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Abstract
In recent years, multidrug-resistant Acinetobacter baumannii has emerged globally as a major threat to the healthcare system. 
It is now listed by the World Health Organization as a priority one for the need of new therapeutic agents. A. baumannii has 
the capacity to develop robust biofilms on biotic and abiotic surfaces. Biofilm development allows these bacteria to resist 
various environmental stressors, including antibiotics and lack of nutrients or water, which in turn allows the persistence of 
A. baumannii in the hospital environment and further outbreaks. Investigation into therapeutic alternatives that will act on 
both biofilm formation and antimicrobial resistance (AMR) is sorely needed. The aim of the present review is to critically 
discuss the various mechanisms by which AMR and biofilm formation may be co-regulated in A. baumannii in an attempt 
to shed light on paths towards novel therapeutic opportunities. After discussing the clinical importance of A. baumannii, 
this critical review highlights biofilm-formation genes that may be associated with the co-regulation of AMR. Particularly 
worthy of consideration are genes regulating the quorum sensing system AbaI/AbaR, AbOmpA (OmpA protein), Bap 
(biofilm-associated protein), the two-component regulatory system BfmRS, the PER-1 β-lactamase, EpsA, and PTK. Finally, 
this review discusses ongoing experimental therapeutic strategies to fight A. baumannii infections, namely vaccine develop-
ment, quorum sensing interference, nanoparticles, metal ions, natural products, antimicrobial peptides, and phage therapy. 
A better understanding of the mechanisms that co-regulate biofilm formation and AMR will help identify new therapeutic 
targets, as combined approaches may confer synergistic benefits for effective and safer treatments.
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Introduction

The introduction, misuse, and overuse of antibiotics have 
facilitated the development of antimicrobial resistance 
(AMR) far beyond its original, natural, selection-based evo-
lution [1, 2]. AMR occurs when microorganisms no longer 

respond to medicines they previously were sensitive to. 
AMR dissemination is facilitated by the horizontal transfer 
of a broad range of antibiotic resistance genes in bacteria 
from humans, animals, and in the environment [2–4]. Hence, 
a One-Health-based approach is key to our attempts at better 
understanding and, ultimately, solving this global threat [2, 
5, 6]. As the clinical pipeline of new antimicrobials dries up, 
increased difficulties in treating bacterial infections due to 
AMR lay the terrifying foundations for emerging pandemic-
size healthcare challenges [2, 7].

Bacteria may live as free-swimming, planktonic organ-
isms. In their natural environments, however, bacteria are 
mostly sessile, adhered to a substrate, and form complex 
multispecies communities known as biofilms. Biofilms 
are the cause of enormous medical challenges and repre-
sent a life form that naturally resists exposure to environ-
mental attacks, including that of antibiotics [8]. Biofilm 
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communities secrete their own extracellular matrix, typi-
cally consisting of polysaccharides, proteins, and DNA. 
This matrix reduces the free diffusion of antimicrobials 
into the mature biofilms and facilitates the development 
of antibiotic resistance, which makes biofilms significantly 
more difficult to eradicate than planktonic organisms. 
Intense ongoing research initiatives investigate quorum 
sensing molecules, as well as the genes and second mes-
sengers, such as c-di-GMP and cAMP, that are implicated 
in biofilm formation [8–12]. The mechanisms whereby 
these genetic biofilm regulators may affect the develop-
ment of AMR remain poorly understood. Research into co-
regulatory mechanisms of biofilm and AMR development 
is sorely needed, as it may help identify new antimicrobial 
targets.

Acinetobacter baumannii is an opportunistic pathogen 
responsible for many nosocomial infections that include 
ventilator-associated pneumonia (VAP) and bloodstream 
infections, especially in patients hospitalized in inten-
sive care units (ICUs) [13–15]. New risks have appeared 
with the emergence of the COVID-19 pandemic. The 
COVID-19 pandemic has spawned an overuse of antimi-
crobials, and co-infection with other respiratory patho-
gens in COVID-19 patients is an emerging concern. Even 
though the prevalence of secondary bacterial infections 
in COVID-19 patients may exceed 50%, reports about 
secondary infections or co-infections with opportunis-
tic pathogens in COVID-19 patients still remain scarce 
[16–18]. Co-infections in COVID-19 patients may signifi-
cantly worsen disease outcomes. Recent evidence suggests 
that co-infection and secondary infection with A. bauman-
nii represent a significant threat to these patients. Indeed, 
infections with multidrug-resistant (MDR) A. baumannii 
in COVID-19 patients are being reported with increased 
frequency, particularly in ICUs [19–28]. Spread of MDR 
A. baumannii in hospitals can occur via several routes, 
including ventilator-associated transmission and air dis-
persal [23, 29, 30]. Recent findings demonstrate that the 
lower respiratory tract bacterial microbiome of critically 
ill COVID-19 patients favors the establishment of car-
bapenem-resistant A. baumannii [31, 32]. A. baumannii 
is known to form biofilms in host tissues, as well as on 
a variety of inert surfaces, including plastic and metals 
found in medical equipment [33–36]. This ability further 
complicates the control of such infections and warrants 
new prevention measures targeting biofilm-forming anti-
microbial-resistant A. baumannii [13, 15].

With a focus on A. baumannii, the aim of this review is 
to discuss mechanisms that control biofilm formation and 
AMR development. We discuss the current understand-
ing of genes that may co-regulate both of these processes 
as a path towards the development of novel therapeutic 
strategies.

