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Abstract
P-graph causality maps were recently proposed as a methodology for systematic analysis of intertwined causal chains form-
ing network-like structures. This approach uses the bipartite representation of P-graph to distinguish system components 
(“objects” represented by O-type nodes) from the functions they perform (“mechanisms” represented by M-type nodes). The 
P-graph causality map methodology was originally applied for determining structurally feasible causal networks to enable 
a desirable outcome to be achieved. In this work, the P-graph causality map methodology is extended to the analysis of 
vicious networks (i.e., causal networks with adverse outcomes). The maximal structure generation algorithm is first used to 
assemble the problem elements into a complete causal network; the solution structure generation algorithm is then used to 
enumerate all structurally feasible causal networks. Such comprehensive analysis gives insights on how to deactivate vicious 
networks through the removal of keystone objects and mechanisms. The extended methodology is illustrated with an ex post 
analysis of the 1984 Bhopal industrial disaster. Prospects for other applications to sustainability issues are also discussed.
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Introduction

Many accidents and disasters happen as a confluence of 
multiple contributing factors. The interdependencies that 
lead to such adverse events are often only clearly seen in 
hindsight, since the human mind is inherently limited in its 
ability to grasp causal chains (Trope and Liberman 2010). 
Labib and Read (2013) argue that the systematic ex post 
analysis of such failures can reveal general insights on how 
to prevent the occurrence of similar events in the future. In 
particular, reliability engineering techniques such as fault 
tree analysis (FTA) and reliability block diagrams (RBD) 
are useful for facilitating analysis and supporting future 
decisions. These reliability engineering tools provide the 
capability to systematically map interdependencies that 
can lead to cascading failures in complex systems. How-
ever, such techniques are unable to deal with systems with 
causal feedback loops; circular logic in vicious cycles is 
treated as a model flaw that needs to be removed prior to 
analysis (Lim et al. 2012). In this work, the premise is that 
such simplification leads to a loss of fidelity in modelling 
the true nature of causality in complex systems, where net-
work-like structures are more likely to occur than simple 
linear causal chains. The term vicious network is used here 
as a generalization of vicious cycles; a vicious network is 
defined as a network-like structure of intertwined causal 
chains with adverse outcomes.

Axelrod (1976) first proposed causality maps as a 
means to represent interactions among problem elements 
in sociopolitical systems. Eden (2004) argued that sys-
tematic mapping allows network properties of the system 
to be used to achieve specific goals (Eden 2004). The 
concept was extended to fuzzy cognitive maps (FCM) by 
Kosko (1986); as originally conceived, FCM used a nor-
malized numerical scale to quantify the strength of influ-
ences among problem elements, based on the judgment 
of an expert analyst. Kosko (1988) also proposed that the 
judgment of multiple experts can be merged into a sin-
gle FCM. The development of techniques to train FCMs 
using empirical data led to a diversification of its applica-
tions (Papageorgiou and Salmeron 2013). Some of these 
applications of FCM were directed at adverse events such 
as oil spills (Kang et al. 2016) and cyclones (Singh and 
Chudasama 2017). Felix et al. (2019) gave a recent sur-
vey of FCM approaches and software. During the course 
of its evolution, FCM has proven to be a powerful tool 
for supporting decisions involving systems with multiple 
positive and negative feedback loops. However, the FCM 
framework has two main weaknesses. First, it requires the 
user to have a global mental picture of the problem being 
analyzed; this is a critical limitation in the case of very 

large, complex systems for which a “big picture” is dif-
ficult to visualize. Second, the type or nature of influences 
among problem elements in an FCM cannot be readily dis-
tinguished. Unambiguous representation of interdependen-
cies or causalities is not possible in conventional FCM. To 
address these issues, Tan et al. (2020) recently proposed 
the P-graph causality map framework. The technique was 
originally developed for systems with positive outcomes; 
there remains a clear research gap in applying it to vicious 
networks.

In this work, a new application of P-graph causality 
maps is developed to address the problem of deactivating 
vicious networks using only structural information. This 
use differs from the original application, which focused on 
ensuring the attainment of a desired outcome (Tan et al. 
2020). Due to space constraints, the discussion in this 
work focuses only on departures from the original P-graph 
causality map; readers may refer to the earlier paper for 
details of the methodology. This paper is organized as fol-
lows. The next section gives the formal problem statement. 
Then, the P-graph causality map methodology and the 
general P-graph framework are discussed. The technique 
is then demonstrated using the 1984 Bhopal disaster as 
a case study. Following the case study, general implica-
tions for the use of P-graph causality maps for industrial 
accident prevention, disaster preparedness, and sustainable 
development are discussed. Conclusions are then given 
and some directions for future research are suggested.

