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Abstract
The objective of this paper is to develop a generic electric vehicle battery charging framework using wind energy as the direct 
energy source. A robust model for a small vertical axis wind turbine based on an artificial neural network algorithm is used 
for predicting its performance over a wide range of operating conditions. The proposed framework can be implemented at 
any location worldwide where full prediction of the wind signature is perfectly obtained. In this paper, a small vertical axis 
wind turbine has been experimentally characterized at different operating conditions, where measured data, output power, 
and torque have been used to build the model. Once the model has been developed, the model is inserted into the MATLAB/
Simulink software tool to predict the charging performance of a battery for an electric vehicle. An rpm controller has been 
used to achieve the maximum generated power from the wind turbine across the day with various wind speeds. Hence, the 
generated power is fed to the EV battery charger to implement the constant current constant voltage charging protocol. The 
charging current reached the desired value in a settling time of 4.5 s, whatever the intermittency of the wind energy. The 
proposed application of wind energy to EV provides sufficient constant power supported by the utility grid.
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Introduction

As a result of the worldwide energy demand and its cor‑
responding environmental problems, renewable energy 
sources (RESs) are attracting more and more attention 
(Kong et al. 2020). The development of alternative and 
renewable energy sources has become an important factor 
in satisfying the world’s rising energy demand (Abdalrah‑
man et al. 2017). Many countries have already embraced 
renewable energy technologies to satisfy their electrical 
demands with clean and inexhaustible energy. In certain 
locations, renewable energy resources fulfill 100% of the 
typical annual demand (Chong et al. 2017). Wind energy 
capacity was expanding quickly since 1996 to be the fast‑
est growing RES worldwide. By the end of 2015, around 
433 GW of wind energy was generated (Chong et al. 2017) 
due to its availability, economic benefits, and lack of pollu‑
tion (Kong et al. 2020). In addition, it is considered a zero‑
emissions energy source and is gaining worldwide impor‑
tance in meeting the global need for clean energy while 
averting global warming (Liu et al. 2015). It can also offer 
electricity in remote regions when other sources of energy 
are unavailable. For example, India, where more than 
33% of communities presently lack access to electricity 

(Chawla et al. 2014). Wind power prediction is critical 
for the effective integration of wind farms into the power 
grid (Neshat et al. 2021), where electric vehicles are now 
invading the utility grid in search of a smooth charging 
operation. In general, the output power of the wind turbine 
increases with increasing the turbine rotational speed until 
reaching a maximum power point for each wind speed; to 
obtain the maximum efficacy of the system, it is desired 
to charge the battery using this maximum power points.

There are two types of wind turbines: horizontal axis 
wind turbines (HAWT) and vertical axis wind turbines 
(VAWT). HAWTs generate the bulk of the electricity 
(Kumar et al. 2018) due to their higher efficiency com‑
pared to VAWTs. Upscaling, maintenance, and instal‑
lation of VAWT are nevertheless less challenging than 
those of HAWT (Abdalrahman et al. 2017; Bouzaher et al. 
2017; V. Kumar et al. 2018; Rezaeiha et al. 2017; Wang 
et al. 2016). Additionally, VAWT offers reduced mainte‑
nance expenses (Rezaeiha et al. 2017; Sun et al., 2020a, 
b; Wang et al. 2016), as well as lower installation costs 
(Liu et al. 2015). The production cost of VAWT is often 
low due to the simplicity of the blade design (Abdalrah‑
man et al. 2017; Bouzaher et al. 2017; Rezaeiha et al., 
2017). Furthermore, locating the generator, gearbox, and 
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other heavy components on the ground level increases the 
VAWT structural stability (V. Kumar et al. 2018). Fur‑
thermore, VAWTs can withstand higher wind speeds (V. 
Kumar et al. 2018) and have a high level of environmental 
flexibility (YAMADA et al. 2012). They are unaffected by 
wind direction changes (Ahmadi‑Baloutaki et al. 2015; J. 
Sun et al. 2020a, b; YAMADA et al. 2012). Since they are 
omnidirectional, there is no need for a yaw mechanism 
(Abdalrahman et al. 2017; Liu et al. 2015; Ma et al. 2019; 
Rezaeiha et al. 2017; Wang et al. 2016). When compared 
to HAWT, VAWT has less oscillation, a higher high start‑
up torque, and is easier to integrate with high‑rise build‑
ings (Liu et al. 2015). It is also more effectively incorpo‑
rated into architectural designs (Ma et al. 2019). When 
compared to HAWT, VAWT emits less noise (Ahmadi‑
Baloutaki et al. 2015; Rezaeiha et al. 2017; Rezaeiha et al. 
2019; J. Sun et al. 2020a, b; Wang et al. 2016; YAMADA 
et al. 2012) and is more favorable to birds and bats (Wang 
et al. 2016).