Clinical significance of A. baumannii

A. baumannii is a ubiquitous opportunistic pathogen 
belonging to the class of Gram-negative Gammaproteo-
bacteria and is a non-fermentative, non-motile, catalase-
positive coccobacillus [13, 36]. In addition to respiratory 
and bloodstream infections, A. baumannii may cause infec-
tions in the urinary tract and the skin and may lead to 
endocarditis and meningitis [13, 14, 30, 36, 37]. Some of 
these infections are related with the formation of biofilms, 
such as VAP and catheter-associated infections [37–39]. 
The mortality rate associated with infection by A. bauman-
nii may exceed 50% [13, 30, 36, 40–44]. Recent reports 
also demonstrate that A. baumannii is responsible for com-
munity-acquired infections, such as community-acquired 
pneumonia with or without bacteremia. Often severe and 
fatal, these infections are more prevalent in patients with 
associated risks, such as diabetes mellitus and chronic lung 
diseases, and mortality can reach 64% [45–49].

A. baumannii expresses key virulence factors including 
lipopolysaccharides, capsular polysaccharides, proteases, 
phospholipases, outer membrane porins, outer membrane 
vesicles, biofilm-associated protein (Bap), iron-chelating 
systems, surface glycoconjugates, and protein secretion 
systems [14, 36, 50, 51]. However, the pathogenicity of the 
Acinetobacter genus, which today contains over 50 species, 
cannot be explained solely on the basis of phenotypic and 
chemotaxonomic methods, and virulence appears to be, 
at least in part, strain-dependent [14, 50, 51]. Indeed, this 
pathogen harbors a versatile genetic machinery that allows 
it to not only exhibit variable, strain-dependent virulence 
aspects but also rapidly generate environment-specific 
resistance and survival factors [14, 50–52]. As a result, it 
may be found in a broad range of habitats, including water, 
soil, food, and on the surfaces of medical equipment, and 
it may persist in environments that are inhospitable to 
many other bacterial pathogens. The most clinically rel-
evant Acinetobacter spp. are grouped in the Acinetobacter 
calcoaceticus-baumannii (Acb) complex which includes 
5 pathogenic Acinetobacter species, namely A. bauman-
nii, Acinetobacter nosocomialis, Acinetobacter pittii, 
Acinetobacter seifertii, and Acinetobacter dijkshoorniae. 
A non-pathogenic one, Acinetobacter calcoaceticus also 
belongs to this group [14, 50–52]. A. baumannii exhibiting 
MDR profiles are encountered with increasing frequency 
[50, 52–56]. Resistance to last-resort antibiotics such 
as carbapenems and colistin has already been reported, 
allowing such strains to cause pan-drug-resistant infec-
tions that are presently impossible to eradicate [54–61]. 
A novel siderophore cephalosporin antibiotic, cefiderocol, 
was recently approved as a therapeutic agent for Gram-
negative bacterial infections in both Europe and the USA 
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[62]. As observed in P. aeruginosa, one of the innova-
tive aspects of this antibiotic is that cefiderocol can cross 
the outer membrane, relying on a “Trojan horse” strategy. 
Cefiderocol creates chelating complexes with extracellu-
lar free iron, and thus, these complexes are transported 
into the bacteria via its iron transporters. Inside the cell, 
cefiderocol inhibits penicillin-binding protein 3, impairing 
cell wall synthesis [63–65]. Cefiderocol has proven to have 
potent activity against carbapenem-resistant A. bauman-
nii [65–67]. However, cefiderocol-resistant A. baumannii 
isolates have already been reported [68–71]. It is estimated 
that approximately 44% of all A. baumannii isolates are 
MDR, with the highest incidence found in the Middle East 
and Latin America, where this rate may exceed 70%. In the 
European Region, the percentage of MDR A. baumannii 
can reach 43% [50, 72]. Results from the Central Asian 
and European Surveillance of Antimicrobial Resistance 
network and the European Antimicrobial Resistance Sur-
veillance Network demonstrate an alarming increase in the 
reported cases of Acinetobacter spp., which have doubled 
(+121%), passing from 5375 cases reported for 2019 to 
10885 cases reported for 2021. Regarding the percentage 
of carbapenem-resistant Acinetobacter spp., this value var-
ied from below 1% to over 50% throughout the region. East 
and South Europe were the areas that showed the highest 
percentages of carbapenem-resistant Acinetobacter spp. 

Moreover, between 2017 and 2021, MDR Acinetobacter 
spp. increased from 32.1 to 36.8%. [73, 74]. As a result, 
A. baumannii has become a critical healthcare problem 
worldwide; this threat has received even greater attention 
due to the high prevalence of this bacterium in patients 
with COVID-19 [22, 23, 32].

A. baumannii is on the World Health Organization’s drug-
resistant bacteria and antimicrobial resistance research pri-
ority list, and the Center for Diseases Control and Preven-
tion has classified carbapenem-resistant Acinetobacter as an 
urgent threat to public health [75, 76]. The critical concerns 
around AMR in A. baumannii are compounded by the abil-
ity of this pathogen to form biofilms on biotic and abiotic 
surfaces. Within biofilms, bacteria exhibit limited metabolic 
activity, and their extracellular polysaccharide matrix shel-
ters them from antibiotics and host immune factors. As a 
result, therapeutic options to treat MDR biofilm-forming A. 
baumannii have become ineffective.