Formal problem statement

The formal problem statement may be stated as follows. 
Given:

•	 An external input influence or prerequisite into the sys-
tem;

•	 A potential adverse system outcome;
•	 A set of tangible and intangible system components or 

objects;
•	 A set of locally specified input and output influences 

for each system component;

The analysis aims to determine (a) the maximal causal-
ity map which contains all possible influences that exist 
among system components, (b) all of the structurally fea-
sible causality maps that lead to the adverse outcome, and 
(c) the criticality of each system component as a contribu-
tor to the undesired adverse outcome. The purpose of the 
analysis is to gain insights on potential strategies to deac-
tivate the vicious network.
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P‑graph causality maps

P-graph causality maps were recently proposed by Tan 
et al. (2020) as a methodology for the analysis of multiple 
causal chains forming a network structure. The initial work 
focused on the problem of understanding how to ensure 
the structural feasibility of networks leading to desirable 
outcomes; however, the same approach can be modified 
for the current problem of deactivating vicious networks. 
The methodology is based on the P-graph framework, 
which was originally developed by Friedler et al. (1992a) 
as a rigorous combinatorial framework for solving pro-
cess network synthesis (PNS) problems in plant design. 
Since its inception, the basic P-graph framework has been 
modified and applied to various specialized problems in 
process engineering (Friedler et al. 2019). In the previous 
decade, progress in P-graph research led to both topical 
and geographic diversification in the literature (Varbanov 
et al. 2017). In addition, there have been significant recent 
developments in using P-graph to solve structurally anal-
ogous PNS-like problems outside of the traditional pro-
cess engineering domain (Tan et al. 2018). For example, 
P-graph has been used to model economic networks (Aviso 
et al. 2015), socio-ecological networks (Lao et al. 2020), 
and decision networks (Low et al. 2020).

P-graph methodology is based on a bipartite graph con-
sisting of O-type and M-type nodes that were originally 
meant to represent processes and streams in PNS prob-
lems. In P-graph causality maps, O-type nodes represent 
objects (equivalent to problem elements in FCM), while 
M-type nodes represent different mechanisms by which 
objects in the system influence each other. The inputs and 
outputs of each O-type node describe local or direct causal 
relationships. It is assumed here that the only available 
information is the presence or absence of causal links; 
accounting for the strength of causality is beyond the 
scope of the current methodology. This assumption allows 
the method to be used prospectively for applications even 
when the available information is very sparse. The M-type 
nodes are further classified into analogs for raw materials 
(prerequisites), intermediates, and products (outcomes). 
Using two different kinds of nodes addresses one major 
weakness of FCM by allowing unambiguous modelling of 
causality (Tan et al. 2020). Five axioms are the basis for 
the development of component algorithms of the P-graph 
framework (Friedler et al. 1992b). These axioms were 
adapted for P-graph causality maps. For brevity, they are 
not stated here; the reader can refer to the previous work 
by Tan et al. (2020) for details.

The P-graph framework consists of three component 
algorithms. Maximal structure generation (MSG) per-
forms the algorithmic generation of a complete, rigorous, 

and non-redundant network (Friedler et al. 1993). MSG 
requires only for system components to be properly speci-
fied; assembly into the maximal structure is automated 
and is thus guaranteed to be free of gross errors (Kovács 
et al. 2000). The network assembly capability of P-graph 
allows it to be used with other modelling techniques, such 
as mathematical programming (Bertók et al. 2013a) and 
Petri nets (Lakner et al. 2017). In the case of P-graph cau-
sality maps, MSG addresses another major weakness of 
FCM by eliminating the need for the user to have a global 
understanding of the network structure. All that is required 
is to correctly specify objects and their local influences via 
mechanisms; this feature also enables multiple experts, 
each of whom understands only part of the overall prob-
lem, to combine their localized knowledge into a complete 
representation of the global causality network (Tan et al. 
2020).

