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Abstract 
The global scientific community has intensified efforts to develop, test, and commercialize pharmaceutical products to deal 
with the COVID-19 pandemic. Trials for both antivirals and vaccines are in progress; candidates include existing repurposed 
drugs that were originally developed for other ailments. Once these are shown to be effective, their production will need to 
be ramped up rapidly to keep pace with the growing demand as the pandemic progresses. It is highly likely that the drugs 
will be in short supply in the interim, which leaves policymakers and medical personnel with the difficult task of determin-
ing how to allocate them. Under such conditions, mathematical models can provide valuable decision support. In particular, 
useful models can be derived from process integration techniques that deal with tight resource constraints. In this paper, 
a linear programming model is developed to determine the optimal allocation of COVID-19 drugs that minimizes patient 
fatalities, taking into account additional hospital capacity constraints. Two hypothetical case studies are solved to illustrate 
the computational capability of the model, which can generate an allocation plan with outcomes that are superior to simple 
ad hoc allocation.
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Introduction

The COVID-19 pandemic has escalated dramatically in the 
span of just a few months into the worst health crisis of 
the twenty-first century (Bandyopadhyay 2020). Accord-
ing to the World Health Organization (WHO 2020), the 
disease has now infected more than 7 million people and 
killed over 400,000 victims worldwide. The USA, Brazil, 
Mexico, Spain, Italy, Germany, France, the UK, China, 
Iran, and Turkey have been hit particularly hard. In con-
trast, some smaller countries, such as Taiwan, Singapore, 
and New Zealand, have demonstrated relatively successful 
control safety measures. The situation in highly populated 
developing countries (e.g., India) and regions (e.g., South-
east Asia) is still unfolding and uncertain.

The pandemic has adverse implications on international 
progress toward most of the Sustainable Development 
Goals (SDGs). Ferguson et al. (2020) reported simulations 
showing that the COVID-19 pandemic, left unchecked, can 
rapidly overwhelm the healthcare systems of even affluent 
countries. They also showed how aggressive suppression 
measures—i.e., lockdowns with stringent restrictions on 
the mobility of the public—can delay the progress of the 
pandemic to minimize the strain on healthcare capacity. 
Numerous countries responded by imposing lockdowns 
and other nonpharmaceutical interventions (NPIs) to “flat-
ten the curve” and spread out COVID-19 cases over a more 
extended period (Ferguson et al. 2020).

In addition to health issues, COVID-19 has links to dif-
ferent dimensions of sustainability. The virus is believed 
to have originated via cross-species transmission from 
bats (Zhou et al. 2020) or pangolins (Zhang et al. 2020). 
Genetic analysis of the virus suggests that it may have been 
spreading more extensively in humans in late 2019 than 
previously thought (Andersen et al. 2020). The emergence 
of this novel pathogen underscores the risks resulting from 
human encroachment on natural habitats (Cunningham 
et al. 2017). The origin of this virus and the response of 
governments have mixed implications for ecosystems. 
On the one hand, the post-COVID-19 era may see more 
stringent regulations on the capture and consumption of 
wildlife (Yuan et al. 2020). On the other hand, ubiquitous 
lockdown measures have effectively put a stop to many 
conservation efforts (Corlett et al. 2020). The biosphere 
will also be affected by environmental impacts resulting 
from healthcare measures. For example, the sheer volume 
of hazardous medical waste from hospitals threatens to 
overwhelm waste treatment capacity in the same manner 
that the pandemic surge threatens to overwhelm health-
care systems (Klemeš et al. 2020). Air emissions from the 
cremation of the remains of COVID-19 victims will also 
escalate. Once effective drugs are found for the treatment 

for COVID-19, metabolites in human waste will become 
an issue (Celiz et al. 2009). Such trace pollutants cannot be 
destroyed by sewage treatment systems and require novel 
processing technologies for proper waste management 
(Majumdar and Pal 2020).