A. baumannii biofilms

A. baumannii rapidly forms sessile biofilm aggregates 
upon adherence to its substrate. Biofilm communities pro-
duce their own extracellular polysaccharide matrix and, in 
turn, release planktonic (free-swimming) bacteria that may 

Fig. 1   The five stages in biofilm formation (A) and A. baumannii 
virulence factors associated with biofilm formation (B). (A) Biofilm 
formation includes five different stages: (1) initial attachment, when 
planktonic cells reversibly attach to a surface; (2) irreversible attach-
ment, when bacteria irreversibly attach to a surface and start cell-
to-cell adhesion; (3) growth and extracellular polymeric substances 
(EPS) production, with bacteria starting to produce EPS; (4) biofilm 
maturation and microcolony formation, when biofilms become fully 
mature and microcolonies start to appear; and (5) detachment and dis-

persal, when biofilm bacteria start being released from the biofilm to 
make biofilms elsewhere. (B) A. baumannii has several virulence fac-
tors associated with biofilm formation, including the Csu Pili, which 
is related to the adhesion of the bacteria to abiotic surfaces such as 
plastic; AbOmpA, a porin involved in the adhesion of the bacteria to 
biotic surfaces such as epithelial cells; Bap, a protein involved in the 
maturation of biofilms and also BfmRS, a regulatory system involved 
in biofilms formation through the regulation of Csu Pili
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establish new biofilms elsewhere, a bacterial survival pro-
cess that exists throughout nature [8, 12, 77, 78] (see Fig. 1). 
The extracellular matrix contains polysaccharides, proteins, 
and nucleic acids and confers to the biofilm key viscoelastic, 
cohesive, and hydrating properties [8, 79, 80]. This dynamic 
mode of growth allows to retain water, to shelter against 
environmental stress, and facilitates quorum sensing and 
horizontal gene transfer [8, 80–83].

The formation of biofilms protects bacteria against anti-
microbial substances, pH variability, UV radiation, extreme 
temperature, desiccation, nutrient starvation, and host 
immunity [81–84]. On abiotic surfaces, the biofilm mode of 
growth of A. baumannii protects against severe desiccation, 
which allows it to persist and may facilitate outbreaks [35, 
36, 85–87]. Biofilms consume ambient nutrients, electron 
donors, and acceptors and may incorporate other bacterial 
species as well as dead and viable host cells [8, 78, 82, 83, 
88–90]. The biofilm mode of growth may increase AMR by 
a given bacterial pathogen 100 to 1000-fold [87, 91–93]. 
A broad range of mechanisms cooperate to produce the 
elevated AMR observed in biofilms, including interactions 
of the antimicrobials with biofilm matrix elements, reduced 
bacterial growth rates, quorum sensing, and various drivers 
of antibiotic resistance that can fuel horizontal genetic trans-
fer inside the biofilm [8, 90, 94–98]. Horizontal gene trans-
fer is a phenomenon that occurs faster within biofilms than 
in planktonic cells. Inside biofilms, the bacterial evolution 
and development of drug-resistant bacteria can be achieved 
by the transfer of mobile genetic elements encoding antibi-
otic resistance genes, such as plasmids. This gene transfer 
can be fueled by the exposition to sub-minimum inhibitory 
concentrations (sub-MICs) of antibiotics inside the biofilm. 
Thus, biofilms are considered important reservoirs for the 
dissemination of AMR [95, 98, 99]. Several studies have 
established a positive correlation between biofilm formation 
and the degree of AMR in A. baumannii, with extensively 
drug-resistant (XDR) strains forming more robust biofilms 
than MDR strains [100–102]. Yet, other reports indicate that 
XDR strains tend to form weaker biofilms than non-MDR 
and MDR strains [93, 103], highlighting the urgent need 
to better understand co-regulatory mechanisms of biofilm 
formation and AMR.

Quorum sensing

Quorum sensing is a cell-to-cell communication system 
that regulates bacterial behavior in both Gram-positive and 
Gram-negative bacteria in response to environmental stress 
[104–107]. This process depends on the production, detec-
tion, and down-stream signaling of secreted chemical mol-
ecules (autoinducers). Using this communication system, 
bacteria are capable to respond to increased cell density, to 

control biofilm growth, and to produce extracellular polysac-
charides. It also allows bacteria to regulate genes implicated 
in virulence and drug resistance, an area of research receiv-
ing considerable attention in view of its potential to develop 
new therapeutics [108, 109]. A number of compounds and 
processes are known to contribute to quorum sensing (sum-
marized in Table 1).

In Gram-negative bacteria, quorum sensing compounds 
include N-acyl-homoserine lactones (AHL), composed of a 
homoserine lactone ring and a fatty acid acyl group variable 
in size, depending upon the bacterial species. Short (4 to 8 
carbons) or long (10 to 16 carbons) AHL diffuses through 
the cell wall and acts as autoinducers [127–130]. Gram-
positive bacteria use secreted oligopeptides as autoinducers 
and a two-component regulatory system (TCS) to regulate 
what genes and peptides need to be expressed. These TCS 
rely on membrane-bound histidine-kinase receptors and 
intracellular regulators [130, 131]. Furanosyl borate diester 
or tetrahydroxy furan (also called autoinducer-2, AI-2) is 
another type of signaling molecule used by both Gram-neg-
ative and Gram-positive bacteria and is known to serve as a 
signal for interspecies communications [132, 133]. Another 
autoinducer signal molecule involved in quorum sensing 
communication has been recently discovered in enterohem-
orrhagic Escherichia coli (EHEC) serotype O157:H7 and is 
referred to as autoinducer-3 (AI-3) [124]. AI-3 was charac-
terized as 3,6-dimethylpyrazin-2-one [125]. EHEC bacteria 
sense AI-3 signaling molecules through the sensor kinase 
QseC belonging to the TCS QseBC (which is also involved 
in “sensing” of the host-derived hormones epinephrine and 
norepinephrine), thus enabling the control of expression of 
virulence genes, including those regulating the production 
of Shiga toxin [134].

