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Abstract
The aim of this study was to investigate the genomic epidemiology and antimicrobial susceptibilities of N. gonorrhoeae 
isolates in Stockholm, Sweden. In total, 6723 isolates detected in Stockholm, Sweden, from January 2016 to September 
2022, were examined for antimicrobial susceptibilities by using E-test. Whole-genome sequencing (WGS) was applied to 
isolates in sentinel surveillance and isolates resistant to extended-spectrum cephalosporins (ESCs) or high-level azithromycin 
(HLAzi-R, MIC ≥ 256 mg/L). As sentinel surveillance, consecutive clinical isolates (n = 396) detected every 4th week from 
January 2021 to September 2022 were enrolled in the study. Of the 6723 isolates investigated, 33 isolates (< 1%) were found 
to be resistant to cefixime, one of which was co-resistant to ceftriaxone and ciprofloxacin and was detected in September 
2022. Ten isolates presented a high level of azithromycin resistance. Resistant rates to ciprofloxacin varied from 32 in 2017 
to 68–69% in 2021–2022. Elevated  MIC50 and  MIC90 of azithromycin were observed over the years. No resistance to spec-
tinomycin was identified. The most frequently occurring MLST in the sentinel surveillance was ST9362 (23%), followed by 
ST11706 (9%), ST7359 (8%), ST10314 (7%), and ST11422 (6%). The ceftriaxone-resistant isolate belonged to ST8130 and 
the novel NG-STAR ST4859. Genomic resistance traits found in this strain included mutations in genes mtrR (A39T), parC 
(S87N), and gyrA (S91F and D95A), as well as the presence of blaTEM-135 and tetM genes. A predominance of ST9362 
was observed in Stockholm. The high number of azithromycin and ciprofloxacin-resistant isolates and the emergence of a 
strain with a novel NG-STAR are of great concern.
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Introduction

Gonorrhea is a sexually transmitted infection (STI) caused 
by Neisseria gonorrhoeae. Every year, 78 million new 
cases are estimated, making it the second most common 
STI worldwide, next to chlamydial infection [1]. In Swe-
den, 3355 cases of gonorrhea were reported to the Public 
Health Agency in 2022, corresponding to 32.1 cases per 

100,000 inhabitants [2]. An alarming increase in national 
gonorrhea incidence has been observed from 7.8 to 32.1 
cases per 100,000 inhabitants in the years 2009–2022 [3]. 
Stockholm, the capital city of Sweden, has the highest gon-
orrhea incidence in the country. In 2022, 55.5% of all cases 
in Sweden were identified in Stockholm with an incidence 
of 77.1 cases per 100,000 inhabitants [2].

Antimicrobial-resistant N. gonorrhoeae is an emerg-
ing and significant public health concern. In 2020, about 
half of all detected strains were estimated to be resistant 
to at least one antibiotic used today [4]. N. gonorrhoeae 
was one of twelve species on the World Health Organiza-
tion’s (WHO) priority list of pathogens in need of research 
and development of new antimicrobial drugs in 2017 [5]. It 
has developed resistance to almost all antimicrobial drugs 
previously used for the treatment of gonorrhea, such as peni-
cillins, tetracyclines, and fluoroquinolones [1]. Antimicro-
bial resistance (AMR) mechanisms in gonococci include 
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chromosomal mutations, resistance plasmid conjugations 
and external gene transfer [6]. Most AMR determinants are 
chromosomally situated except for the blaTEM genes and 
the tetM gene which encode β-lactamase production and 
tetracycline resistance, respectively [7]. Resistant Neisse-
ria spp. may result from exposure to antimicrobials lead-
ing to spontaneous gene mutations and/or the acquisition 
of resistance genes. Commensal Neisseria spp., especially 
those colonizing the pharynx, might often be exposed to 
antimicrobials, making it a reservoir for AMR genes. Due 
to pharyngeal gonorrhea often being asymptomatic, N. gon-
orrhoeae and other Neisseria spp. can coexist and transfer 
resistance genes. Neisseria meningitidis, a common colo-
nizer of the oropharynx, have also shown increased devel-
opment of resistance to antimicrobial agents. Transforma-
tion or conjugation events or point mutations give rise to 
decreased antimicrobial susceptibility. However, alleles 
encoding resistance might have appeared before the antibi-
otic era and so have been selected in the use of antibiotics 
[8]. Reduced susceptibility for cephalosporins and quinolo-
nes has been observed in populations with high consumption 
of these antimicrobials [9]. In N. gonorrhoeae, horizontal 
gene transfer is likely involved in the emergence of mosaic 
penA alleles, developing in decreased susceptibility or resist-
ance to extended-spectrum cephalosporins (ESCs) [6, 7]. 
The penA gene encodes altered forms of penicillin-binding 
protein 2 (PBP2) which is the target protein for β-lactam 
antibiotics. The mutations can be mosaic and non-mosaic. 
The mosaic penA mutation contains up to 60–70 amino 
acid alterations compared to the wild type [6, 7], while non-
mosaic alleles have 1–13 mutations in the C-terminal [10]. 
Increased MICs of ESCs may also result from MtrCDE 
membrane pump protein overproduction, most commonly 
from a substitution (G45D) in the MtrR protein or a dele-
tion of −35A in the mtrR promoter region. However, these 
mechanisms alone do not determinate resistance [10].