The suppression measures being implemented in 
most parts of the world, while necessary, also come with 
adverse socioeconomic consequences. Reduced economic 
output creates upstream and downstream cascading effects 
that can cross national boundaries (Yu and Aviso 2020). 
These impacts are then felt by workers in different eco-
nomic sectors as loss of income (Santos 2020). The pan-
demic has also led to an increase in the level of output 
in other industries, such as those providing medical sup-
plies, delivery services, and Web-based communication 
platforms to facilitate remote work and education. Some 
of these responses may eventually persist in the post-
COVID-19 world as permanent post-disaster structural 
changes in economic systems (Okuyama 2014). These 
changes will have mixed positive and negative environ-
mental impacts. For example, more extensive use of work-
from-home arrangements after the pandemic will reduce 
greenhouse gas emissions and air pollution generated from 
daily commuting.

In response to the pandemic, efforts to develop phar-
maceutical interventions for COVID-19 have been intensi-
fied. New vaccines and dedicated antivirals are currently 
under development, but such products are unlikely to be 
available within 2020. Repurposing existing drugs offers 
the promise of a more timely solution. The World Health 
Organization (WHO) is currently running the SOLIDAR-
ITY trials to find therapeutic drugs for COVID-19. The 
candidate drugs in the trial are already commercially avail-
able for the treatment for other diseases. These can, in 
principle, be administered sooner than other antivirals and 
vaccines, which will still need to pass regulatory hurdles 
(Kupferschmidt and Cohen 2020). However, it has also been 
pointed out by Yu et al. (2020) that ramping up the produc-
tion capacity of these drugs will be a serious engineering 
and business challenge for pharmaceutical supply chains. 
Potential roadblocks include bottlenecks in drug synthesis 
or the sourcing of specialty chemical precursors. There is 
also a clear risk of countries imposing barriers to the trade 
of critical products or raw materials.

In the likely event of future shortages of COVID-19 
drugs, mathematical models can be used to aid decision-
makers in developing rational allocation policies that are 
superior to ad hoc or heuristic triage approaches. Such mod-
els can be used for the allocation of vaccines and antivirals 
(Medlock and Galvani 2009; Koyuncu and Erol 2010; Tuite 
et al. 2010) and can provide a computational framework for 
developing policies that respond dynamically to demand 
surge and shifting conditions (Arora et al. 2010; Yaesoubi 
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and Cohen 2016). They can be used to provide a rigorous 
basis for government regulations to manage drug shortages 
(Musazzi et al. 2020).

The field of process integration (PI) offers a practical 
engineering toolbox for dealing with such problems. PI was 
developed initially as a systematic and holistic approach for 
designing sustainable, resource-efficient industrial systems 
(El-Halwagi 2006). It uses computational techniques such as 
pinch analysis (Klemeš et al. 2018), mathematical program-
ming (Klemeš and Kravanja 2013), and process graphs (Frie-
dler et al. 2019) to aid in the design or retrofit of industrial 
plants and planning of larger-scale systems such as industrial 
parks and supply chains. While the original purpose was to 
economize on the use of industrial inputs such as fuel and 
water, there has been notable diversification in the literature 
in recent years, demonstrating the use of core PI principles 
for the efficient use of resources in general (Klemeš et al. 
2018; Friedler et al. 2019). Recent studies have applied PI 
principles as a decision-support tool on a pandemic out-
break. Liu et al. (2019) developed a mixed-integer nonlin-
ear programming (MINLP) model to determine when to 
open and close newly isolated wards while quantifying the 
capacity and the budget requirement for the H1N1 outbreak. 
Aviso et al. (2018) developed a fuzzy input–output optimi-
zation model for the allocation of medical personnel in a 
hospital during a pandemic. Sun et al. (2014) developed a 
multiobjective optimization model for patient and resource 
allocation in hospitals to minimize the distance traveled by 
patients in an influenza outbreak. However, no studies have 
been found which consider supply and hospital constraints 
while determining the optimal drug allocation.

