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Abstract
Hypervirulent ribotypes (HVRTs) of Clostridioides difficile such as ribotype (RT) 027 are epidemiologically important. 
This study evaluated whether MALDI-TOF can distinguish between strains of HVRTs and non-HVRTs commonly found 
in Europe. Obtained spectra of clinical C. difficile isolates (training set, 157 isolates) covering epidemiologically relevant 
HVRTs and non-HVRTs found in Europe were used as an input for different machine learning (ML) models. Another 83 
isolates were used as a validation set. Direct comparison of MALDI-TOF spectra obtained from HVRTs and non-HVRTs 
did not allow to discriminate between these two groups, while using these spectra with certain ML models could differenti-
ate HVRTs from non-HVRTs with an accuracy >95% and allowed for a sub-clustering of three HVRT subgroups (RT027/
RT176, RT023, RT045/078/126/127). MALDI-TOF combined with ML represents a reliable tool for rapid identification of 
major European HVRTs.

Keywords Clostridium difficile · Ribotypes · Anaerobic bacteria · MALDI-TOF mass spectrometry · Proteomic signature · 
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Introduction

Clostridioides difficile is a significant cause of nosoco-
mial diarrhea in industrialized nations [1]. Hypervirulent 
ribotypes (HVRTs) such as RT027 have influenced the 
global molecular epidemiology of C. difficile [2] leading 
to a higher disease burden [3]. RT027 has caused numer-
ous outbreaks in Europe and the USA [4]. However, on a 
global scale, other HVRTs exist, e.g., RT023 being consid-
ered an emerging HVRT [5], and RT045 that might confer 
a zoonotic potential [6]. Besides the toxins A and B (genes: 
tcdA, tcdB) destroying the actin cytoskeleton, HVRT strains 
usually harbor a third toxin (binary toxin, gene: cdtAB) that 
increases bacterial adhesion through microtubular protru-
sions [7, 8].

Several typing techniques have been developed to iden-
tify RTs of higher importance. These include in particular 
ribotyping [9] and whole genome sequencing (WGS) [10]. 
However, both methods are comparably time- and resource-
consuming and therefore usually not available in most labo-
ratories. Matrix-assisted laser desorption ionization time-
of-flight (MALDI-TOF) mass spectrometry (MS) is widely 
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distributed and an easy-to-use tool for the identification of 
bacteria [11], which is also used for bacterial subtyping [12].

Machine learning (ML) can further expand its capabili-
ties, by training algorithms on a variety of databases gar-
nered from analysis of bacterial proteins. The process can 
become increasingly automated and more accurate in iden-
tifying bacteria [13]. MALDI-TOF can distinguish several 
important RTs, such as RT001 [14, 15], RT017 [16], RT027/
RT176 [14, 15, 17], and RT078/RT126 [15].

This study aimed to establish and evaluate a combined 
MS/ML protocol to rapidly distinguish between major 
HVRTs and non-HVRTs of high epidemiologic importance 
in Europe.

Material and methods

Strain collection and cultivation

Two hundred forty clinical C. difficile isolates (157 training 
set and 83 validation set) from the German National Refer-
ence Center’s strain collection were tested (Table 1) [18]. 
Strains were pre-characterized by PCR-ribotyping with their 
selection based on their epidemiologic importance in Europe 
(Supplementary File S1).

For analysis, cryopreserved clinical isolates were thawed, 
sub-cultured on trypticase soy agar plates with 5% sheep 
blood (BD Biosciences, USA), and incubated at 37 °C for 
48 h using an anaerobic chamber (Whitley, UK). Prior to 
further processing, fresh colonies underwent MALDI-TOF 
analysis for purity check (Bruker Daltonics, USA).

Protein extraction, spectra acquisition, and species 
confirmation

Off-plate ethanol/formic acid protein extraction protocol 
was used as described previously [19]. Briefly, 2–3 colo-
nies were suspended in 300-μL liquid chromatography 
(LC-MS) grade water (Merck, Germany). Next, 900-μL 
absolute ethanol (Merck) were added followed by vortex-
ing, then centrifuged (18,000 × g for 2 min). The superna-
tant was discarded and the bacterial pellet was completely 
dried. Cells were resuspended in 10 μL of 70% (v/v) for-
mic acid and 10 μL of acetonitrile and thoroughly mixed 