The maximal structure is a superset of all structurally fea-
sible P-graph causality maps. The solution structure genera-
tion (SSG) algorithm can be used to enumerate these causal-
ity maps as a solution structure (Friedler et al. 1992a). Every 
solution structure represents a plausible causality network 
that can be analyzed further using other techniques (Tan 
et al. 2020). However, for purposes of deactivating vicious 
networks, the structurally infeasible networks are also of 
interest. They can give important insights on what decisions 
or actions to take to disrupt an undesirable chain of events. 
This aspect was not explored in the original P-graph causal-
ity map paper, which was primarily concerned with positive 
outcomes (Tan et al. 2020).

The third algorithm of the P-graph framework is accel-
erated branch-and-bound (ABB), which allows for rapid 
optimization of PNS problems as a special class of mixed-
integer programming (MIP) problems by capitalizing on 
PNS logic (Friedler et al. 1996). Use of ABB is beyond the 
scope of the current state of P-graph causality map method-
ology. There are also important links between P-graph and 
reliability engineering which result from the need to design 
reliable systems with adequate levels of redundancy (Süle 
et al. 2018). This approach has been applied to supply chain 
planning (Bertók et al. 2013b) and process design problems 
(Orosz and Friedler 2019). Although translating RBD and 
FTA into P-graph form results in an acyclic network, the 
P-graph framework itself has no such inherent limitation in 
handling feedback loops. The P-graph causality map method 
takes advantage of the capability to handle such loops to 
allow deeper insights to be gained during problem analysis 
(Tan et al. 2020).

The P-graph causality map methodology for vicious net-
works can be summarized by the following steps:

1.	 Define the objects (O-type nodes) and their associated 
mechanisms (M-type nodes) that comprise the system. 
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The inputs and outputs of each O-type node describe the 
local causal relationships as they are understood by the 
analyst.

2.	 Use MSG to generate the maximal causality map.
3.	 Use SSG to enumerate all the structurally feasible cau-

sality maps.
4.	 Determine the criticality of each object based on the 

normalized frequency of occurrence in the solutions 
enumerated via SSG, based on the procedure described 
previously (Tan et al. 2020).

5.	 Inspect the previously enumerated causality maps and 
identify viable actions to be considered to deactivate the 
vicious network.

P-graph models can be implemented using the open 
access platform hosted by the University of Pannonia 
(P-graph Studio 2020), or using a stand-alone implementa-
tion such as the Visual Basic for Applications (VBA) pro-
gram that accompanies the paper by Lao et al. (2020). The 
former option is used in the case study that follows.

Case study

The case of the 1984 Bhopal disaster is used here to dem-
onstrate the use of the P-graph causality map for model-
ling adverse events. Note that the primary purpose of the 
case study is to illustrate the P-graph causality map frame-
work via a well-studied historical example. The disaster 
was caused by the failure of the pesticide plant of Union 
Carbide India Limited (UCIL); the failure then led to the 
release of stored methyl isocyanate (MIC) (Chouhan 2005). 
The resulting gas cloud released from the plant reached the 
nearby city of Bhopal, leading to over 3000 fatalities based 
on official reports. Unofficial estimates are even higher, with 
up to 20,000 eventual deaths resulting from the disaster; the 
number of people afflicted with various health impacts is 
also said to be an order of magnitude larger (Labib 2014).

As one of the worst industrial accidents in history, the 
Bhopal disaster has been subjected to repeated analysis in 
the literature. An account focusing on proximate causes of 
the accident has been given by a former UCIL employee 
(Chouhan 2005); corporate outlook based on indiscrimi-
nate profit-seeking and cost-cutting has also been blamed 
as the ultimate cause (Matilal and Adhikari 2020). A bal-
anced account that considers the strategic and operational 
factors that contributed to the disaster is given by Labib 
(2014). In addition, different modelling techniques have 
been applied to the ex post analysis of the Bhopal disaster. 
The core reliability engineering tools, RBD and FTA, have 
been used most often (Labib 2014). Other works have used 
multi-model hybrid frameworks combining RBD and FTA 
with other techniques. Ishizaka and Labib (2014) used crisis 
tree analysis (CTA), the analytic hierarchy process (AHP), 
and mathematical programming. Stephen and Labib (2018) 
combined RBD, FTA, and AHP with failure mode, effect, 
and criticality analysis (FMECA), house of quality (HoQ), 
and decision-making grid (DMG) techniques into a hybrid 
framework for this industrial accident. Tan et al. (2016) 
analyzed the disaster using graphical pinch analysis. These 
model-based analyses provide important insights on how 
the confluence of different factors led to the Bhopal dis-
aster; however, the results are arguably weakened due to 
reliability engineering techniques being inherently unable to 
account for feedback loops in causality networks. The cur-
rent analysis using P-graph causality maps overcomes these 
limitations. The P-graph causality map analysis is performed 
based on information drawn from the account of Chouhan 
(2005) as an ex-UCIL employee, and from subsequent analy-
ses from corporate (Matilal and Adhikari 2020) and network 
system (Labib 2014) perspectives. Table 1 lists the objects 
(O-type nodes) and mechanisms (M-type nodes) in the case 
study, based on the account given by Labib (2014). Objects 
represent components of the system state, while mecha-
nisms are influences among objects that cause changes in 
their states. Taking a poor strategic outlook (M1) from the 
business standpoint and making incorrect design decisions 