Recent findings have significantly advanced our under-
standing of quorum sensing in regulating biofilm formation 
and AMR in both Gram-positive and Gram-negative bac-
teria, including in A. baumannii [50, 108–110, 135–138]. 
Recent evidence indicates that quorum sensing deficiency 
is associated with the formation of thinner biofilms that 
become susceptible to kanamycin [139]. In P. aeruginosa, 
quorum sensing regulates the expression of superoxide dis-
mutase and catalase genes that confer resistance to hydro-
gen peroxide [140]. A three-day exposure of A. baumannii 
to sub-inhibitory concentrations of antibiotics increases 
biofilm formation and AMR in association with signifi-
cant genome alterations linked to these phenotypic changes 
[141]. Pharmacological interference with the quorum sens-
ing system reduces pathogenicity and facilitates the elimina-
tion of a given pathogen by host immunity [137, 142, 143]. 
These observations add to the ever-increasing number of 
reports supporting the hypothesis that biofilm formation 
and development of AMR are, at least in part, genetically 
co-regulated processes and make the inhibition of bacterial 
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communication an attractive target for new drug develop-
ment [98, 108, 109, 144–146]. Indeed, intensive ongoing 
research activities aim at developing quorum sensing inhibi-
tors or quorum quenching enzymes to decrease the virulence 
of bacterial pathogens, including A. baumannii [138, 143, 
147, 148].

Quorum sensing in A. baumannii is similar to what is 
observed in other Gram-negative bacteria, and it regulates 
biofilm formation, AMR, motility, and virulence [111, 112, 
136, 137, 149–151]. AHL serves as the autoinducer-1. It is 
produced via the autoinducer synthase AbaI, which in turn 
binds to its cognate receptor AbaR (see Fig. 2), a system that 
is homologous to the canonical LuxI/LuxR system found 
in other Gram-negative bacteria [111, 149, 150]. AbaI-
produced AHL binding to AbaR triggers a cascade of reac-
tions leading to the quorum sensing response. A. baumannii 
AbaI is 27.5% identical and 47.3% similar to the LasI of a 
pathogenic and an environmental isolate of P. aeruginosa, 
respectively, and has a close resemblance to the LuxI fam-
ily members described for Vibrio fischeri [110, 111, 138, 
149]. A. baumannii also appears to express a luxI gene that 
contributes to AHL production [152]. In this bacterium, 
acyl side chains range from 10 to 16 carbons, although a 
number of Acinetobacter strains show various AHL profiles 
and produce more than one AHL [149, 153–155]. The most 
common AHL in A. baumannii is hydroxy-C12-homoserine 

lactone [110, 112, 155]. The quorum sensing system AbaI/
AbaR is known to contribute to biofilm formation and anti-
biotic resistance in A. baumannii [110, 112]. Exogenous sup-
plementation of AHL stimulates the formation of biofilms 
in non-biofilm-forming A. baumannii clinical isolates and 
enhances biofilm production in weakly adherent bacteria 
[156]. AHL also plays a role in A. baumannii drug resist-
ance; an abaI deficient A. baumannii mutant was more sus-
ceptible to meropenem and piperacillin than the wild-type 
strain. However, its resistance was restored in the presence 
of AHL supplementation, promoting the expression of sev-
eral drug resistance-related genes that include blaOXA-51, 
ampC, and the efflux pumps adeA and adeB genes [112]. 
Indeed, the AbaI/AbaR-dependent biofilm formation has 
been linked to overexpression of antimicrobial resistance 
genes, including those controlling efflux pumps [113, 114]. 
Yet, the molecular pathways regulating the complex AbaI/
AbaR system remain incompletely understood.

Biofilm‑associated genes in A. baumannii

In A. baumannii, several genes are involved in biofilm for-
mation and development. Some of these determinants and 
related functions are presented in Table 2.

Fig. 2   AbaI/AbaR quorum 
sensing system in A. bauman-
nii. In this system, S-adenosyl 
methionine (SAM) and acyl-
acyl carrier protein substrates 
(Acyl ACP) are the essential 
components for the production 
of AHLs. AbaI-regulated AHLs 
are released into the extracel-
lular environment. Then, AHLs 
bind to the receptor AbaR 
present in the other cells, trig-
gering a cascade of reactions 
that culminates in the control 
of expression of several target 
genes, including genes involved 
in biofilm formation and also 
for the production of more 
AHLs
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Adherence is the critical step for the development of a 
biofilm. Thus, the factors that play a role in this first stage 
of biofilm formation, including Csu pili, AbOmpA, A. bau-
mannii Bap, and the TCS BfmRS, will be discussed in the 
following paragraphs. Other genes that may also be involved 
in the co-regulation of biofilm formation in A. baumannii 
including blaPER-1, epsA, and ptk will be addressed.

Csu pili

The attachment to a surface by planktonic bacteria is the 
first step in bacterial biofilm formation [170]. A. bauman-
nii Csu pili contribute to the attachment and biofilm forma-
tion on abiotic surfaces [86]. In A. baumannii, Csu pili are 
formed by the type I chaperone-usher pili assembly system 
named CsuA/BABCDE. In these bacteria, the csu operon 
has six open reading frames, namely csu A/B, A, B, C, D, 
and E [86]. At the structure level, Csu pili are elaborated 
from four subunit proteins, CsuA/B, CsuA, CsuB, and CsuE, 
being assembled by CsuC and CsuD proteins [33, 86]. A 
positive correlation between biofilm formation and AMR, 
predominantly regulated by csuE, was reported recently. 
Concurrently, a high prevalence of csuE was observed 
among MDR A. baumannii clinical isolates, reaching 100% 
in some reports [56, 171]. At the Csu pili tip, CsuE is made 
of three hydrophobic finger-like structures responsible for 
the adherence of the bacteria to abiotic surfaces, such as 
hydrophobic plastics [33]. As a result, these bacteria exhibit 
a greater ability to form biofilms on polycarbonate hydro-
phobic materials than on glass, which is a hydrophilic mate-
rial. The use of hydrophilic materials for medical devices 
may help prevent biofilm-associated infections [33, 35]. 