To improve the wind turbine’s aerodynamic adaptabil‑
ity capabilities and achieve optimal functioning in response 
to quick fluctuations in the incoming wind, Saenz‑Aguirre 
applied the active Gurney flap (AGF) flow management 
approach. The aerodynamic data computed by computa‑
tional fluid dynamics (CFD) are stored in an artificial neural 
network (ANN) to make managing the information utilized 
by the AGF approach easier. To investigate the aerodynamic 
behavior of the WTBs with the suggested AGF method and 
compute the related operation of the wind turbine, bound‑
ary element method (BEM)‑based calculations have been 
implemented. For the steady BEM computations, real wind 
speed statistics from a meteorological station in Salt Lake 
City, Utah, were used (Saenz‑Aguirre et al. 2019). Based on 
the full variable‑speed wind turbine (VSWT) model, encom‑
passing the dynamics of the tower and the gearbox in (Kong 
et al. 2020), a nonlinear Economic model‑predictive con‑
trol (EMPC) technique including power maximization and 
mechanical load reduction is suggested. Three sets of simu‑
lations have been utilized to validate the proposed nonlinear 
EMPC strategy’s efficacy, dependability, and practicability.

Several studies have used wind energy in alleviating the 
power stress on the utility grid, especially due to the rapid 
adoption of electric vehicles (EVs) in the global vehicle 
electrification market (Noman et al. 2020). The EVs are 
expanding exponentially in the automobile industry market 
to reduce greenhouse gas emissions, and air pollution, and 
replace conventional cars (Ahmad et al. 2018). Integration of 
RESs (and especially wind energy) into the utility grid could 
be a difficult task because of the intermittency and inconsist‑
ency with energy usage, in addition, the grid could suffer 
from an unpredictable supply of electricity (Jin et al. 2014; 
Mwasilu et al. 2014). In this paper, the feasibility of charging 
an EV is proposed based on a robust experimental model for 

small vertical axis wind turbine VAWT based on the ANN 
algorithm (unlike previous studies that implemented simu‑
lated energy system analysis) (Chellaswamy et al., 2018; 
Kou et al. 2015). The ANN algorithm has a very good per‑
formance under varying wind conditions and very good 
convergence speed with respect to the other conventional 
and advanced maximum power point tracking algorithms 
proposed in (D. Kumar & Chatterjee 2016). ANN has been 
used in a lot of wind energy systems such as fault detection 
and diagnosis (FDD), design optimization, optimal control, 
and power prediction model optimization of yaw angles 
which are used to minimize wake impact on wind turbines 
(Marugán et al. 2018; H. Sun et al. 2020a, b). In this manu‑
script, ANN has been used for the first time in the framework 
of EV charging. There are many charging protocols to fast 
charge the EVs such as the constant current constant voltage 
(CC‑CV), multistage charging current (MSCC), pulsating 
charging current (PCS), and changing the material aspects 
protocols (Makeen et al. 2022a). The charging method that 
has been used in this paper is the CC‑CV protocol since it 
is easy to implement, has simple requirements, and avoids 
overcharging due to the constant voltage mode (Chu et al. 
2017; Makeen et al. 2022a). The CC‑CV depends on charg‑
ing the battery by a constant rated charging current until 
the voltage reaches the cut‑off value and then the voltage is 
held constant while the current decays to the minimum value 
(Makeen et al. 2020; Makeen et al. 2022a). In (Makeen, 
Memon, Elkasrawy, Abdullatif, & Ghali, 2021), the EV sta‑
tion has been supported by a PV system to ensure CC‑CV 
and MSCC fast charging protocols. The goal of (Messaoud 
et al. 2021)’s research is to come up with a practical way of 
getting the necessary energy from other sources and feed‑
ing it to the relevant pieces. The intelligent tool serving as 
the fuzzy logic controller is the foundation of the solution. 
Furthermore, (Kraiem et al. 2022) used fuzzy logic, neural 
network, relay and PI controllers for providing the appropri‑
ate portions with the necessary power from wind energy and 
PV system to charge a battery pack. The fuzzy logic and 
neural network have a good impact on the given duty cycle 
and reached the maximum value with respect to the PID 
controller and relay controller. In (Makeen et al. 2022b), 
an experimental small‑scale EV controller has been imple‑
mented while implementing the PID, fuzzy logic (FL) and 
neural network predictive (NNPC) controllers. The NNPC 
ensured a high‑speed response combined with a very low 
voltage and current ripples concerning the PID and FL.