Table 1   M-type and O-type 
nodes in case study

M-type nodes O-type nodes

Taking a poor strategic outlook (M1) Poor operational decision-making (O1)
Making incorrect design decisions (M2) Reduced financial resources (O2)
Declining profits (M3) Low employee morale (O3)
Laying off employees (M4) Poor employee competence (O4)
Reducing training programs (M5) Reduced workforce (O5)
Taking maintenance shortcuts (M6) Flawed plant design (O6)
Employees performing poorly (M7) Deteriorated plant condition (O7)
Plant failing (M8) Poor maintenance and safety culture (O8)
Emergency response failing (M9) Inadequate links with local community (O9)
Bhopal citizens dying (M10)
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(M2) are both prerequisites (raw material analogs); only 
solutions where both are present are considered in the sub-
sequent analysis. Bhopal citizens dying is the adverse final 
outcome (or product analog) of the system (M10).

The relationships among the objects and mechanisms 
nodes based on Labib (2014) are summarized in Table 2. It 
can be seen that the inputs and outputs into each object can 
be identified based only on knowledge of local interactions. 
At this stage, the analyst does not need to have a global 
picture of the entire vicious network; it is further assumed 
that the actual magnitude or strength of causality among 
elements is unknown. The subsequent analysis is based only 
on structural features of the P-graph causality map. Using 
MSG, the maximal causality map shown in Fig. 1 can be 

automatically generated using the information in Table 2. 
The blue-colored nodes indicate various feedback loops pre-
sent in the vicious network. A total of seven feedback loops 
are identified and listed in Table 3. These loops represent 
vicious cycles for which linear cause and effect relation-
ships are difficult to define. They also represent important 
opportunities to weaken the vicious network by removing 
specific objects.

By implementing the SSG algorithm, a total of 149 struc-
turally feasible causality maps are identified. However, fur-
ther screening these vicious networks to just those where 
both M1 and M2 are present reduces the total number of 
structures to 57. This reduction is based on the identifica-
tion of M1 and M2 in the literature as the root causes of the 
disaster (Labib, 2014). Thus, most of the 512 (29) possible 

Table 2   Relationships among M-type and O-type nodes

O-type nodes Input Output

Poor operational decision-making (O1) M1 M3, M4, M5, M9
Reduced financial resources (O2) M3 M4, M5
Low employee morale (O3) M4 M6, M7, M9
Poor employee competence (O4) M5 M6, M7, M8, M9
Reduced workforce (O5) M4 M6, M7, M9
Flawed plant design (O6) M2 M3, M8
Deteriorated plant condition (O7) M6 M3, M8
Poor maintenance and safety culture 

(O8)
M5, M7 M6, M8

Inadequate links with local community 
(O9)

M8, M9 M10

Fig. 1   Maximal causality map 
of the case study

Table 3   Feedback loops in maximal causality map

Feedback 
Loop

Sequence

1 M3 → O2 → M4 → O3 → M6 → O7 → M3
2 M3 → O2 → M4 → O3 → M7 → O8 → M6 → O7 → M3
3 M3 → O2 → M4 → O5 → M6 → O7 → M3
4 M3 → O2 → M4 → O5 → M7 → O8 → M6 → O7 → M3
5 M3 → O2 → M5 → O4 → M6 → O7 → M3
6 M3 → O2 → M5 → O4 → M7 → O8 → M6 → O7 → M3
7 M3 → O2 → M5 → O8 → M6 → O7 → M3
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combinations of objects cannot form structurally feasible 
networks. Examination of these structures shows that certain 
components appear more frequently, or are more critical, 
than others. Tan et al. (2020) defined the criticality index 
(ICi) of the ith O-type node as the number of times it occurs 
in the solutions (Ni) normalized relative to the total number 
of enumerated structures. Both of these indices are given in 
the last two rows of Table 4.