In this paper, we develop a linear programming (LP) 
model based on PI principles to determine the optimal 
allocation of future COVID-19 drugs considering con-
straints on their supply, as well as hospital capacity. There 
is still considerable uncertainty in the state of scientific 
knowledge on COVID-19, which makes it impossible to 
obtain clear-cut data on case fatality rates and responses 
to treatment. Nevertheless, the principle of allocating 
scarce resources to achieve maximum benefit can be dem-
onstrated with a representative example. Thus, our work 
emphasizes the model’s general capacity to compute solu-
tions, rather than the specific numerical values of model 
parameters. The capabilities of the model are illustrated 
using two hypothetical case studies. In both examples, it 
is shown that the LP model can reduce patient fatalities 
compared to ad hoc or heuristic allocation policies. The 
rest of the paper is organized as follows: The next sec-
tion gives the formal problem statement that the LP 
addresses. Then, the model formulation is given. A sim-
ple illustrative and hypothetical example meant for peda-
gogical purposes is solved first, followed by a simulated 
scenario based on the projected near-future situation in 

the National Capital Region (NCR) of the Philippines. 
The practical implications of the use of the model are dis-
cussed. Finally, the conclusions and prospects for future 
work are discussed.

Problem statement

The formal problem addressed by the model is as follows: 
given the following user-specified inputs:

•	 A limited amount of antivirals that can be given to an 
infected population;

•	 m severity levels of infection each requiring a specific 
level of health care;

•	 n population groups with a known case fatality rate of 
patients in each severity level when receiving or not 
receiving appropriate health care;

•	 o regions where there are cases of infection;
•	 p types of hospital resources with known availability for 

each region;
•	 Efficacy of antivirals, as quantified by the average trans-

fer rate of patients between severity levels upon receipt 
of treatment;

The model determines the optimal allocation of avail-
able antivirals and the corresponding minimum number of 
total deaths. The model is static and assumes a fixed set of 
patients and resources for a given planning time frame. In 
practice, it can be applied sequentially to a given cohort 
of patients using resource data available then. Input data 
can be subsequently updated as new data are acquired for 
replanning.

Model formulation

Sets
M Set of severity levels
N Set of population age-group
O Set of regions
P Set of available hospital resources
W Set of available antiviral types
Indices
i Index for severity level
j Index for population group
k Index for region
r Index for resource type
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v Index for antiviral type
Parameters
�i Case fatality rate of individuals in 

severity level i who did not get 
needed resource

�i Case fatality rate of individuals 
in severity level i who received 
proper resources

CAPv Total number of antiviral type v 
available

A
i,j,v

Probability that group j will be in 
severity level i for antiviral given

Di,r Amount of hospital resource r 
needed by individual in severity 
level i

Sr,k Total available resource r in 
region k

XT
j,k

Total number of infected sympto-
matic individuals in population 
group j in region k

Variables
u
r,k

Actual number of resource type r 
used in region k

xA
j,k,v

Number of individuals in popula-
tion group j in region k that were 
given antiviral v

yA
i,k,v

Number of individuals in severity 
level i in region k after they were 
given antiviral v

yN
i,k

Number of individuals in sever-
ity level i, in region k who did 
not receive required hospital 
resources

yP
i,k

Number of individuals in severity 
level i in region k who received 
required hospital resources

yT
i,k

Total number of individuals in 
severity level i in region k

ztk Total number of deaths in region k 
among those who had access to 
hospital resources

zuk Total number of deaths in region 
k among those who did not 
have access to required hospital 
resources

The overall objective is to minimize the total number of 
deaths as given by Eq. 1 where ztk is the total number of 
deaths among those who had access to hospital resources in 
region k, and zuk is the total number of deaths among those 
who did not have access to hospital resources in region k:

The sum of infected symptomatic individuals classified 
as those not given antivirals and those given antiviral of a 
certain type ( xA

j,k,v
 ) for each population group j, region k, and 

(1)min =

o
∑

k=1

ztk + zuk

antiviral type v should equal the total number of infected 
symptomatic individuals for each population group and 
region ( XT

j,k
 ), as shown in Eq. 2. For an infected symptomatic 

individual in group j, the probability of getting an infection 
severity level i will depend on whether the person was given 
an antiviral or not, and if yes, the type of antiviral v given as 
defined in A

i,j,v
 . For each drug, these parameters summa-

rize how treatment reduces symptom severity. The total 
number of individuals from region k who received antiviral 
type v and experienced a severity level i is obtained using 
Eq. 3; yA

i,k,v
 are the total number of individuals in severity 

level i for region k after getting the treatment for antiviral v. 
The total number of infected individuals in each severity 
level for each region ( yT

i,k
 ) is then given by Eq. 4:

The total number of individuals to be given the antiviral 
should not exceed the total number of antivirals available 
(Eq. 5):

Individuals who experience severity level i will require 
resource type r as indicated in D

i,r
 . Thus, region k can only 

provide for a limited number of infected individuals ( yP
i,k

 ) 
based on how much resource type r is available in region k 
( Sr,k ), as shown in Eq. 6. All other infected individuals will 
not be able to access the required hospital resource ( yN

i,k
 ), as 

shown in Eq. 7. The actual number of resource type r used 
in region k ( ur,k ) is given by Eq. 8:

The case fatality rate will then depend on the severity 
level and whether the infected individual was given access to 
the required hospital resources as deemed necessary by the 

(2)
W
∑

v=1

xA
j,k,v

= XT
j,k

∀j, k

(3)
n
∑

j=1

A
i,j,v

xA
j,k,v

= yA
i,k,v

∀i, k, v

(4)
W
∑

v=1

yA
i,k,v

= yT
i,k

∀i, k

(5)
n
∑

j=1

o
∑

k=1

xA
j,k,v

≤ CAPv

(6)
∑

i=1

yP
i,k
Di,r ≤ Sr,k ∀r, k

(7)yN
i,k
+ yP

i,k
= yT

i,k
∀i, k

(8)
∑

i=

yP
i,k
D

i,r
= ur,k ∀r, k
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infection severity where �i is the case fatality rate for sever-
ity level i for individuals with no access to resource and �i is 
the case fatality rate for severity level i for individuals with 
access to hospital resources. The total number of deaths in 
region k for those who did not have access to the resources 
is given by Eq. 9, while the total number of deaths in region 
k even with access to resources is shown in Eq. 10:

This formulation is an LP model that can be solved for 
global optimality with no computational difficulties. The 
next two sections apply the model to case studies imple-
mented using the commercial optimization software 
LINGO 18.0. However, the model itself is generic and can 
be implemented in other software, including spreadsheet 
applications.

Case study 1

In this section, a simple hypothetical example is given to 
illustrate the capabilities of the model. Given that there is 
one region with individuals infected by a particular epidemic 
and that the cases can be grouped into mild, moderate, and 
critical cases, the total number of infected individuals for 
each population group is summarized in Table 1.

Three different treatments are possible: any given patient 
can be given Antiviral A, Antiviral B, or none. The prob-
ability of each risk group falling under infection severity 
levels based on the treatment received is given in Table 2. 
Note that these probabilities do not include the probability 

(9)
∑

yN
i,k
�i = zt

k

(10)
∑

yP
i,k
�i = zt

k

of being infected and being asymptomatic. The effective-
ness of the antivirals is quantified by the transition rate of 
patients to lower severity levels. It can be seen that if an 
individual is administered with antiviral, the severity of the 
infection can be reduced. For example, without treatment, 
the patients remain in their original severity level (as signi-
fied by values of 1 in the diagonal of the transfer matrix and 
0 in all other cells) and suffer the same mean case fatality 
rate. On the other hand, if Antiviral A is given to patients 
that initially require ICU confinement (or critical severity), 
the treatment is sufficiently effective to allow 80% of such 
patients to require less resource-intensive regular hospi-
tal care, i.e., regular hospital beds. It should be noted that 
Antivirals A and B are hypothetical, and the efficacy figures 
shown here are hypothetical and purely for illustrative pur-
poses. However, the model can use empirical parameters for 
future COVID-19 drugs once the results of ongoing trials 
are published.