Thus, the main contributions of this paper could be 
summarized as follows:

• Real wind turbine measurements have been obtained 
experimentally based on a small vertical axis wind 
turbine VAWT, and an extensive data analysis is per‑
formed.
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• An ANN model has been implemented to estimate the 
maximum generated power from the wind turbine using 
the experiment’s measurements regardless of the stochas‑
tic wind speed.

• A novel framework that includes the wind turbine aero‑
dynamics performance, wind turbine transit behavior, 
battery, and battery charging controller has been pre‑
sented. This framework is very helpful to predict the 
charging performance of an actual electric car when the 
wind turbine is in a certain location with a known wind 
speed pattern.

• The generated power is utilized to feed the battery 
charger which uses the CC‑CV charging protocol. The 
charger is supported by the utility grid due to the inter‑
mittency of wind energy and is also used as a backup 
scenario for any shortage in the required power.

Experimental setup

A test rig has been designed, built, and deployed at the British 
University in Egypt (BUE) in a modified outlet portion of a 
low‑speed wind tunnel, as illustrated in Fig. 1. The test rig con‑
sists of a tower for wind turbine installation, a torque sensor, 
a brake system, and a pulley. All of these items are mounted 
within the tower, as illustrated in Fig. 1. To measure the turbine 
torque and rotational speed at a sample rate of 100 samples/
sec, the Datum M425 rotary torque sensor with a complete 

range of 10 Nm torque has been used. A mechanical cycling 
disk brakes system was also used to vary the loading on the 
turbine in order to acquire the whole performance curve of the 
turbine at variable wind speed. A high inertia large diameter 
pulley has also been used to decrease turbine rotational varia‑
tion and enhance the generator revolution per minute (RPM). 

The basic turbine is made up of six Artelon NACA 0018 
airfoils that were CNC machined, with a chord length of 
200 mm, and a height of 500 mm. The wind turbine perfor‑
mance has been measured at wind speeds ranging from 5 to 
13 m/s, with the wind turbine free to rotate until the steady 
state RPM is reached. Then, the torque and the correspond‑
ing rpm are measured for each imposed load on the turbine 
shaft. For each measurement, the average value of torque and 
RPM have been calculated and used to calculate the output 
turbine power. The measurements for each wind speed were 
repeated three times.

Experiment results and artificial neural 
network modelling

The obtained measurement data have been used for build‑
ing a wind turbine model for predicting the output power 
based on an artificial neural network (ANN) algorithm that 
handles the nonlinearity and chaotic behavior of wind speed 
on a given wind turbine. The ANN proved its accuracy and 
efficiency with respect to the conventional and advanced 
modelling algorithms in (Makeen et al. 2022b). The torque, 
power, and the RPM of the wind turbine have been measured 
using a Datum M425 rotary torque sensor (10 N.m) based on 
discrete samples at variable wind speeds. The measurement 
system specifications are summarized in Table 1.