and centrifuged (see above). One μL of the cleared super-
natant was spotted four times (technical replicates) on 
the target plate. After air-drying, each spot was covered 
with 1 μL of saturated α-cyano-4-hydroxy-cinnamic acid 
(HCCA) matrix solution (Bruker). Measurements were 
performed with the Microflex LT smart mass spectrom-
eter using the AutoXecute algorithm implemented in the 
Flexcontrol software (v.3.4, Bruker). To ensure biologi-
cal reproducibility, this procedure was repeated with a 
new subculture of each isolate. Bacterial test standard 
(BTS, Bruker) was used for calibration. For species con-
firmation, acquired spectra were compared to the Bruker 
BDAL database (10,184 species-specific main spectra 
profiles) using the MALDI Biotyper compass explorer 
software (v.3.0).

MALDI‑TOF parameters

Two hundred forty laser shots (40 shots each at 6 random 
positions) were used to generate spectra profiles in linear 
positive ion mode (laser frequency 200 Hz), high voltage (20 
kV), and pulsed ion extraction (520 ns). The mass-to-charge 
ratio (m/z) ranged between 2 and 20 kDa.

Spectra analysis

Raw spectra were visualized using the FlexAnalysis software 
(Bruker), then exported to the Clover MS Data Analysis 
Software [20].

All spectra were preprocessed using default parameters: 
Smoothing (Savitzky–Golay filter: window length 11, poly-
nomial order: 3); baseline removal (method: top-hat filter, 
factor 0.02); replicates alignment (constant tolerance: 0.2, 
linear tolerance: 2000 ppm) [21]. Obtained spectra from 
technical and biological replicates were combined to create 
one average spectrum per isolate that were used as input for 
generating peak matrices.

Classification using machine learning algorithms

The Clover Biosoft platform was used for ML analyses 
utilizing pre-processed spectra. Firstly, spectra of 157 
training set samples (Table 1) were used to distinguish 
between HVRTs and non-HVRTs. Three peak matrices 
were generated using different methods as previously 
described [21]. The “full spectrum method” uses each 
mass every 0.5 Da, regardless of its intensity, followed by 
a total ion current (TIC) normalization of the peak inten-
sities. The “threshold method” (factor 0.01) excluded all 
peaks with an intensity <1% of the maximum intensity 
seen in each spectral profile and was coupled with a 
TIC normalization either before (TICp) or after (pTIC) 
removal of the minor peaks. For the individual peak 

Table 1  Number of strains included in this study. HVR, hypervirulent 
C. difficile strains; non-HVR, non-hypervirulent C. difficile strains

Group Training set Validation set Total

HVR 65 39 104
Non-HVR 92 44 136
Total 157 83 240
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identification in spectral profiles, a constant tolerance 
of 0.5 Da and linear tolerance of 500 ppm was applied 
[21]. All generated peak matrices were used as input 
for ML analyses utilizing unsupervised and supervised 
algorithms [22]. As an unsupervised algorithm, principal 

component analysis (PCA) was tested. For supervised 
algorithms, support vector machine (SVM), partial 
least square discriminant analysis (PLS-DA), k-nearest 
neighbor (KNN), and random forest (RF) were utilized. 
For internal validation, a 10-fold cross-validation was 
applied. Based on cross-validation results, confusion 
matrix, area under receive operating characteristic 
(AUROC) curve, and area under precision recall (AUPR) 
curve were used to estimate the prediction models’ per-
formance. Secondly, HVRTs pre-processed spectra only 
were used for MS/ML subtyping.

External validation

The two best performing models in the cross validation 
(Table 2) were externally validated using pre-processed 
spectra of 83 new clinical isolates (validation set, Table 1) 
to evaluate their reliability and robustness.

Results

MALDI‑TOF spectra acquisition

Representative spectral profiles from different RTs are 
visualized in Fig. 1. Spectra of all isolates were correctly 
identified as C. difficile (Supplementary File S2).