Sub-inhibitory concentrations of antibiotics like trimetho-
prim and sulfamethoxazole can inhibit A. baumannii ATCC 
17978 biofilm formation. Through the inhibition of folate 
biosynthesis and then promoting folate stress, these anti-
biotics repress csuA/B expression, which, in turn, inhibits 
the development of biofilms [172]. A. baumannii Csu pili 
are not implicated in adherence to biotic surfaces, such as 
respiratory tract epithelial cells [173].

A. baumannii outer membrane protein A (AbOmpA)

The OmpA of A. baumannii, also known as OmpAb [174], 
Omp38 [175, 176], or AbOmpA [177] (hereafter AbOmpA), 
is a permeability-relevant porin protein present in the outer 
membrane (OM) [174]. AbOmpA is considered as one 
of the major proteins in the OM of A. baumannii, and it 
is involved in specific processes of pathogenesis, such as 
adherence to and invasion of the host epithelial cells [157, 
158, 174], disruption of the mitochondria, and cell death 
[176, 177]. AbOmpA is also related to the virulence capac-
ity of outer membrane vesicles released from A. baumannii 
[178, 179]. AbOmpA may also induce dendritic cell death 
that can lead to a deficient host immune response [177]. In 
contrast, other studies have shown that AbOmpA stimulates 
the host immune system, activating and maturing dendritic 
cells and promoting the differentiation of CD4+ T cells 
[180]. Overexpression of AbOmpA presents a risk factor 
for the development of A. baumannii pneumonia and bac-
teremia, dissemination to organs like the lungs and spleen, 
and mortality [179, 181].

AbOmpA plays a role in A. baumannii biofilm formation 
in abiotic surfaces like polystyrene, and it is essential for 

Table 2   A. baumannii genes and their functions related to biofilm formation

Genes Function References

csuA/BABCDE Type 1 chaperone-usher pili assembly system involved in the formation of the Csu pili, which plays a key role 
in adherence of A. baumannii bacteria to abiotic surfaces

[33, 86]

abompA Codes for OmpA, a protein involved in the adherence of A. baumannii bacteria to biotic surfaces; plays a role 
in interaction with epithelial cells and biofilm formation

[157, 158]

bap Involved in the adherence of A. baumannii bacteria to biotic surfaces, biofilm structure development and matu-
ration, and water channel formation

[159, 160]

bfmRS TCS involved in the regulation of the csu operon and, thus, regulation of biofilm formation [161]
adeRS TCS involved in the regulation of the resistance-nodulation-cell division (RND) efflux pumps superfamily-

type AdeABC and in biofilm formation
[162, 163]

pgaABCD Encodes for proteins involved in the synthetization of poly-β-(1-6)-N-acetylglucosamine, an important poly-
saccharide in biofilms

[164]

abaI/AbaR Quorum sensing system in A. baumannii, being essential in biofilm development [110, 115]
epsA Encodes for a putative capsular polysaccharide export outer membrane protein (EpsA); it is required for 

capsule-positive phenotype, and it is associated with biofilm formation
[56, 165]

ptk Encodes for a putative protein tyrosine kinase (PTK); it is required for capsule-positive phenotype, and it is 
associated with biofilm formation

[56, 101, 165]

blaPER-1 Encodes the PER-1 extended-spectrum β-lactamase, and it is associated with cell adherence and biofilm 
formation in A. baumannii

[100, 166–169]
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the adherence of the bacteria to several biotic surfaces, such 
as human alveolar epithelial cells [158]. AbOmpA is also 
involved in intrinsic resistance to some antimicrobials. An 
abompA mutant A. baumannii ATCC 17978 strain showed 
increased susceptibility to trimethoprim than the wild-
type strain. This increase in susceptibility may reflect the 
interaction of the OmpA-like domain of the AbOmpA with 
the inner membrane transporters of the resistance–nodula-
tion–division efflux pumps superfamily [182].

A. baumannii biofilm‑associated protein (Bap)

Biofilm-associated proteins (Bap) have been identified in 
both Gram-positive and Gram-negative bacteria. These pro-
teins share common structural and functional characteristics. 
They are bacterial surface proteins with a high molecular 
weight, possess a core domain of tandem repeats, and are 
involved in biofilm development [183].

First identified in S. aureus in 2001 [184], Bap was shown 
to be a cell wall protein associated with S. aureus primary 
attachment to abiotic surfaces, such as polystyrene, cell-to-
cell adhesion, and, thus, biofilm formation. A S. aureus Bap 
homologous protein was then discovered in A. baumannii 
[159].

The A. baumannii Bap protein is involved in biofilm for-
mation and maturation and participates in intercellular adhe-
sion [159]. Bap protein plays an important role in bacterial 
adherence to human bronchial epithelial cells and human 
neonatal keratinocytes [160]. Also, Bap expression in A. 
baumannii is related to mature biofilm formation on abiotic 
surfaces, such as polypropylene and titanium. This protein 
is involved in the maintenance of cell surface hydrophobic-
ity [160], a feature that is considered an important factor 
in adherence ability and biofilm formation in a variety of 
bacteria [185–187].

Many clinical A. baumannii strains have the bap gene 
[188, 189]. Bacteria that express the bap gene produce 
stronger biofilms, and the addition of affinity-purified Bap-
specific antibodies inhibits biofilm formation [188]. In con-
trast, Bap-negative isolates recovered from bloodstream 
infections show a low biofilm formation ability [189]. The 
bap gene is often present in MDR A. baumannii strains, pro-
viding support to the hypothesis that this gene may help co-
regulate biofilm formation and AMR in A. baumannii [190].