Table 4 also gives a more detailed breakdown of the fre-
quency of occurrence of each object in networks of different 
degrees of complexity. A minimum number of three objects 
is needed to form a structurally feasible network, which is 
known as the minimal causality map for the system; this 
solution is of particular interest and will be examined in 
more detail later. The most complex network is the maximal 
causality map which contains all nine objects. The entries in 
the cells of Table 4 indicate the number of times an object 

occurs in a structure that consists of m objects. The full list 
of 57 structurally feasible vicious networks is given in the 
appendix; due to space constraints, only selected solutions 
are discussed next.

Figure 2 shows the minimal causality map for the case 
study. This solution contains just three objects, poor opera-
tional decision-making (O1), flawed plant design (O6), inad-
equate links with local community (O9), each with ICi = 1, 
which comprise the core of the vicious network. Removal 
of any of these objects immediately leads to structural infea-
sibility and averts the disaster, since any remaining objects 
cannot form a vicious network. The first two objects are fre-
quently mentioned as critical contributing factors in previ-
ous analyses of the disaster (Chouhan 2005). The proximate 
cause was a series of blunders by plant management and 
personnel that led to the catastrophic release of the MIC. 
The plant itself was a low-cost version of a similar Union 

Table 4   Frequency of 
occurrence of components in 
the 57 structurally feasible 
networks

m O1 O2 O3 O4 O5 O6 O7 O8 O9 Total

3 1 0 0 0 0 1 0 0 1 1
4 3 0 1 1 1 3 0 0 3 3
5 12 3 5 5 5 12 3 3 12 12
6 19 9 10 10 10 19 9 9 19 19
7 15 10 10 10 10 15 10 10 15 15
8 6 5 5 5 5 6 5 5 6 6
9 1 1 1 1 1 1 1 1 1 1
Ni 57 28 32 32 32 57 28 28 57 57
ICi 1.00 0.49 0.56 0.56 0.56 1.00 0.49 0.49 1.00

Fig. 2   Minimal causality map 
of the case study
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Carbide facility in the USA, but with inadequate safety 
systems and inappropriate process equipment construction 
materials (Ishizaka and Labib 2014). A former employee 
has stated that the plant was “an accident waiting to happen” 
(Chouhan 2005). Lack of coordination with the Bhopal local 
government is mentioned by Labib (2014) in his narrative 
account, but does not appear as a unique element in his FTA. 
Loss of lives in Bhopal could have been reduced, had there 
been safety protocols and evacuation plans in place via a 
corporate information campaign. In addition to the core, it 
is also possible to determine by inspection that the minimal 
causality map has two possible paths from either prereq-
uisite (M1 or M2) to the outcome (M10). We define the 
strength of the vicious network as the number of such dis-
tinct paths. The two paths are M1 → O1 → M9 → O9 → M10 
and M2 → O6 → M8 → O9 → M10.

Less critical objects do not occur as frequently in the 57 
solutions, but contribute to the vicious network by provid-
ing additional paths from the prerequisites to the outcome. 
Removal of such objects does not guarantee the deactiva-
tion of the vicious network. For example, Fig. 3a shows 
a solution with six objects consisting of reduced financial 
resources (O2), low employee morale (O3), and deteriorated 
plant condition (O7) in addition to the core. These three 
objects are involved in multiple feedback loops. For instance, 
poor operational decision-making (O1) led to reduced finan-
cial resources (O2) via declining profits (M3). The reduced 
financial resources (O2) then led to poor employee morale 
(O3) due to layoffs (M4). Low morale (O3) then led to poor 
plant conditions (O7) as a result of personnel taking mainte-
nance shortcuts (M6). Prior to the accident, the state of the 
plant (O7) further exacerbated losses (M3) to strain UCIL 
finances further (O2). It should also be possible to iden-
tify other loops in the vicious network in Fig. 3a, as well 
as branches leading to the final outcome. These feedback 
loops lead to new paths through the network. Since it is 
always possible to find a new path by taking an additional 
iteration through a loop, the number of distinct potential 
paths is unlimited. Due to the presence of feedback loops, 
the strength of this vicious network is infinite.

