, or working P-recovery technology. Heavy metals are 
seen as an obstacle beyond farmers’ mistrust. However, the 
issue of organic pollutants, microplastics, and pathogens is 
not addressed. In our opinion, neglecting other pollutants 
present in the sludge will lead to their further spread into the 
environment. Sludge as a fertiliser does not achieve similar 
results to commercial fertilisers (Christiansen et al. 2020; 
Lemming et al. 2017). The study group should focus more 
on obtaining clean raw materials, not deregulating the sludge 
policy, as in the Czech Republic. Developing a full-fledged 
P-recovery strategy addressing the diversion of post-thermal 
treatment products from construction to agriculture directly 
(certified char and slag) or indirectly through P-recovery 
treatment plants (ash) should be a priority. Fertiliser prod-
ucts of recovered phosphorus (TSP, NPK, PK, or P) can then 
be better dosed and thus reduce phosphorus consumption 
according to precision agriculture principles. In case of a 
lack of organic matter in the soil, it is necessary to introduce 
and improve the collection of biowaste and gastro-waste to 
produce quality composts and digestates without pollutants 
content suitable for application to agricultural land.

Further research should focus on implementing new 
materials in P-recovery technologies, proving the safety 
of input and output products, and working in partnership 
with the private sector to continue to develop and improve 
P-recovery technologies. Other secondary P-sources consid-
ered are meat and bone meal ash (Coutand et al. 2008; Leng 
et al. 2019) or old fire extinguishing powder (Dotelli and 
Viganò, 2020; Nwoba and Moheimani 2022). Their incor-
poration into P-recovery technologies is needed. Especially 
the meat and bone meal ash from category I is currently not 

used because the ash from its incineration cannot be used (in 
Europe) due to the precautionary principles of prion disease 
(TSEs) (Bakalár et al. 2022; Regulation 1069/2009/EC). It 
must be demonstrated that incineration destroys organic 
matter, including TSEs, and that it is possible to process 
the ash together with the ash from the sludge incineration. 
Furthermore, the use of recovered phosphorus from waste 
materials in the food industry is currently not allowed at the 
EU level (Regulation 767/2009/EC)—use in another (tech-
nical) industry is not limited. The suitability of the process 
chain, safety of the recovered phosphorus, and list of input 
secondary raw materials for P-recovery products usable in 
the food industry must be validated and defined.

In addition to legislative support and raw material con-
cept, it is necessary to plan the construction of thermal 
sludge treatment capacities and P-recovery plants to be used 
and not compete disproportionately. Individual P-recovery 
technologies should be evaluated depending on efficiency, 
cost of operation, energy and chemical consumption, envi-
ronmental impacts, or the variety and type of products gen-
erated. An example of such an evaluation (plan) is in Swit-
zerland (Morf 2018; Nättorp et al. 2019; Spörri et al. 2021). 
Cooperation between the municipality, local authorities, 
government, and private sector is essential for a properly 
set-up system operating with the local product utilisation 
without burdening the environment and the transport budget. 
Transportation between plants can have a negative impact 
on the surrounding area and the environment and increase 
the cost of the entire process, so planning the entire system 
based on the principles of industrial ecology and smart cit-
ies is essential.

Conclusion

Material recovery of sewage sludge on land and compost can 
no longer be considered beneficial. Not only that sludge con-
tains many pollutants besides organic matter and nutrients, 
but mainly because it cannot sustainably replace commercial 
fertilisers. Sludge today represents a source of energy and 
phosphorus that must be adequately recovered (regenerated), 
which is crucial for raw material security.

Japan and the Czech Republic are dependent on imports 
of phosphorus and phosphate rock. Their availability on the 
market may change, becoming the subject of geopolitical 
struggle, threatening the competitiveness of industry and 
agriculture, and leading to higher food prices. The direct 
application of sludge and sludge composts does not produce 
the same results as the application of industrial fertilisers, 
while the contaminants in the sludge spread to the environ-
ment. Therefore, thermal treatment is necessary to ensure 
the removal or capture of contaminants and to obtain a prod-
uct allowing P-recovery (ash) or direct use (char or slag).
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The potential for P-recovery from mono-incinerated 
sludge is greater than 13 % of current phosphate fertiliser 
consumption in the Czech Republic and Japan, depending 
on the P-recovery efficiency and sludge quantity. However, 
not a single country is exploiting this potential. The Czech 
Republic has increased (deregulated) the previously pro-
posed limit for pathogens in the sludge; therefore, there 
has been no change (necessity) to use thermal technologies 
to treat the sludge widely. In Japan, thermal methods are 
predominant, but the resulting products are not used for 
P-recovery but in construction or landfilled. Currently, there 
is talk in Japan about deregulating the direct use of sludge 
(sludge compost) in agriculture, which, from our point of 
view, would result in the spread of contaminants from the 
sludge into the soil. A strategy to include the intermediate 
step of P-recovery between thermal treatment and processing 
in the construction industry is lacking. The current distribu-
tion of mono-incineration plants in Japan is not uniform but 
makes it relatively easy to identify where immediate invest-
ment in P-recovery processing plants is possible.
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