Table 2  Confusion matrix of 10-fold cross-validation results: clas-
sification scores (in %) obtained with four different supervised ML 
algorithms (RF, PLS-DA, KNN, and SVM). HVR, hypervirulent; 
non-HVR, non-hypervirulent; RT, ribotypes. HVR RTs group is the 
selected category (positive category); TP, true positive; FP, false 
positive; PPV, positive predictive value; TN, true negative; FN, false 
negative; NPV, negative predictive value

Actual/predicted HVR RTs Non-HVR RTs % Correct

Support vector machine (SVM)

 HVR RTs 39 (TP) 26 (FN) 60.0% (sensitivity)

 Non-HVR RTs 8 (FP) 84 (TN) 91.3% (specificity)

83.0% (PPV) 76.4% (NPV) 78.3% (accuracy)

K-nearest neighbor (KNN)

 HVR RTs 58 (TP) 7 (FN) 89.2% (sensitivity)

 Non-HVR RTs 4 (FP) 88 (TN) 95.7% (specificity)

93.6% (PPV) 92.6% (NPV) 93.0% (accuracy)

Partial least square discriminant  
analysis (PLS-DA)

 HVR RTs 64 (TP) 1 (FN) 98.5% (sensitivity)

 Non-HVR RTs 1 (FP) 91 (TN) 98.9% (specificity)

98.5% (PPV) 98.9% (NPV) 98.7% (accuracy)

Random forest (RF)

 HVR RTs 64 (TP) 1 (FN) 98.5% (sensitivity)

 Non-HVR RTs 0 (FP) 92 (TN) 100% (specificity)

100% (PPV) 98.9% (NPV) 99.4% (accuracy)

Fig. 1  Representative spectral 
profiles of different ribotypes 
(RTs and corresponding internal 
code) of C. difficile utilized in 
this study. X-axis represents 
the mass-to-charge ratio (m/z), 
and Y-axis represents intensity 
values in arbitrary unit (a.u). 
RT, ribotype
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Discrimination between HVRTs and non‑HVRTs

Average spectra of 157 isolates (training set) were used to 
create three different peak matrices being tested by PCA 
(Fig. 2). When using the “full spectrum method” for peak 
matrix generation, PCA failed to separate HVRT from 
non-HVRT isolates (Fig. 2A).

Better separation was achieved, when either of the two 
“threshold methods” (pTIC and TICp) was applied com-
bined with PCA (Fig. 2B, C). However, these test proce-
dures were still insufficient to reliably separate HVRTs 
from non-HVRTs due to a subset of HVRTs belonging to 
RT027/176 merging with non-HVRTs (Fig. 2).

The TICp method showed the best separation between 
both groups and was thus used for downstream supervised 
ML analyses. SVM classification results displayed again 
only partial discrimination between HVRT and non-HVRT 
strains, as RT027/176 isolates clustered mostly together with 
non-HVRTs (Fig. 3A). In contrast, RF, PLS-DA, and KNN 
prediction models allowed for a much better discrimination 
(Fig. 3B–D).

After 10-fold cross validation of the supervised ML 
models, an overall accuracy of 99.4% was observed for 
the RF model, 98.7% for the PLS-DA model, 93.0% 
for the KNN model, and 78.3% for the SVM model 
(Table 2). The superior performances of the RF and PLS-
DA models to reliably discriminate between HVRTs and 

Fig. 2  Classification applying 
an unsupervised algorithm: 
two-dimensional view of a 
principal component analysis 
(PCA) using “full spectrum” 
method (A), “threshold method” 
with normalization performed 
after peak finding (pTIC) (B), 
and “threshold method” with 
normalization performed before 
peak finding (TICp) (C). Each 
circle represented an individual 
C. difficile strain visualized with 
different colors associated with 
the RT group. HVR RTs, hyper-
virulent C. difficile ribotypes 
(RT023, RT027, RT045, 
RT078, RT126, RT127, and 
RT176) depicted in red; non-
HVR RTs, non-hypervirulent 
ribotypes depicted in blue. For 
D, HVR strains were divided 
into two groups (RT023, 
RT045, RT078, RT126, and 
RT127 in red, while RT027 and 
RT176 are in yellow)
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non-HVRTs were confirmed by the ROC and PR curves 
with respective mean values of AUROC and AUPRC of 
0.98 and 0.99 for RF, 0.99 and 1 for PLS-DA, 0.94 and 
0.96 for KNN, and 0.74 and 0.79 for SVM (Supplemen-
tary File S3).

External validation

The two most discriminative algorithms (RF and PLS-
DA) were next used for models’ external validation. 

When tested with the MALDI-TOF spectra of 83 new 
clinical C. difficile isolates (validation set) that were 
added blinded to the models. Both prediction mod-
els produced promising classification results with 
total accuracies of 98.8% (RF) and 97.6% (PLS-DA) 
(Table 3).