Figure 3b shows the effect of removing poor plant condi-
tions (O7). The previously discussed feedback loop is inter-
rupted, resulting in a much sparser vicious network. Remov-
ing O7 reduces the strength of the network from infinity to 
5. In addition to the two paths in the minimal causality map, 
there are three additional ones (M1 → O1 → M3 → O2 → 
M4 → O3 → M9 → O9 → M10; M1 → O1 → M4 → O3 → 
M9 → O9 → M10; and M2 → O6 → M3 → O2 → M4 → O3 
→ M9 → O9 → M10). Since multiple paths still remain that 
lead to the outcome, this measure by itself is not sufficient 
to deactivate the vicious network. The propensity for the 
accident to occur would still have been present, even had 
the plant been in good condition, due to poor operational 

decision-making by management (O1), coupled with a fun-
damentally flawed design (O6) and lack of links with Bhopal 
authorities (O9). This propensity would have been reinforced 
by strained finances (O2) and low morale (O3). In particu-
lar, human error due to the latter might still plausibly cause 
catastrophic release of MIC even with properly maintained 
process equipment.

Similar analysis can be done for the other enumerated 
solutions in the appendix. The criticality and strength 
indexes can be used to evaluate the component objects and 
the vicious networks that they form. Note that the analysis 
is based only on structural information (i.e., the presence or 
absence of local causal links) and does not account for dif-
ferences in strength of influence. The P-graph Studio files 
can be shared with interested readers upon request addressed 
to the corresponding author.

General implications

The case study discussed has general implications for effec-
tive industrial accident prevention and disaster prepared-
ness based on a historical case study. Such ex post analysis 
can lead to insights that can prevent future disasters (Labib 
2014). The P-graph causality map approach can be used in 
combination with reliability engineering techniques, which 
have proven useful for the analysis of accidents caused 
by strategic or operational human error (Labib and Read 
2013), as well as those triggered by natural disasters (Labib 
2015). In addition, technological advances will require bet-
ter tools to support human decision-making. The increas-
ing complexity of modern industrial processes has created 
new challenges in ensuring safety in cyber-physical systems 
(Adriaensen et al. 2019). Similarly, Santos et al. (2020) point 
out the need for a unified multidimensional framework to 
properly manage risks resulting from disasters. Use of this 
method for prospective analysis of possible future adverse 
events is possible using the same steps as illustrated in the 
case study. One key advantage is that the P-graph causality 
map approach can be used with sparse information that is 
inherent in prospective applications; analysts need to specify 
only the presence or absence of causal linkages around each 
O-type node, without having to provide estimates of the 
strength or extent of causality. Such applications are pos-
sible because problem analysis with P-graph causality maps 
focuses only on structural features.

Other than applications in industrial safety and disaster 
risk management, P-graph causality maps can be used to 
disentangle wicked problems that occur in other domains. 
These wicked problems often result from vicious cycles and 
vicious networks in complex systems that include social, 
political, and economic dimensions (Andersson and Törn-
berg 2018). Many contemporary sustainability issues fit this 
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Fig. 3   Example of a solution 
structure a before and b after 
the removal O7
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description. For example, plastic pollution is now considered 
to be a major emerging environmental problem. The issue 
has grown despite the emergence of conceptual frameworks 
such as sustainable consumption and the circular economy 
(CE). The extent of the danger posed by microplastics still 
remains unclear, due to the developing state of scientific 
knowledge on the transport and accumulation in different 
environmental compartments; health impacts upon ingestion 
are also not well understood (Petersen and Hubbart 2021). 
The availability of viable technologies to recycle commercial 
polymers is evidently a necessary–but not sufficient–condi-
tion for managing plastic pollution. Social, economic, and 
regulatory dimensions can act as barriers that form a vicious 
network. For example, the potential for plastic recycling is 
hindered by volatility of oil prices, unfavorable public per-
ception of recycled plastic quality, and poor waste manage-
ment practices in developing countries (Carey 2017). The 
decision of companies to invest in practices to promote the 
sustainable consumption of plastics requires anticipation of 
the response of their customers (Chiu et al. 2020). It is pos-
sible for both industry and consumers to be stuck in a vicious 
cycle due to feedback effects. The problem has also been 
compounded by the recent plastic surge in the COVID-19 
pandemic (Klemeš et al. 2020). There have been recent calls 
for a global treaty to manage plastic pollution (e.g., Nordic 
Council of Ministers 2020), with the proponents recogniz-
ing the need for a holistic rather than piecemeal approach. 
Given its complexity, the plastic pollution problem appears 
to be intractable unless a global picture of factors and bar-
riers emerges.