In Sweden, for uncomplicated gonorrhea, the first-line 
treatment is a single intramuscular dose of 1 g ceftriaxone 
[11]. Monotherapy with azithromycin is not recommended 
due to concerns about antimicrobial drug resistance devel-
opment [10]. Isolates with high-level resistance to azithro-
mycin (MIC ≥ 256 mg/L) have been identified in Sweden, 
England, Scotland, Argentina, Italy, and the USA, among 
other countries [7]. High-level azithromycin resistance is 
associated with an A2059G mutation in 23S rRNA [12]. 
Since 2009, a decrease in isolates resistant to ESCs has been 
observed in the EU/EEA. This may partly be an effect of the 
changed European treatment guidelines in 2012, in which 
cefixime 400 mg was replaced by ceftriaxone 500 mg plus 
azithromycin 2 g [3]. Although a decrease in resistance to 
ESCs has been observed in the EU/EEA and Sweden lately, 
concerns of future resistance remain, especially to ceftri-
axone. Monitoring antimicrobial susceptibilities is a public 

health priority to address the emerging threat of antimicro-
bial-resistant gonorrhea.

The aim of this study was to investigate the genomic epi-
demiology and antimicrobial susceptibilities of N. gonor-
rhoeae isolates in Stockholm, Sweden.

Material and methods

Bacterial isolates

Antimicrobial susceptibility testing was performed on 6723 
clinical isolates detected from January 2016 to September 
2022 (one isolate per patient and infection episode).

Whole-genome sequencing (WGS) was applied to two 
groups of isolates: the epidemiological surveillance and iso-
lates resistant to extended-spectrum cephalosporins (ESCs) 
or high-level azithromycin (HLAzi-R, MIC ≥ 256 mg/L). As 
sentinel surveillance, consecutive clinical isolates detected 
every 4th week from January 2021 to September 2022 (n 
= 396) were enrolled in the surveillance group. Genomic-
resistant traits in 33 ESC-resistant isolates and ten HLAzi-R 
isolates were examined. All isolates were collected at the 
Department of Clinical Microbiology, Karolinska University 
Hospital, Stockholm, Sweden.

Antimicrobial susceptibility testing

The minimum inhibitory concentrations (MICs) of azithro-
mycin, cefixime, ceftriaxone, ciprofloxacin, and spectinomy-
cin were determined by using gradient E-test (bioMérieux, 
France) on chocolate agar incubated for 24 h at 36 °C 6.0% 
 CO2. Quality control was performed using the N. gonor-
rhoeae reference strains CCUG 41811 and CCUG 41812. 
EUCAST clinical breakpoints were used to categorize 
isolates as resistant or susceptible to all antibiotics except 
azithromycin [13]. No clinical breakpoints are published for 
azithromycin; the EUCAST epidemiological cut-off value 
(ECOFF) of 1 mg/L was used.