The following tables are illustrative and use hypothetical 
data. For each severity level, the resource requirements are 
shown in Table 3. For this example, there are three types of 
health facilities considered as resources: home care, regu-
lar hospital beds, and intensive care unit (ICU) beds. An 
individual with mild severity requires only one home care 
resource, those with moderate severity requires only one 
regular hospital bed resource, and those with critical severity 
requires only one ICU resource. The total number of each 

Table 1   Number of infected symptomatic individuals per region and 
population group ( XT

j,k
)

Severity level Number of cases

Mild 800
Moderate 150
Critical 50
Total 1000

Table 2   Probability of infection 
severity due to the risk group 
and administration of antiviral

Group severity No antiviral AA
i,j,1

With antiviral A AA
i,j,2

With antiviral B AA
i,j,3

Mild Moderate Critical Mild Moderate Critical Mild Moderate Critical

Mild 1 0 0 1 0.6 0 1 0.75 0
Moderate 0 1 0 0 0.4 0.8 0 0.25 0.6
Critical 0 0 1 0 0 0.2 0 0 0.4

Table 3   Health facility requirement based on infection severity level 
( Di,r)

Severity Home care Regular hospital 
bed

Intensive 
care unit

Mild 1 0 0
Moderate 0 1 0
Critical 0 0 1

Table 4   Available health facilities

Health facility Number of units

Home care Unlimited
Hospital beds 100
Intensive care units 20
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resource type available in the region is given in Table 4. The 
case fatality rate of an individual is affected by whether they 
receive the necessary care depending on the severity of their 
illness. The assumed case fatality rates are summarized in 
Table 5. Furthermore, only 100 treatment courses of Anti-
viral A are available, while there are 200 treatment courses 
of Antiviral B. Each treatment course corresponds to daily 
dosage multiplied by the total duration of treatment, which 
is assumed to be the same for all patients.

Different scenarios were considered for this example: 
Scenario 1.1: No antivirals are available; Scenario 1.2: Both 
antivirals are available and used interchangeably; Scenario 
1.3: Allocation is optimized based on antiviral availability 
and known efficacy. This particular case study results in 150 
variables, and all cases were solved in a negligible computa-
tional time of 0.01 s using a laptop running on Windows 10 
using the Intel® Core™ i7-6500 CPU Processor at 2.50 GHz.

Scenario 1.1

This scenario assumes the baseline case where no drugs are 
available to treat COVID-19. Solving Eq. 1 subject to the 
constraints outlined in Eqs. 2 to 10 with Eq. 5 indicates that 
there are no antivirals available ( CAPv = 0) . Table 6 shows 
the number of individuals who receive access to the health 
facility appropriate to the severity of their symptoms, as well 
as those who do not. Since the total number of hospital beds 
available is only 100, 50 other patients suffering from mod-
erate severity do not get access to this resource. Similarly, 
only 20 critical patients can be prioritized for the 20 ICU 
facilities available, while 30 others do not. The patients that 
do not get access to the health facility appropriate to the 
severity of their symptoms suffer higher case fatality rates, 

as shown in Table 5. As a result, a total of 55 deaths are 
experienced.

Scenario 1.2

For Scenario 1.2, an ad hoc allocation plan is assumed where 
the two antivirals are used interchangeably and prioritized 
for use by patients depending on severity level. The alloca-
tion of the antivirals is shown in Table 7. A total of 300 indi-
viduals are given antivirals, and as a result, the number of 
mild cases increases to 905 patients (13.1% more than Sce-
nario 1.1), while the moderate cases reduced to 78 patients 
(48.0% lower than Scenario 1.1) and the critical cases to 
17 patients (67% lower than Scenario 1.1). In addition, all 
patients are able to get access to the appropriate resources 
within the limits of the hospital. As a result, the number of 
deaths is reduced to 12, which is a 78.2% reduction com-
pared to Scenario 1.1 (Table 8). 

Scenario 1.3

For Scenario 1.3, the LP model is applied to determine the 
best drug allocation. There is enough Antiviral A for 100 
patients and enough Antiviral B for 200 patients. Instead 
of using the two drugs interchangeably, the model assigns 
them to patients based on quantitative measures of their 
efficacy for patients at different severity levels. The opti-
mal result of antiviral allocation is shown in Table 9, while 
the number of cases with respect to severity is shown in 
Table 10. It can be seen that Antiviral A is prioritized 
for the critical cases, while Antiviral B is only used for 
moderate cases. This allocation follows logically from 

Table 5   Case fatality rates by severity level and health facility access

Severity No appropriate health 
facility

With appro-
priate health 
facility

Mild 0.0 0.0
Moderate 0.2 0.05
Critical 1.0 0.50

Table 6   Severity of infected individuals and their access to the appro-
priate health facility for Scenario 1.1