The two‑component regulatory system BfmRS in A. 
baumannii

TCSs are involved in the sensing and transduction of extra-
cellular stimuli and are prototypically composed of a his-
tidine kinase sensor and a response regulator. Histidine 
kinase senses a stimulus and sends the information to the 
response regulator by transferring a phosphoryl group, 

promoting conformational changes in the regulatory 
domain. In turn, the response regulator acts as an activator 
or a repressor for the specific gene’s transcription [191].

TCSs have been found in both Gram-positive and 
Gram-negative bacteria [161, 191, 192]. They play a role 
in several bacterial functions, including in the control of 
genes regulating efflux pumps [162, 193, 194] and biofilm 
formation [161, 195]. In A. baumannii, the TCS BfmRS 
regulates biofilm formation [161], capsular polysaccha-
ride biosynthesis, as well as osmotic and oxidative stress 
responses. BfmRS may also modulate A. baumannii motil-
ity by controlling the expression of type IV pili [196, 197].

The BfmRS in A. baumannii is a TCS composed of a 
cytoplasmic response regulator, the BfmR, encoded by the 
bfmR gene, and a cytoplasmic membrane sensor kinase, 
the BfmS, which is encoded by the bfmS gene. The cyto-
plasmic protein BfmR is involved in biofilm development, 
cell morphology, and pellicle formation [161, 198]. BfmR 
is essential for attachment and biofilm formation in abiotic 
surfaces, such as polystyrene, as shown through a mutation 
in the bfmR gene. As a transcriptional activator, BfmR is 
involved in the regulation of Csu pili expression and, thus, 
adherence and biofilm development [161, 197]. Addition-
ally, another TCS is also involved in the regulation of Csu 
pili, the TCS GacSC, and thus implicated in biofilm for-
mation [199]. A. baumannii clinical isolates often express 
bfmS in association with elevated biofilm formation [56].

The BfmRS TCS is also involved in AMR. By mecha-
nisms that are not yet fully understood, the response regu-
lator BfmR is considered an important factor in AMR, 
including resistance to meropenem and polymyxin E con-
currently with biofilm formation. BfmR is also involved 
in resistance to complement [200, 201]. Moreover, BfmR 
also participates in the regulation of A. baumannii toler-
ance to desiccation, explaining its persistence in hospital 
settings [202]. The sensor kinase BfmS is involved in A. 
baumannii biofilm formation. Mutation of bfmS also inter-
feres with AbOmpA regulatory pathways and virulence 
[203, 204].

The A. baumannii BfmRS system is strongly associated 
with virulence and in the transcriptional regulation of the k 
locus, which is responsible for exopolysaccharide production 
in the presence of sub-MICs of antibiotics such as chloram-
phenicol and erythromycin [205, 206]. Furthermore, BfmRS 
is involved in resistance against β-lactams, both β-lactamase-
dependent and β-lactamase-independent manner. In the 
presence of β-lactams aggression, BfmRS can regulate the 
production of β-lactamases and also control the cell divi-
sion and cell wall degradation processes [207]. The fact that 
BfmRS is involved in AMR as well as in the regulation of 
biofilm formation through the control of Csu pili points to a 
role for this gene in the co-regulation of biofilm formation 
and AMR in A. baumannii [207].
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A. baumannii blaPER‑1, epsA, and ptk genes

Other genes that may be involved in the co-regulation of 
biofilm formation and AMR in A. baumannii are blaPER-1, 
epsA, and ptk.

The blaPER-1 gene encodes for an extended-spectrum 
β-lactamase, the PER-1 [166–168]. A. baumannii that 
express blaPER-1 are associated with poor clinical out-
come [167]. This gene appears to be essential in the 
adhesion capacity of MDR A. baumannii clinical isolates 
to respiratory epithelial cells and was found to contrib-
ute to biofilm formation on abiotic surfaces [208]. More 
research needs to assess whether this property may at 
least in part contribute to the poor outcome of patients 
infected with A. baumannii carrying the blaPER-1 gene. 
The prevalence of this gene in MDR A. baumannii clini-
cal isolates has been extensively evaluated: Studies have 
reported a prevalence of 2% [56], 44% [189], 53% [102], 
and 64.2% [209]. Remarkably, in one study, out of 27 
MDR A. baumannii clinical isolates, 44% had the blaPER-1 
gene. These blaPER-1 positive isolates were recovered from 
the respiratory tract of patients. In contrast, blaPER-1 nega-
tive isolates were recovered from the bloodstream and 
were low biofilm formers [189], strongly suggesting a 
relationship between the expression of PER-1 and biofilm 
formation ability.

The capsule is a well-known virulence factor [210]. 
epsA and ptk are two genes involved in capsule biosyn-
thesis in A. baumannii. A. baumannii epsA encodes for a 
putative polysaccharide export outer membrane protein 
(EpsA), whereas the ptk gene encodes for a putative pro-
tein tyrosine kinase (PTK) [165]. Both genes appear to be 
implicated in the biofilm formation of MDR A. baumannii 
isolates since a study involving 100 MDR A. baumannii 
clinical isolates demonstrated a 95% prevalence for both 
ptk and epsA [56], and all were strong biofilm formers. 
The presence of the capsule may contribute to a strong 
biofilm.

Paths towards novel therapeutics

The exponential increase in antibiotic resistance along 
with the growing awareness of the deleterious impact of 
biofilms in medicine has led to a growing demand for new 
therapeutic alternatives. Several alternatives are currently 
under development, with the objective of combating AMR 
as well as the biofilms formation in A. baumannii. These 
include the development of new vaccines, the inhibition 
of quorum sensing, the use of nanoparticles and metal 
ions, natural products, antimicrobial peptides, and phage 
therapy.