Whole‑genome sequencing

Genomic bacterial DNA was extracted using the EZ1 
Advanced XL (QIAGEN) according to the manufac-
turer’s instructions. Sequencing was performed on the 
Illumina platform at SciLifeLab (Stockholm, Sweden), 
generating paired-end sequences with ≥ 30× coverage. 
Multi-locus sequence typing (MLST), core-genome 
MLST (cgMLST), N. gonorrhoeae sequence typing 
for antimicrobial resistance (NG-STAR), and genomic 
resistance traits were analyzed with the 1928 Diagnos-
tics online platform (1928 Diagnostics, Gothenburg, 
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Sweden). NG-STAR allelic profiles were examined using 
the NG-STAR version 2.0 website (NG-STAR Govern-
ment of Canada) [14].

Results

Antimicrobial susceptibility

Of the 6723 clinical isolates tested, 33 isolates (< 1%) were 
resistant to cefixime with MIC-values ranging from 0.19 
to 1 mg/L, one of which was also resistant to ceftriaxone 
and ciprofloxacin, detected in September 2022. Resistance 
rates to ciprofloxacin varied from 32 to 69% with the high-
est rates in 2022 (Jan–Sep) and 2021 (Table 1).  MIC50 and 
 MIC90 for ciprofloxacin and azithromycin, representing the 
MIC value at which growth was inhibited in 50% and 90% 
of isolates, respectively, are presented in Table 2. During 
the whole study period, ten high-level azithromycin-resistant 
isolates with MIC ≥ 256 mg/L were identified. No resistance 
to spectinomycin was observed.

Genomic epidemiology

Of the 396 N. gonorrhoeae isolates sequenced for epide-
miological monitoring, 44 different STs were identified. The 
five most common STs during the whole study period of 
22 months were ST9362, ST11706, ST7359, ST10314, and 
ST11422 (Fig. 1 and Table 3).

The four most frequently occurring STs during 2021 were 
ST9362, ST7359, ST11706, and ST10314. The four most 
frequently occurring ST during January to September 2022 

was ST9362, ST11422, ST10314, and ST11706. ST9362 
was the most dominant ST in both years. The prevalence 
of ST7359 decreased from 12 in 2021 to 1% in 2022; in 
the meantime, ST11422 increased from 2 to 14% (Table 3). 
When looking at the cgMLST of each of the five most preva-
lent STs, genetic clusters with an allelic difference of ≤ 5 
were observed as follows: ST9362: ten clusters, ST11706: 
five clusters, ST7359: two clusters, ST10314: three clusters, 
and ST11422: two clusters.

Of the five most frequently occurring MLSTs during 
the study period, both ST9362 and ST10314 had a novel 
NG-STAR type as the dominating variant (80% and 85% 
respectively). The allelic profiles of the most dominant novel 
NG-STAR types are presented in Table 4. For ST11706, 
74% of the isolates were NG-STAR ST1869. For ST7359, 
NG-STAR ST231 was dominating (97%) and for ST11422, 
most of the isolates belonged to NG-STAR ST193 (88%) 
(Table 4).

High‑level azithromycin‑resistant isolates

Of the ten isolates with high-level azithromycin resistance, 
five belonged to ST1580 and five to ST9363, all carrying the 
23S rRNA A2059G mutation. All five ST1580 isolates pre-
sented the same novel NG-STAR ST (penA1444, mtrR311, 
porB3, ponA100, gyrA100, parC100, and 23S1), while two 
different novel NG-STAR types and NG-STAR ST1993 were 
observed in the ST9363 isolates. The cgMLST phylogenetic 
tree generated three genetic-related clusters when a cut-off 
of ≤ 5 allelic differences were applied. The isolates in each 

Table 1  Antibiotic resistance 
rates (%) of clinical N. 
gonorrhoeae isolates collected 
at the Department of Clinical 
Microbiology, Karolinska 
University Hospital, Stockholm, 
Sweden, from January 2016 to 
September 2022

a Azithromycin MIC >1 mg/L

2016 2017 2018 2019 2020 2021 2022 (Jan–Sep)
n = 799 n = 1258 n = 1200 n = 1210 n = 975 n = 742 n = 539