The respective mean values for AUROC and AUPRC 
confirmed the high performance of both models, with 
0.98 and 0.92 (RF), and 0.96 and 0.97 (PLS-DA) (Sup-
plementary File S4).

Fig. 3  Classification of C. difficile strain using four supervised 
machine learning (ML) algorithms: support vector machine (SVM) 
(A), K-nearest neighbor (KNN) (B), random forest (RF) (C), and 
partial least square discriminant analysis (PLS-DA) (D). Each circle 
represented an individual C. difficile strain depicted with different 

colors associated with the RT group. HVR RTs, hypervirulent C. dif-
ficile ribotypes (RT023, RT027, RT045, RT078, RT126, RT127, and 
RT176) depicted in red; non-HVR RTs, non-hypervirulent ribotypes 
depicted in blue
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ML‑subtyping of HVRTs

Given the promising separation of HVRTs and non-
HVRTs by the RF and PLS-DA models, we wondered 
whether these two models could further discriminate 
between different HVRTs used in this study. However, 
when spectra of all isolates of the training set were 
included, no clear separation between specific HVRTs 
was attainable (Supplementary File S5). Thus, we next 
tested, if a better separation of certain HVRTs can be 
achieved by a two-step procedure, in which HVRTs 
were identified in a first step as described above. Next, 
we created a second peak matrix based on the average 

MALDI-TOF spectra of the training set HVRTs using 
the TICp method. With HVRTs’ peak matrix being used 
as input for PCA, three different clusters were observed 
(Fig. 4).

One cluster encompassed RT023 isolates, another clus-
ter comprised RT027/176 isolates, while isolates of RT045, 
RT078, RT126, and RT127 grouped together in a third clus-
ter. RF and PLS-DA algorithms confirmed the initial PCA 
findings (Fig. 5).

10-fold cross-validation resulted in 100% accuracy for 
both models (Table 4 and Supplementary File S6).

External validation of the two prediction models was 
next performed using average spectra of all 39 HVRT 
isolates from the validation set (Table 1). Overall accura-
cies of 92.3% (RF) and 97.4% (PLS-DA) were achieved 
(Table 5). However, three RT023 isolates were misclassified 
as RT045/078/126/127 (RF), while only one RT078 isolate 
was misclassified as RT023 (PLS-DA) (Table 5 and Sup-
plementary File S7).

Discussion

MALDI-TOF is a widely distributed, easy-to-use method for 
identifying bacterial species [11]. Timely subtyping of C. diffi-
cile is crucial for outbreak confirmation. Ribotyping and WGS 
[9, 10] are currently used for subtyping with higher costs com-
pared to MALDI-TOF (~1.5$ and >200$ vs. 0,5$) [23–25].

However, with limitations, subtyping by MALDI-TOF 
is also possible. In particular, RT027/176 are one of the 

Table 3  External validation: classification scores (in %) of 83 new 
C. difficile strains by the two best supervised ML algorithms (RF and 
PLS-DA). HVR, hypervirulent; non-HVR, non-hypervirulent; RTs, 
ribotypes. HVR RTs group is the selected category (positive category); 
TP, true positive; FP, false positive; PPV, positive predictive value; 
TN, true negative; FN, false negative; NPV, negative predictive value

Actual/predicted HVR RTs Non-HVR RTs % Correct

Partial least square discriminant  
analysis (PLS-DA)

 HVR RTs 38 (TP) 1 (FN) 97.4% (sensitivity)

 Non-HVR RTs 1 (FP) 43 (TN) 97.7% (specificity)

97.4% (PPV) 97.7% (NPV) 97.6% (accuracy)

Random forest  
(RF)

 HVR RTs 39 (TP) 0 (FN) 100% (sensitivity)

 Non-HVR RTs 1 (FP) 43 (TN) 97.7% (specificity)

97.5% (PPV) 100% (NPV) 98.8% (accuracy)

Fig. 4  Classification among the 
HVR strains. Two-dimensional 
view of a principal component 
analysis (PCA) using total ion 
current normalization and peak 
detection with 1% threshold 
(TICp), separating RT027/176 
(violet color) from RT045, 
RT078, RT126, RT127, and 
RT023
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best-known RTs, which can be differentiated based on 
their protein extract-based MALDI-TOF spectra from 
other genotypes [17]. Other differentiable RTs include 