The power curves were obtained for different wind speeds 
and different RPMs as expressed in Fig. 2. These data have 
been used to build the ANN algorithm, which will model 
the wind turbine performance and will be used to simulate 
the wind turbine in Simulink. The power produced by a 
wind turbine is a function of its RPM and torque. As the 
wind turbine's RPM increases, the torque decreases due to 
blade dynamic stall. Therefore, as the RPM increases, the 

Fig. 1  Wind turbine experimental setup

Table 1  Measurement system specifications

Torque sensor Datum M425 rotary torque sensor
Range from 0 to 10 Nm

Accuracy: 0.1%

Nonlinearity: 0.1%

Repeatability: 0.05%

Sample rate: 1 to 4000 samples per second

Load system Mechanical breaks system with generator
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reduction in torque is overcome, resulting in an increase in 
output power up till the peak power. At that point, the reduc‑
tion in torque is too great to be counted by the rotational 
speed increase, leading to a decrease in output power.

The proposed ANN algorithm has been constructed and 
simulated by the MATLAB R2021a and trained throughout 
the experimental obtained data as shown in Fig. 2. The sche‑
matic diagram of the proposed ANN is consisting of three 
layers, namely the input layer, the hidden layer, and the output 
layer with two inputs (Wind speed V and Rotational speed 
rpm.), and wind turbine output power P, as shown in Fig. 3.

ANN has been trained by the Bayesian Regularization 
algorithm which is minimizing the squared error to gener‑
alize the quality network. About 70% of the experimental 
data have been used in the training phase except 30% that 
has been used in the validation of the proposed algorithm 
as shown in Fig. 4. First, an ANN with 10, 100 and 1000 
neurons have been investigated, and the results have been 
compared with the experimental data. Figure 5 presents the 
actual and trained data for different neurons number at wind 

speed of 7 m/s. Furthermore, uncertainty analysis was con‑
ducted to determine the convergence in chosen the neurons’ 
numbers. The purpose of this check is to ensure that the 
result of the chosen neuron number is within the asymptotic 
range of convergence. It was decided to adopt a constant 
neuro‑increasing ratio (r = 10). If the findings of the three 
neurons are reported as N1, N2, and N3, the relative error ( ε ) 
between them is defined in (Aboelezz et al. 2022) as

  
Equation (2) specifies the order of solution convergence 

(SC) based on the three neurons’ numbers.

The Neurons number conversion index (NCI) for two 
comparing neuron numbers is thus expressed by Eq. (3).

where f is a safety factor (often 1.25 for three solutions) 
(Kundu 2020). If the solutions generate asymptotic conver‑
gence results, two GCI values calculated across three neu‑
rons’ numbers will be joined as shown in Eq. (4), and RR 
should equal 1 to indicate convergence.

The results of the neurons convergence check are sum‑
marized in Table 2. As all RR values are around 1, the 100 
Neurons hidden layer was chosen for the rest of the work in 
the paper.

In addition, the training trial number was investigated, 
and the results are presented in Fig. 6. The ANN was trained 
four times until the solution did not change significantly. 
Overfitting is a modeling error that occurs when a function is 
too closely aligned to a small set of data points. As a result, 
the model is only useful in reference to its initial data set and 
not in reference to any other data sets. To avoid overfitting, 
the errors in results from ANN modeling was evaluated for 
all power curves for all RPM range. Figure 6 a shows how 
the training affects the solution. Figure 6 b and c presents the 
comparison between the first and the fourth training of the 
ANN for two wind speeds of 8 m/s, and 13 m/s, respectively. 
The uncertainty at the maximum power was calculated as 
shown in Table 3 based on these results. 

Figure  6(d) presents the prediction of the turbine 
output power at a wind speed of 15 m/s which was not 
obtained from the experiment. As shown in the results, the 
fourth time‑trained ANN gave more logical results when 

(1)�12 =
N1 − N2

N1
, �23 =

N2 − N3

N2

(2)SC =
ln

N3−N2

N2−N1

ln r

(3)NCI =
f �

rSC − 1

(4)RR =
NCI23

NCI12 ∗ rSC

Fig. 2  Experiment output power

Fig. 3  Wind turbine ANN model structure
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compared with the well know power curve of the wind 
turbine. Therefore, the fourth time‑trained ANN was con‑
sidered for the rest of the research.