Cefixime 1.7% < 1% < 1% < 1% < 1% < 1% < 1%
Ceftriaxone 0 0 0 0 0 0 < 1%
Ciprofloxacin 43% 32% 52% 57% 54% 69% 68%
Azithromycina 2.4% 4.4% 9% 16% 23% 34% 28%
Spectinomycin 0 0 0 0 0 0 0

Table 2  MIC50 and  MIC90 of ciprofloxacin and azithromycin.  MIC50 is the MIC value at which growth was inhibited in 50% of isolates while 
 MIC90 is the MIC value at which growth was inhibited in 90% of isolates

2016 2017 2018 2019 2020 2021 2022

Ciprofloxacin  MIC50 0.125 0.004 0.25 1 1 2 2
Ciprofloxacin  MIC90 16 12 12 8 8 8 8
Azithromycin  MIC50 0.25 0.25 0.25 0.38 0.5 1 0.5
Azithromycin  MIC90 0.5 0.75 1 2 2 2 2
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cluster harbored the same MLST type and the same NG-
STAR type (Fig. 2).

ESC‑resistant isolates

Of the 33 cefixime-resistant isolates, 29 were ST7363, two 
ST1579, one ST1901, and one ST8130. Of the ST7363 
isolates, all but one carried a non-mosaic penA type XIV 
allele with A517G mutation (NG-STAR penA allele 14). 
Of all the cefixime-resistant isolates, 12 had the mtrR-35A 

deletion while fifteen had the mtrR G45D substitution. The 
predominating NG-STAR types were 232 (36%, n = 12) and 
854 (27%, n = 9).

One isolate from September 2022 was simultaneously 
resistant to cefixime (MIC 1 mg/L), ceftriaxone (MIC 0.25 
mg/L), and ciprofloxacin (MIC 8 mg/L). It belonged to 
ST8130 and the novel NG-STAR type ST4859. The isolate 
harbored mtrR A39T, parC S87N, and gyrA S91F and D95A 
mutations. Other identified resistance genes were tetM (tetra-
cycline) and blaTEM-135 (broad-spectrum beta-lactamase). 
Further susceptibility testing of the isolate showed resistance 
to cefotaxime (MIC 1 mg/L). The MIC value for doxycycline 
was 24 mg/L, while there are no published S/R breakpoints 
for N. gonorrhoeae of doxycycline.

Discussion

The increased incidence of reported gonorrhea cases world-
wide combined with the rapid development of AMR is a crit-
ical global health concern. Decreased susceptibility globally 
to the last-line third-generation cephalosporin ceftriaxone is 
worrying. Therefore, thorough surveillance of phenotypic 
and genotypic AMR patterns is crucial.

An increased rate of isolates resistant to ciprofloxacin or 
azithromycin was observed during the study period. In 2017, 
32% of the isolates were resistant to ciprofloxacin compared 
to 69% in 2021.  MIC50 for ciprofloxacin increased from 
0.125 in 2016 to 2 mg/L in 2022, while  MIC90 decreased 
from 16 in 2016 to 8 mg/L in 2022. Ciprofloxacin has been 
the first-line treatment for many years. However, since the 
early to mid-2000s, many Asian and European countries 
have removed ciprofloxacin as a first-line treatment option. 

Fig. 1  Prevalence of STs during 
the study period Jan 2021 to 
Sep 2022 in the total number of 
isolates per ST and percentage 
of each ST

Table 3  Prevalence of the five most frequently occurring STs during 
the whole study period and distributed in years 2021 and 2022 (Janu-
ary–September)

ST9362 ST11706 ST7359 ST10314 ST11422

2021 28% 10% 12% 7% (2%)
2022 (Jan–Sep) 15% 7% (1%) 8% 14%
2021–2022 (Jan–

Sep)
23% 9% 8% 7% 6%

Table 4  Most common NG-STAR types among the five most fre-
quently occurring MLSTs during the study period. For the novel NG-
STAR types, the most occurring novel allelic profile is presented