Attempts to solve problems of this type very often meet 
with failure, or cause unintended side effects, due to experts 
and stakeholders falling into the trap of the proverbial blind 
men describing the elephant. With its capability to assem-
ble fragments of localized knowledge into a coherent global 
network of interactions, the P-graph causality map can be 
a powerful tool for participatory modelling of complex, 
wicked sustainability problems. Subjectivity is inherent in 
the analysis of scenarios of future adverse events. Rather 
than seeking to eliminate subjectivity from the analysis of 
problems, the P-graph causality map provides a framework 
for organizing subjective knowledge of expert analysts 
into coherent form, to facilitate both analysis and com-
munication. The resulting causality map formally encodes 
the collective mental picture of the problem based on the 

consolidated perspectives of the contributing expert analysts 
and stakeholders. Thus, future studies on socio-technical 
systems will need to elucidate problematiques as systems 
of interrelated problems from the minds of the participating 
stakeholders (Promentilla et al. 2016). Only such a unified 
approach can unravel the underlying complexity emerging 
from such wicked problems.

Conclusion

In this work, a P-graph causality map approach to the anal-
ysis of vicious networks has been developed. This exten-
sion generalizes the capability of the P-graph causality map 
beyond its original scope. A new index of network strength 
has also been proposed to complement the previously pro-
posed criticality index for component objects. To demon-
strate this technique, an ex post analysis of the 1984 Bhopal 
disaster was performed. The case study provides key lessons 
on the general implications of the new methodology, particu-
larly for the analysis and management of vicious networks 
that are increasingly prevalent in many seemingly intracta-
ble global sustainability issues. Examples of contemporary 
problems that are potentially amenable to modelling using 
P-graph causality maps include plastic pollution, climate 
change, natural resource depletion, biodiversity loss, and 
the potential emergence of future pandemics.

This work, as well as the previous paper (Tan et al. 2020), 
has thus far been limited to combinatorial and structural 
aspects of P-graph causality networks. Future work can 
focus on subsequent steps in the methodology after network 
generation. If data on or estimates of the strengths of causal-
ity links are given, the ABB algorithm can be used to opti-
mize a system in a manner analogous to PNS problems. Such 
an extension will require quantification of the magnitudes 
of influences. Conventional techniques for training FCMs 
from empirical data can also be adapted to be applicable to 
the fundamentally different network representation used in 
P-graph causality maps.

Appendix – List of all structurally feasible 
vicious networks

See Tables 5, 6, and 7.
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Table 5   Solution structures 
1–20

SS O1 O2 O3 O4 O5 O6 O7 O8 O9 Total

1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9
2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8
8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
11 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
12 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
13 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
14 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
16 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
17 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
18 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
19 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
20 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7

Table 6   Solution structures 
21–40

SS O1 O2 O3 O4 O5 O6 O7 O8 O9 Total

21 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
22 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7
23 ✓ ✓ ✓ ✓ ✓ ✓ 6
24 ✓ ✓ ✓ ✓ ✓ ✓ 6
25 ✓ ✓ ✓ ✓ ✓ ✓ 6
26 ✓ ✓ ✓ ✓ ✓ ✓ 6
27 ✓ ✓ ✓ ✓ ✓ ✓ 6
28 ✓ ✓ ✓ ✓ ✓ ✓ 6
29 ✓ ✓ ✓ ✓ ✓ ✓ 6
30 ✓ ✓ ✓ ✓ ✓ ✓ 6
31 ✓ ✓ ✓ ✓ ✓ ✓ 6
32 ✓ ✓ ✓ ✓ ✓ ✓ 6
33 ✓ ✓ ✓ ✓ ✓ ✓ 6
34 ✓ ✓ ✓ ✓ ✓ ✓ 6
35 ✓ ✓ ✓ ✓ ✓ ✓ 6
36 ✓ ✓ ✓ ✓ ✓ ✓ 6
37 ✓ ✓ ✓ ✓ ✓ ✓ 6
38 ✓ ✓ ✓ ✓ ✓ ✓ 6
39 ✓ ✓ ✓ ✓ ✓ ✓ 6
40 ✓ ✓ ✓ ✓ ✓ ✓ 6
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