Vaccine development

The fight against AMR needs to be multifactorial, includ-
ing stewardship of antimicrobials use, development of new 
therapeutics, and infection prevention. Vaccines targeting 
AMR and biofilm formation are being developed [211, 212]. 
A number of these aim at mounting immunity against struc-
tures of the cell wall that are involved, directly or indirectly, 
with biofilm formation. For A. baumannii, these include 
AbOmpA, Bap protein, and subunit proteins of the surface-
exposed Csu pili such as CsuA/B [213–218]. AbOmpA 
appears to be the most relevant for future vaccine develop-
ment against drug-resistant A. baumannii. Along with the 
fact that AbOmpA-antigen-based immunization demon-
strates high protection and survival rates reaching 80% or 
higher [219, 220], AbOmpA is also highly conserved among 
A. baumannii clinical isolates, with prevalence reaching 99% 
[215, 216, 219]. A two-recombinant-pilus proteins vaccine 
targeting the CsuA/B protein plus a related fimbriae protein, 
FimA, was found to trigger protective immunity in mice 
against A. baumannii infection [217]. A Bap protein vaccine 
is similarly protective in murine models [218].

Quorum sensing interference

Molecules that promote cell-to-cell communication, such 
as quorum sensing compounds (autoinducers), are attrac-
tive targets to reduce/inhibit biofilm formation. Quorum 
quenching inhibits bacterial cell communication. This can 
be accomplished by inhibiting the production or bacterial 
detection of these quorum sensing molecules or by their 
degradation [221]. Quorum quenching includes quorum 
quenching enzymes and quorum sensing inhibitors. Quo-
rum quenching enzymes act in the extracellular environment 
and not intracellularly and hence will not select for resistant 
bacteria [221, 222].

Strategies of interference in quorum sensing are being 
developed in an attempt to prevent the formation of biofilms 
and the development of virulence factors as well as AMR 
in A. baumannii [136, 138, 223, 224]. As AHL lactonases 
destabilize quorum sensing in Gram-negative bacteria, these 
enzymes represent a promising approach to combat biofilm-
associated infections and AMR [225, 226]. The utility of 
these enzymes as a therapeutic strategy against A. bauman-
nii biofilms has been established using the clinical isolate 
A. baumannii S1 [223]. Similar results were observed with 
another lactonase enzyme with quorum quenching activity, 
MomL. This lactonase has the capability to degrade A. bau-
mannii AHL and to dramatically reduce biofilm biomass 
while concurrently enhancing the susceptibility of the bio-
film to antibiotics. Supplementation of antimicrobials with 
quorum quenching agents may offer synergistic benefits, 
as recently observed in A. baumannii biofilms exposed to 
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tobramycin supplemented with MomL [224]. More research 
is warranted using this approach in vivo [224].

Nanoparticles and metal ions

Various metal nanoparticles, particularly silver, are the 
topic of intense research activity in view of their antimi-
crobial properties [227]. The antimicrobial properties of 
metal nanoparticles have been evaluated both in planktonic 
bacterial cells and biofilms of different Gram-positive and 
Gram-negative bacterial species, including A. baumannii, 
demonstrating inhibition of biofilm formation and increased 
antimicrobial sensitivity [228–233].

A number of studies have evaluated the benefits of com-
bining nanoparticles with other compounds to inhibit the 
formation of susceptible and MDR A. baumannii biofilms, 
some with promising outcomes. These findings are sum-
marized in Table 3.

Silver nanoparticles inhibit DNA synthesis and induce 
apoptosis-like in MDR A. baumannii in a concentration-
dependent fashion [238]. Silver nanoparticles derived from 
silver salts can inhibit biofilm formation of MDR A. bau-
mannii strains, at least in part by inhibiting the expression 
of biofilm-related genes, such as csuA/B, abompA, and bap 
[230].

Antimicrobial and antibiofilm effects of metal ions solu-
tions have been studied in both Gram-positive and Gram-
negative bacteria [239, 240]. Antimicrobial effects have been 
reported against both planktonic and biofilm A. baumannii 
upon exposure to single and to combinations of metal ions 
solutions [239]. The antibacterial properties of metal ions 
are mediated by a variety of mechanisms including interfer-
ence with bacterial cell membranes, generation of reactive 
oxygen species (ROS), protein destabilization, and DNA 
injury [241]. However, both chromosomal and plasmid-
mediated resistance of bacteria to silver have been reported, 
as well as a co-selection with the use of antibiotics when 
the resistance genes rely on the same genetic platform, such 
as a plasmid-mediated silver efflux system, the Sil system 
[242]. More research is warranted to develop effective metal 

nanoparticle-based strategies to fight biofilm formation and 
AMR in MDR A. baumannii.

Natural products

A few natural products under study have also demonstrated 
a high antibacterial and antibiofilm activity against MDR 
A. baumannii clinical isolates. These include cinnamalde-
hyde [243], essential oils [244, 245], and polyphenolic com-
pounds [246]. Cinnamaldehyde has exhibited potent antibac-
terial and antibiofilm activity against carbapenem-resistant 
A. baumannii clinical isolates. The minimum bactericidal 
concentration of cinnamaldehyde on strong biofilm form-
ers was 1.75 mg/mL. At ½ of the MIC, cinnamaldehyde 
inhibited biofilm formation by approximately 72% [243]. 
Essential oils can also achieve high antibacterial and antibi-
ofilm activities against MDR A. baumannii clinical isolates. 
In nanoemulsion or as a pure compound, Thymus daenen-
sis oils have achieved MICs of 45 μg/mL and 87.5 μg/mL, 
respectively. At ½ of the MIC, emulsions achieved 56.43% 
of inhibition of MDR A. baumannii clinical isolates biofilms 
[245]. Polyphenolic compounds have also been studied, pre-
senting significant results, such as lower MICs and biofilm 
inhibition that can reach 90%, depending on the compound 
and isolate [246]. More research is warranted to identify the 
potential use of natural products and their mode of action 
in the dual control of biofilm formation and AMR in A. 
baumannii.