Severity With appropriate 
health facility

No appropriate 
health facility

Total

Mild 800 0 800
Moderate 100 50 150
Critical 20 30 50

Table 7   Allocation of antivirals for Scenario 1.2

Mild Moderate Critical Total 
antiviral 
used

No antiviral 700 0 0 NA
Antiviral A 33 50 17 100
Antiviral B 67 100 33 200
Total infected 800 150 50

Table 8   Severity of infected symptomatic individuals and their access 
to the appropriate health facility for Scenario 1.2

Severity With appropriate 
health facility

No appropriate 
health facility

Total

Mild 905 0 905
Moderate 78 0 78
Critical 17 0 17
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performance parameters defined in Table 2, which shows 
that Antiviral A is the superior product for critical cases, 
while Antiviral B is superior for moderate cases. All sur-
plus doses of the two drugs can then be given to patients 
with mild cases or, alternatively, held in reserve for future 
patients. The option not to administer medication to mild 
cases can also reduce downstream environmental impacts 
from trace pollutants from drug metabolization. As in 
Scenario 2, all individuals are able to receive access to 
the appropriate health facilities because the antivirals 
allow patients to be moved to facilities that fall within 
hospital resource limits. The total number of mild cases 
increases to 912 (14.0% more than Scenario 1.1), the mod-
erate case reduces to 78 patients (48.0% less than Scenario 
1.1), and the critical cases also reduce to ten patients (80% 
less than Scenario 1.1). As a result, the total number of 
the expected number of deaths is further reduced to nine 
individuals, which is an 83.6% reduction from Scenario 
1.1. This figure is also 25% lower than the fatality level 
in Scenario 1.2. 

A comparative summary of all three scenarios is shown 
in Table 11.

Case study 2

Case study 2 builds upon the previous set of computational 
experiments by considering multiple regions in the National 
Capital Region (NCR). The densely populated NCR has a 
daytime population of 12.88 million and accounts for 12.8% 
of the 100.98 million total Philippine population, accord-
ing to the Philippine Statistics Authority’s 2015 census 
(PSA 2020a, b). It is the economic and political capital of 
the Philippines and is currently the country’s epicenter of 
COVID-19 infections. For this example, each of the 16 com-
ponent cities and one municipality in the NCR are consid-
ered distinct regions. The subsequent set of computations 
uses the same set of parameters from the first case study, 
namely the probability of infections (Table 2), resource 
requirement based on infection severity level (Table 3), and 
the case fatality rates (Table 5). However, hospital resource 
availability was obtained from official statistics of the Phil-
ippine Department of Health (DoH 2020). Detailed data for 
the component cities and municipality of NCR are given in 
“Appendix.” This subsequent case study results in a model 
with 1003 continuous variables, with a computation time 
of 2.89 s using a laptop running on Windows 10 using the 
Intel® Core™ i7-6500 CPU Processor at 2.50 GHz.

Scenario 2.1: Availability of antiviral drugs

This scenario considered how drug availability affects the 
number of deaths and the number of patients that would need 
access to health facilities. This was implemented by varying 
the percentage from 10 to 100% of those patients that would 
be given either Antiviral A or B. Table 12 shows the number 
of deaths alongside how the Antiviral A and Antiviral B will 
be allocated to the infected population. It can be seen that 
the number of deaths decreases with the increasing avail-
ability of the two drugs. However, the number begins to 
plateau once drug availability reaches about 70%, as shown 

Table 9   Allocation of antivirals for Scenario 1.3

Mild Moderate Critical Total antiviral

No antiviral 700 0 0 NA
Antiviral A 50 0 50 100
Antiviral B 50 150 0 200
Total infected 

symptomatic
800 150 50

Table 10   Severity of infected symptomatic individuals and their 
access to appropriate resources for Scenario 1.3