According to the performance and validation of the pro‑
posed ANN algorithm, a prediction of all the wind speeds 
from 5 m/s to 13 m/s with an incremental change of 1 m/s 
has been investigated and obtained as shown in Fig. 7. The 
prediction of the proposed wind turbine output power is 
essential at all wind speeds in defining the characteristics 
of wind turbines and maximum power point tracking will 
be used to charge the battery of the electrical vehicle. The 
maximum power and the corresponding rpm are presented 
in Fig. 8. The rpm versus wind speed curve was used to 
obtain the relation between the maximum power corre‑
sponding to rpm and the wind speed with cubic curve fit‑
ting. The results were used to obtain Eq. (5), which will 
be used in the simulation later.

(5)RPM = 0.0407V
3 − 0.5811V

2 + 6.3633V + 7.0378

Fig. 4  Artificial neural network 
schematic diagram, training and 
testing performance

Fig. 5  Neurons number affect the model output
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Table 2  The results of the 
neurons number convergence 
check

RPM N1 N2 N3 ε12 ε23 SC NCI23 NCI12 RR

52.632 1.684 1.699 1.699 − 0.008 − 0.00012 − 1.875 0.011 0.0001 0.991
39.070 2.018 1.996 1.980 0.010 0.0080 − 0.129 − 0.052 − 0.039 1.010
36.803 2.016 1.993 1.972 0.0115 0.0102 − 0.053 − 0.123 − 0.110 1.011
24.251 1.701 1.721 1.735 − 0.012 − 0.007 − 0.187 0.042 0.027 0.988
11.156 0.923 0.909 0.903 0.015 0.0072 − 0.323 − 0.03 − 0.017 1.015

Fig. 6  Model train number effect on the model output a training time 
effect on results, b comparing the results of the first and fourth train 
for a wind speed of 8  m/s, c comparing the results of the first and 

fourth train for a wind speed of 13 m/s, d comparing the results of the 
first and fourth train for a wind speed of 15 m/s
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Wind turbine dynamic response and system 
identification

Changing the wind speed approaching the wind speed will 
result in changing the rotational speed of the wind tur‑
bine. This change will take some time due to the inertia 
of the wind turbine. Therefore, an additional experiment 
was conducted to determine this relationship. The wind 
turbine was prevented from rotation, and for wind speeds 
of 6 m/s and 8 m/s, it was released from rest and free to 
rotate till the steady state rpm. This input–output relation 
was used in the MATLAB system identification toolbox 
to obtain the transfer function of the turbine's response 
at different wind speeds. The results are shown in Fig. 9, 
where the red curve is the measured data, and the blue 
curve is obtained from the transfer function. The transfer 
function obtained from the system identification is pre‑
sented by Eq. (6), where s is the output variable from the 
Laplace transform of the time form for the system time 
response. This transfer function will be used with the Sim‑
ulink model to simulate the transition response of the wind 
turbine.

 
Hence, a random variation in wind speed was intro‑

duced to the wind turbine using SIMULINK and the 
response is presented in Fig. 10.

(6)G(s) =
11.72s + 46.16

s2 + 168.6s + 46.29

Table 3  Maximum power and power error calculations for wind 
speeds of 8 m/s and 13 m/s

Velocity 8 m/s 13 m/s

Experiment 3.103 13.56
First train 2.965 13.58
Fourth train 3.034 13.57
Error first train 4.44% 0.14%
Error fourth train 2.22% 0.07%

Fig. 7  A prediction of the wind turbine power at wind speed from 5 
to 13 m/s

Fig. 8  ANN model output: (a) the maximum power for each wind speed; and (b) the corresponding rpm for maximum power for each wind 
speed
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Simulink Modelling and EV Battery Charging

The predicted output power in this paper has been used to 
charge a real EV according to the datasheet specifications. 
The vehicle used is a 2014 BMW i3 with rated pack energy 
of 18.8 kWh, and a capacity of 60 Ah (Laboratory and A. 
V. T. A. 2022). The battery model understudy used in the 
Simulink model is based on the real datasheet specifica‑
tion of the manufacturer. Hence, the scale of the wind 
turbine used is scaled up to be in 10 kW. In this study, the 
wind speed signature characteristics at the British Uni‑
versity in Egypt (BUE) have been utilized in the simula‑
tion. The location has latitude and longitude coordinates 
of 30.117849388288, 31.605975392471. A full day of the 
2019 year (January 16, 2019) is simulated with the wind 

speed characterization and presented in Fig. 11 (NASA 
2021).