Antimicrobial peptides

The study of antimicrobial peptides has enabled the identi-
fication of multiple compounds with relevant antibacterial 
and antibiofilm activity against MDR A. baumannii clini-
cal isolates [247–249]. Magainin 2, isolated from the frog 
Xenopus laevis [247], and octominin, obtained from Octo-
pus minor [248], have significant antibacterial and antibi-
ofilm activity against MDR A. baumannii clinical isolates. 
At 4 μM, magainin 2 promoted biofilm inhibition in the 
resistant strains and a biofilm reduction of 66.2% at 256 

Table 3   Examples of studies that demonstrated the protective effects of nanoparticles alone and in combination with other compounds against 
biofilm formation in susceptible and MDR A. baumannii 

Bacteria Nanoparticles used References

 • Two hundred MDR wound infection clinical isolates of A. bauman-
nii

Silver nanoparticles [230]

 • A. baumannii ATCC 19606
 • One colistin-susceptible A. baumannii clinical isolate
 • Three colistin-resistant A. baumannii isolates

Colistin-loaded human albumin nanoparticles [234]

 • Clinical Carbapenem-resistant A. baumannii isolates Silver nanocomposites [235]
 • MDR and non-MDR A. baumannii Biosynthesized silver nanoparticles from Galaxaura rugosa [236]
 • Ten A. baumannii clinical isolates Iron oxide nanoparticles [237]
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μM. Octominin at 5 μg/mL promoted a biofilm inhibition of 
61.59% and a biofilm reduction of 35.62%. Both magainin 2 
and octominin were demonstrated to affect the A. baumannii 
cell membrane. Magainin 2 destabilizes both A. baumannii 
inner and outer membranes, whereas octominin permeabi-
lizes the A. baumannii cell membrane, thus leading to bacte-
rial cell death. Research needs to further characterize modes 
of action as well as identify potential off-target effects in 
infected patients.

Phage therapy

Bacteriophages (also known as phages) are viruses that 
infect bacteria and, thus, have a promising potential to be 
used as an antibacterial therapy [250, 251]. The application 
of phage therapy as an antibacterial and antibiofilm strategy 
in MDR A. baumannii clinical isolates has yielded positive 
results, even in combination with other phages (cocktails) 
or antibiotics [251, 252].

Studies have assessed the antibacterial and antibiofilm 
activity of the phages AB7-IBB1 [253] and AB7-IBB2 [254] 
in MDR A. baumannii clinical isolates. With a multiplicity 
of infection (MOI) of 0.1 applied in 108 CFU/well, the phage 
AB7-IBB1 inhibited biofilm formation on both abiotic and 
biotic surfaces in 40% and 50%, respectively. It also pro-
moted more than 35% biofilm removal with a MOI of 10 in 
106 CFU/well. Similarly, phage AB7-IBB2 at a MOI of 0.1 
in 108 CFU/well, inhibited biofilm formation and disrupted 
preformed biofilms on abiotic surfaces in approximately 
40%. Moreover, phages AB7-IBB1 and AB7-IBB2 were able 
to inhibit A. baumannii growth up to 46% and 70% with a 
MOI of 0.1 in 108 CFU/well, respectively.

Phage therapy has proven to be an effective therapeutic 
option against MDR A. baumannii clinical isolates. How-
ever, A. baumannii can develop phage resistance in a very 
short period of time. Phage resistance in A. baumannii is 
related to mutations in k locus genes that culminate in rel-
evant alterations on the capsule; the principal factor in with 
phage depends on adsorption [255, 256].

Conclusion

The combination of AMR and biofilm formation makes A. 
baumannii a formidable enemy in healthcare settings, where 
it can cause a wide range of infections, including pneumo-
nia, bloodstream, wound infections, and urinary tract infec-
tions. Resistance to last-resort antibiotics such as carbapen-
ems and colistin has already been reported, allowing such 
strains to cause pan-drug-resistant infections that are pres-
ently impossible to eradicate. To address this global health 
threat, there is a need for improved surveillance, infection 
control measures, and the development of new antimicrobial 

agents and treatment strategies. A. baumannii biofilms pro-
vide a protective environment for the bacteria and further 
enhance their resistance to antimicrobial agents. Biofilms 
are also associated with the persistence of infections and 
the development of chronic diseases. A better understand-
ing of the mechanisms that co-regulate biofilm formation 
and AMR will help identify new therapeutic targets. Key 
genes that are involved in biofilm formation, for example, 
the quorum sensing system AbaI/AbaR and the TCS BfmRS, 
are also implicated in the development of AMR. Many MDR 
clinical isolates contain genes like abompA and csuE, which 
are essential for biofilm genesis. New therapeutic strategies 
concurrently targeting these two phenomena include quo-
rum sensing interference, developments of vaccines mostly 
targeting AbOmpA, the use of nanoparticles and metal ions, 
natural products, antimicrobial peptides, and phage therapy. 
All have shown promising results. However, the use of silver 
nanoparticles appears to come with a risk of A. bauman-
nii developing plasmid-mediated resistance, highlighting 
the critical need for more research. Combined approaches 
that may confer synergistic benefits offer intriguing avenues 
towards new, effective, and safe therapies.
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