MLST NG-STAR Novel allelic profile
penA, mtrR, porB, ponA, 
gyrA, parC, 23S sRNA

ST9362 Novel (80%) 166, 1, 100, 100, 7, 3, 100
ST11706 1869 (74%)
ST7359 231 (97%)
ST10314 Novel (85%) 288, 39, 3, 1, 7, 3, 100
ST11422 193 (88%)
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The increased resistant rates in Europe might be partly due 
to imported cases [7]. The percentage of azithromycin-
resistant isolates (based on ECOFF) increased from 2.4 in 
2016 to 34% in 2021. In the last 4 years (2019–2022), the 
 MIC90 for azithromycin was 2 mg/L, higher than the epi-
demiological cut-off value (ECOFF) of 1 mg/L. A similar 
situation was described in a Swedish national report from 
2021 (Swedres-Svarm 2021), remaining unknown if clinical 
treatment with azithromycin 2 g would be successful [11].

The first high-level azithromycin-resistant isolate in 
Sweden was found in 2011 [15]. During the whole study 
period, 10 isolates with an azithromycin MIC ≥ 256 mg/L 
were detected. WGS of the isolates resulted in five ST1580 
and five ST9363, STs which have also been reported in 
Ireland and South America, among other countries [16, 
17]. All the isolates carried the 23S rRNA A2059G muta-
tion, which was supposed to be associated with high-
level azithromycin resistance [16]. Recently, it has been 
reported that azithromycin resistance could also be driven 
by mosaic sequences in the mtrR promoter and mtrD gene 
of the MtrRCDE efflux pump system [17]. However, the 
MtrRCDE efflux pump system was not further investigated 
in the present study.

In a 2016 national study of clinical isolates in Sweden, 
the five most common STs were ST8156, ST7363, ST1901, 
ST1588, and ST7359 [3]. All these STs were represented 
in the present epidemiological monitoring study except for 
ST1901. However, a ST1901 strain showed up in Decem-
ber 2022 in our continued sentinel surveillance. In this 
study, ST9362, ST11706, and ST10314 were among the 
five most common STs both in 2021 and 2022 (Jan–Sep). 
Notably, ST7359 decreased from 12 in 2021 to 1% in 2022 
(Jan–Sep), while ST11422 increased from 2 in 2021 to 14% 
in 2022 (Jan–Sep). This indicates the dynamic presence and 
spreading of certain strains in Stockholm. Among the five 
most common STs in the present study (ST9362, ST11706, 
ST7359, ST10314, and ST11422), several genetic clusters 
were identified by cgMLST analysis, indicating possible 
clonal relationship within the cluster.

ST7363 was the predominant sequence type (88%) among 
the isolates resistant to ESCs in Stockholm during the study 
period. Among the cefixime-resistant ST7363 isolates, the 
most common NG-STAR types were 232 (36%) and 854 
(27%). The non-mosaic penA type XIV allele with the A517G 
mutation has been reported to be associated with decreased 
ESC susceptibility [18]. In the present study, this resistance 
mechanism was identified in 85% of cefixime-resistant isolates.

Although not listed as top five STs during the study period 
(2021–2022), ST7363 was the sixth common ST with a preva-
lence of 4.8% in Stockholm. In 2013, it was one of the most 
prevalent STs in 20 different EU/EEA countries [19]. In that 
study, only a small cluster was cefixime-resistant, and those 
isolates were phylogenetically unrelated to the main cluster 
[19]. Besides ST7363, two ST1579 and one ST1901 isolates 
were found to be resistant to cefixime in the present study, 
which was in accordance with reports of ST1901 and ST1579 
being spread worldwide and associated with cefixime resist-
ance [20, 21]. No cefixime-resistant isolates were simultane-
ously resistant to azithromycin in the present study.