The MATLAB/Simulink model is presented in Fig. 12a 
and consists of three main stages: the performance predic‑
tion model of the wind turbine at various operating points, 
the CC‑CV battery charger, and finally the electric vehicle 
battery understudy.

Firstly, the wind speed signature on January 16, 2019, 
is fed to the artificial neural network (ANN) model. The 
ANN controller ensured a perfect speed response combined 
with very low ripples with respect to the conventional PID 
controller and Fuzzy logic controller in EV fast charging 
(Makeen et al. 2022b). Hence, the ANN is used to estimate 
and predict the maximum power point generated from the 
wind turbine at each wind speed based on deep learning. 
Then the values are fed to the CC‑CV battery charger to 

Fig. 9  System identification output validation for wind speed (a) 6 m/s and (b) 8 m/s

Fig. 10  A random variation in wind turbine speed

Fig. 11  The proposed wind speed system is under study for one day 
on January 16, 2019
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charge the EV with a constant current of 60 A despite the 
intermittent nature of wind energy. The simulated stop time 
is set to be 100 s which represents the wind speed across the 
day as expressed in Fig. 10c.

The input and output current and voltage of the CC‑CV 
battery charger, respectively, are presented in Fig. 12b. The 
output current is maintained at 60 A; however, the input 
variation is in power, current and voltage. The Simulink 
ensured very high accuracy in maintaining and obtaining 
a 60 A charging current. From the other perspective, the 
charging parameters of the battery are expressed in Fig. 12c 
where the charging current reached the desired value of 60 A 
in a settling time of 4.5 s and the state of charge (SOC) 
reached 22.75% in 100 s with an initial SOC of 20%.

The wind speed in (m/s) fed to the ANN and the output 
power generated from the model in (W) are presented in 
Fig. 12d. The utility grid is used to support the wind turbine 
generator due to the stochastic behavior of the wind energy 
where the required power from the battery charger and the 
required power from the grid are presented in Fig. 12e. It 
should be noted that the charging current is maintained at 
a constant value despite the change in the generated power 
from the wind turbine or the utility grid.

Conclusions

This paper proposes a novel approach for predicting the max‑
imum power of a small vertical axis wind turbine (VAWT) 
based on the artificial neural network whatever the variation 
in the input wind speed. For a wind turbine with 1 m height 
and 1 diameter, the maximum power was about 15 watts for 
a wind speed of 13 m/s. The uncertainty analysis which has 
been developed and presented in this paper could success‑
fully determine the sufficient number of neurons needed to 
predict the wind turbine performance. This method is recom‑
mended for similar research which will use ANN to predict 
wind turbine performance. The paper presented the transfer 
function of the turbine transient response from the experi‑
ment; as the wind turbine weight was 13 kg, scaling can 
be made to use the presented transfer function in similar 
research. The location of the British University in Egypt 
has been used to be the wind speed signature of our model. 
The generated power is considered as an input to the battery 
charger which is used to charge the EV using the CC‑CV 
charging protocol. The utility grid is used as a backup sce‑
nario for the wind energy system to supply the EV because 
of the intermittency of wind energy. The CC‑CV protocol 

Fig. 12  The proposed simulated model includes a the model by 
MATLAB/SIMULINK; b the CC‑CV battery charger input and out‑
put parameters; c the battery charging parameters; d the input wind 

speed and output generated power from the ANN, and e the necessary 
power to charge the EV and the needed power from the utility grid
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has been used to charge the battery with a constant current 
of 60 A. The charging current reached the desired value of 
60 A in a settling time of 4.5 s and the state of charge (SOC) 

reached 22.75% in 100 s with an initial SOC of 20%. The 
model ensured a sufficient estimation of the generated power 
from the wind turbine at any wind speed and maintained a 

Fig. 12  (continued)
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constant charging current stage at the charging process. For 
future work, it will be necessary to add the battery and the 
controllers in an actual framework to obtain experimentally 
the accuracy of the Simulink modeling.
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