Severity With appropriate 
health facility

No appropriate 
health facility

Total

Mild 912 0 912
Moderate 78 0 78
Critical 10 0 10

Table 11   Summary of results

Scenario 1.1 Scenario 1.2 Scenario 1.3

Antiviral A Antiviral B Antiviral A Antiviral B Antiviral A Antiviral B

Mild 0 0 33 67 50 50
Moderate 0 0 50 100 0 150
Critical 0 0 17 33 50 0
With appropriate health facility 920 1000 1000
No appropriate health facility 80 0 0
Deaths 55 12 9
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in Fig. 1. This is primarily because of the large proportion 
of the infected population with mild cases of the disease. No 
added benefit is seen even if they take these drugs since they 
will remain under the same severity level. Hence, they need 
not be given any antiviral drugs, regardless of availability. It 
is assumed here that any surplus is stockpiled in reserve for 
a future surge of serious COVID-19 cases. Furthermore, as 
in Case Study 1, for critical cases, Antiviral A had a higher 
efficacy level than Antiviral B. Figures 2 and 3 show how 
Antiviral A is allocated to critical cases, while Antiviral B 
is allocated to moderate cases.

It is interesting to note that when the fractional avail-
ability of antivirals was at 0.2, 105 critical patients were 
not provided with an antiviral even when 994 patients of 
moderate severity were given antiviral B. This result is pri-
marily due to the efficiency of the antiviral on a particular 
severity group. Based on Table 2, it can be seen that anti-
viral B had a better efficiency at reducing the severity of 
individuals in the moderate severity group such that 75% 
will now experience mild symptoms. In contrast, providing 

antivirals to the critical severity group only results in 60% 
of critical cases being reduced to moderate severity. As 
a result, individuals who were initially in the moderate 
severity group will have a higher chance of recovering and 
a greater contribution toward lowering case fatality rates.

Table 12   Optimal allocation of antivirals at different levels of supply availability in Scenario 2.1

Fractional 
availability

Deaths Mild Moderate Critical

No antiviral Antiviral A Antiviral B No antiviral Antiviral A Antiviral B No antiviral Antiviral A Antiviral B

0.1 16,527 32,577 0 0 45,087 0 0 8708 9597 0
0.2 10,841 32,577 0 0 44,094 0 994 105 18,200 0
0.3 9421 32,577 0 0 34,602 0 10,486 0 18,305 0
0.4 8217 32,577 0 0 25,005 0 20,083 0 18,305 0
0.5 7076 32,577 0 0 15,408 0 29,680 0 18,305 0
0.6 6030 32,577 0 0 5811 0 39,276 0 18,305 0
0.7 5400 32,577 0 0 42 0 45,046 0 18,305 0
0.8 5397 32,577 0 0 0 0 45,087 0 18,305 0
0.9 5397 32,577 0 0 0 0 45,087 0 18,305 0
1 5397 32,577 0 0 0 0 45,087 0 18,305 0

Fig. 1   Variation in the number of deaths relative to the availability of 
antivirals

Fig. 2   Allocation of antivirals to critical-case patients

Fig. 3   Allocation of antivirals to moderate-case patients
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Figure 4 shows the proportion of patients who were 
able to gain access to the hospital facility that they need, 
which are appropriate to the severity of the infection. The 
results highlight how antiviral drugs decrease the burden 
on hospital resources, which may be needed for patients 
with other ailments. At 100% antiviral availability, most 
of those infected will now be classified as mild cases that 
only need home care. Conversely, the need for health facil-
ities (i.e., regular hospital beds and ICU beds) increases as 
drug availability decreases.

Scenario 2.2: Availability of health facilities 
dedicated to COVID‑19 patients

The second scenario alternatively considers how the avail-
ability of appropriate health facilities affects the number of 
deaths and access to the needed level of care with respect 
to the severity of the infection. In this scenario, it was 
assumed that drug availability is 100%, i.e., all patients 
can get the antiviral drugs they need. As in the first sce-
nario, the number of deaths decreases as more hospital 
health facilities get assigned specifically for COVID-19 
patients (Fig. 5). This result is due to patients falling under 
the different severity levels being able to get appropriate 
treatment. For instance, critical patients are able to access 
ICU beds, while those classified under moderate severity 
are assigned to regular beds inside the hospital (Fig. 6). 
Another key observation here is that the number of deaths, 
even with only 10% availability, is still lower than the 
number recorded from Scenario 2.1. Again, this is because 
the antiviral drugs lower the severity levels of the infec-
tions—allowing some of the patients to become mild cases 
that will only require home care (Table 13).   