The recently detected cefixime-resistant isolate also 
presented resistance to ceftriaxone and ciprofloxacin. It 
belonged to ST8130 and the novel NG-STAR ST4859. The 
isolate harbored mtrR A39T, parC S87N, and gyrA S91F 
and D95A mutations. The mtrR A39T mutation has been 
reported to be associated with the multi-drug efflux pump. 
The parC and gyrA mutations were responsible for fluoro-
quinolone (ciprofloxacin) resistance [22]. Other resistance 
genes identified were tetM (tetracycline) and blaTEM-135 
(broad-spectrum beta-lactamase). Tetracycline was not 
available at the laboratory, but the isolate showed a MIC of 
24 mg/L for doxycycline (clinical breakpoints not available 
[13]). Tetracycline-resistant gonococci were widespread 
internationally [7]. The blaTEM-135 genes have been 
reported to be located on β-lactamase plasmids, and the 
most common ones were the Asian, African, and Toronto/
Rio plasmids [23]. Isolates carrying the blaTEM-135 genes 
have been found in China, Argentina, and Poland, among 
other countries [23-25]. Sweden was one of the countries 

Fig. 2  Phylogenetic tree of 
high-level azithromycin-resist-
ant isolates using a cgMLST 
scheme. Three genetic clusters 
with an allelic difference of ≤ 5 
were observed
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having the highest percentage of beta-lactamase-producing 
N. gonorrhoeae in Europe in 2016 [26]. It is much con-
cerned that the extensive use of ESC for gonorrhea treat-
ment creates the possibility for the selection of new vari-
ants of TEM beta-lactamase, including extended-spectrum 
beta-lactamases (ESBLs).

Since 2019, ceftriaxone 1 g monotherapy has been 
the Swedish guideline recommended for uncomplicated 
gonorrhea due to the low prevalence of ceftriaxone resist-
ance [6]. Since ceftriaxone is the last-line alternative 
for monotherapy, the emergence of a novel ceftriaxone-
resistant isolate in Sweden is worrying. Dual therapy 
treatment with ceftriaxone and azithromycin was ear-
lier recommended in Sweden and is being used in many 
countries worldwide. However, the rapid expansion of 
isolates with decreased susceptibility to azithromycin 
and the presence of high-level resistant isolates are of 
great concern. Although no resistance to spectinomycin 
has been observed, the drug is not a suitable treatment 
option due to its not being available in many countries, 
the lack of effective treatment of pharyngeal gonorrhea, 
and the observed rapid development of resistance when 
being used as first-line therapy in Korea in the 1980s [6].

The number of isolated strains decreased during the 
COVID-19 pandemic (2020–2021) compared to previous 
years. This decrease could possibly be a result of social and 
physical restrictions and a potential reduction in healthcare 
access for testing and treatment due to the pandemic. Inter-
estingly, the level of isolates resistant to ciprofloxacin and 
azithromycin was at the highest level of the study period in 
2021. A study from the Netherlands observed a shift dur-
ing the pandemic from ST8156 being the most common ST 
before lockdown (Jan–Feb of 2020) to ST9362 being the 
most frequently occurring ST during lockdown (May–June 
of 2020) [27]. Similar to the finding in Amsterdam, ST9362 
predominated (28%) in Stockholm, Sweden, in 2021, when 
the second wave of COVID-19 hit. The percentage of 
ST9362 decreased in the first 9 months of 2022 to almost 
the same level as the runner-up ST11422 (15% and 14% 
respectively). However, since we have no sequencing data 
before 2021, no further conclusions can be drawn.

The emergence and increase of AMR in N. gonorrhoeae need 
to be delayed by a thorough and rapid detection of AMR vari-
ants combined with extensive transmission-preventative actions. 
Furthermore, novel antimicrobials or other therapeutic medical 
products need to be developed for effective monotherapy.

Conclusion

Incidences of N. gonorrhoeae isolates resistant to ciprofloxa-
cin or azithromycin have been increasing in Stockholm, Swe-
den, between the years 2016 and 2022. The emergence of 

ceftriaxone-resistant isolates in Sweden and other countries 
worldwide is of great concern. ST9362 was the most common 
sequence type in Stockholm in 2021–2022, although a dynamic 
prevalence was observed. Multiple actions are required to address 
the problem and to avoid untreatable gonorrhea in the future.
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