RT001 [14, 15], RT017 [16], and the HVRTs 078/126 
[15]. It is unclear yet whether MALDI-TOF can be used 
to discriminate between HVRTs and non-HVRTs. Thus, 

Fig. 5  Classification of hypervirulent (HVR) C. difficile isolates 
using supervised ML algorithms. Random forest (RF) (A) and par-
tial least squares–discriminant analysis (PLS-DA) (B). Each circle 

represents one C. difficile isolate. Isolates belonging to RT023 are 
indicated in green, while isolates of RT027/176 are depicted in violet. 
Other HVR RTs isolates are shown in yellow. RTs, ribotypes

Table 4  Classification of HVR 
RTs, confusion matrix of 
10-fold cross-validation results: 
scores (in %) obtained with two 
(2) supervised ML algorithms 
(RF and PLS-DA). HVR, 
hypervirulent; RT, ribotypes

10-fold cross-validation (65 HVR isolates)

Random forest (RF) and partial least square discriminant analysis (PLS-DA)

Actual/predicted RT023 RT027/176 RT045/078/126/127 % Correct

RT023 10 0 0 100%
RT027/176 0 24 0 100%
RT045/078/126/127 0 0 31 100%

100% (accuracy)

Table 5  Classification of 
HVR RTs, confusion matrix 
of external validation results: 
scores (in %) obtained with two 
(2) supervised ML algorithms 
(RF and PLS-DA). HVR, 
hypervirulent; RT, ribotypes

External validation (39 isolates)

Actual/predicted RT023 RT027/176 RT045/078/126/127 % Correct

Random forest (RF)
 RT023 6 0 3 66.7%
 RT027/176 0 7 0 100%
 RT045/078/126/127 0 0 23 100%

92.3% (accuracy)
Partial least square discriminant  

analysis (PLS-DA)
 RT023 9 0 0 100%
 RT027/176 0 7 0 100%
 RT045/078/126/127 1 0 22 95.7%

97.4% (accuracy)
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the study’s aim was to test whether this might be achieved 
blended with ML.

We showed that protein extract-based MALDI-TOF 
spectra coupled with ML can indeed be used to distin-
guish between HVRTs and non-HVRTs circulating in 
Europe (accuracy >95%). Furthermore, subtyping of 
certain HVRTs (e.g., RT027/176 or RT023) was possi-
ble (100% accuracy, PLS-DA model), when a two-step 
procedure was applied. First, HVRTs were discriminated 
from non-HVRTs with a peak matrix containing isolates 
of both HVRTs and non-HVRTs and subsequently mapped 
against a second peak matrix consisting of HVRT isolates 
only. Nevertheless, this two-step procedure failed to sep-
arate certain HVRT isolates (RT045/078/126/127) from 
each other. Congruent with previous findings, RT027 and 
RT176 were indistinguishable [17]. RT023 identification 
might be of interest, as it is considered an emerging clade 
3 strain [5].

MALDI-TOF HVRT identification represents a notewor-
thy option for rapid, preliminary surveillance and outbreak 
investigation as published for Italy and Brazil [14, 26]. It 
might estimate the potential transmission between patients, 
since some HVRTs are more likely to cause outbreaks [4]. 
However, any MALDI-TOF-based HVRT identification 
should be confirmed by other methods like WGS to allow 
a more accurate discrimination between clonal strains [27].

The study’s limitations are that subtyping of HVRTs 
was performed with 65 isolates as a training set, and for 
most of the HVRTs tested here, the number of isolates was 
comparably low (i.e., ≤10). To substantiate our hypoth-
esis that MALDI-TOF/ML can be used to identify major 
HVRTs in Europe, it will be important to test additional 
isolates expanding the HVRT repertoire. Particularly, rarer 
HVRTs could be included, as they might be identifiable by 
MALDI-TOF/ML.

Conclusion

MALDI-TOF/ML allowed to distinguish between HVRTs 
and non-HVRTs circulating in Europe with an accu-
racy >95% and can be used to separate certain HVRTs 
subgroups from each other (RT023, RT027/176, and 
RT045/078/126/127). Our findings suggest that this 
approach might offer a fast, reliable, and accessible tool for 
preliminary identification of major HVRTs circulating in 
Europe.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10096- 023- 04665-y.
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