Fig. 4   Distribution of patients at different levels of antiviral availabil-
ity

Fig. 5   Variation in the number of deaths relative to the availability of 
health facility

Fig. 6   Distribution of patients at different levels of health facility 
availability

Table 13   Optimal patient outcomes at different levels of health facil-
ity availability in Scenario 2.2

Fractional avail-
ability

Deaths Access to health facility

0.1 8349 Home Bed ICU
0.2 7868 66,392 2806 149
0.3 7397 66,392 5534 291
0.4 6945 66,392 8209 432
0.5 6538 66,392 10,751 572
0.6 6246 66,392 12,996 713
0.7 5991 66,392 14,473 854
0.8 5786 66,392 15,712 992
0.9 5581 66,392 16,633 1126
1 5397 66,392 17,553 1259
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Practical implications

The search for effective antivirals to treat COVID-19 is 
a scientific process, which will eventually have to be fol-
lowed by the business and engineering problem of produc-
tion scale-up (Yu et al. 2020). Drug shortages are a plau-
sible scenario due to the scale of the pandemic. There is a 
risk that these scarce resources may not be optimally allo-
cated. Experience with the scarcity of human resources, 
hospital beds, and other supplies in Italy illustrates that 
the patient-centric outlook of frontline medical personnel 
may fail to take into account critical system-level features 
of the pandemic (Ferrari et al. 2020). In other words, deci-
sions that may seem optimal for individual patients, or for 
small groups of patients, may lead to nonoptimal outcomes 
for the entire healthcare system.

The holistic perspective that underlies PI methodol-
ogy lends itself to addressing this problem. The LP model 
developed in this work can optimize drug allocation at 
the system level, taking into account background condi-
tions such as disease incidence and the local availability 
of various health system resources. Given data on such 
conditions, the model can generate a drug allocation plan 
that minimizes total fatalities by reducing disease severity 
or by assigning appropriate levels of care. The two hypo-
thetical case studies in the previous sections demonstrate 
this capability. The model outputs can be readily translated 
into practical allocation rules to guide medical person-
nel at the frontlines. These rules will vary depending on 
the prevailing conditions—i.e., specific numerical values 
of the model parameters may vary with location or with 
time—but the general principle of providing the capability 
to compute for the best allocation remains constant across 
all instances.

Conclusions

An LP model has been developed for optimizing the 
allocation of future COVID-19 drugs under conditions 
of a supply shortage. The model also accounts for hos-
pital capacity due to limits on space, vital life support 

equipment, and medical personnel. Two case studies were 
solved to illustrate how the model can generate alloca-
tion policies that outperform ad hoc or heuristic triage 
policies using patient fatalities as a metric. The model 
can provide strategic insights for government planners and 
healthcare administrators to complement the operational 
view of frontline medical personnel. The LP formulation 
is flexible, and it can be readily updated once published 
data on drug efficacy become available. As an LP, it can 
also be readily implemented and solved in commonly 
available software such as spreadsheets applications. This 
simple model can also serve as the core model for future 
extensions. In particular, robust, multiperiod, and multi-
objective variants should be prioritized for development to 
account for uncertainties, dynamics, and conflicting goals, 
respectively.

Appendix

See Tables 14 and 15.

Table 14   Number of patients categorized in the different severity lev-
els in Case Study 2

Region Low Medium High

1 613,790 852,926 354,586
2 112,590 177,221 75,059
3 154,560 216,156 99,684
4 244,945 356,378 135,084
5 1,042,956 1,437,646 549,412
6 38,006 66,532 31,900
7 598,550 740,827 286,933
8 136,246 177,469 74,862
9 102,102 121,449 48,396
10 221,055 300,631 106,951
11 207,692 282,448 118,715
12 169,671 295,306 124,973
13 162,512 247,780 97,488
14 211,903 312,244 124,592
15 140,649 213,381 77,965
16 23,870 32,464 14,609
17 249,035 341,851 110,450
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