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Abstract
Resistance of Acinetobacter baumannii to multiple clinically important antimicrobials has increased to very high rates in 
Greece, rendering most of them obsolete. The aim of this study was to determine the molecular epidemiology and sus-
ceptibilities of A. baumannii isolates collected from different hospitals across Greece. Single-patient A. baumannii strains 
isolated from blood cultures (n = 271), from 19 hospitals, in a 6-month period (November 2020–April 2021) were subjected 
to minimum inhibitory concentration determination and molecular testing for carbapenemase, 16S rRNA methyltransferase 
and mcr gene detection and epidemiological evaluation. 98.9% of all isolates produced carbapenemase OXA-23. The vast 
majority (91.8%) of OXA-23 producers harbored the armA and were assigned mainly (94.3%) to sequence group G1, cor-
responding to IC II. Apramycin (EBL-1003) was the most active agent inhibiting 100% of the isolates at ≤16 mg/L, followed 
by cefiderocol which was active against at least 86% of them. Minocycline, colistin and ampicillin-sulbactam exhibited only 
sparse activity (S <19%), while eravacycline was 8- and 2-fold more active than minocycline and tigecycline respectively, 
by comparison of their  MIC50/90 values. OXA-23-ArmA producing A. baumannii of international clone II appears to be the 
prevailing epidemiological type of this organism in Greece. Cefiderocol could provide a useful alternative for difficult to 
treat Gram-negative infections, while apramycin (EBL-1003), the structurally unique aminoglycoside currently in clinical 
development, may represent a highly promising agent against multi-drug resistant A. baumanni infections, due to its high 
susceptibility rates and low toxicity.
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Introduction

Acinetobacter baumannii is an important nosocomial 
pathogen causing severe infections, particularly in inten-
sive care units. It is also known for its ability to acquire 
resistance to several antimicrobial agents [1, 2]. The most 
common infections in clinical settings are bloodstream 

infections (BSI) including catheter-related BSI (CRBSI) 
and hospital acquired and ventilator associated pneumonia 
[3]. Recent data from the European Antimicrobial Resist-
ance Surveillance Network (EARS-Net) show a large and 
statistically significant increase of Acinetobacter spp. BSIs 
in the European Union (EU) and European Economic Area 
(EEA) during 2020–2021 (+ 57% compared to 2018-2019), 
a period which represents the first years of the COVID-19 
pandemic [4]. In a systemic review of pan-drug-resistant 
(PDR) Gram-negative bacteria epidemiology and prognosis, 
Pseudomonas aeruginosa and A. baumannii were the most 
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common PDR reported species (33%), followed by Kleb-
siella pneumoniae (24%) [5]. PDR infections were associ-
ated with excess mortality, mounting up to 71% regardless 
of the infection source [5].

There is no optimal therapeutic strategy for the manage-
ment of extensively drug-resistant (XDR) A. baumannii 
infections. Sulbactam, meropenem, minocycline, tigecycline 
and polymyxins, have served as last-resort antibiotics against 
infections in the critically ill over the last decades [6, 7]. 
Cefiderocol and eravacycline, two new antimicrobial agents 
with in vitro susceptibility against A. baumannii, have been 
approved by the US Food and Drug Administration (FDA) 
in 2019 and 2018 and by the European Medicines Agency 
(EMA) in 2020 and 2018 respectively. The major problem 
is their limited commercial availability. Εravacycline is una-
vailable in Europe and cefiderocol has only been recently 
launched in a few European countries (United Kingdom, 
Germany and Italy), mostly serving compassionate use pur-
poses [8].

Apramycin has been proposed as a possible next-generation 
aminoglycoside, and it is currently the only new aminogly-
coside in clinical development (Phase I) [9, 10]. EBL-1003, 
a crystalline free base of apramycin, is a candidate drug that 
recently completed the first-in-human study to assess the safety 
tolerability and general pharmacodynamic profile of the drug. 
Unpublished data shows that EBL-1003 is both safe and well 
tolerated and the Juvadis team are planning a further phase I 
trial in patients with complicated urinary tract infections - one 
of the disease areas where EBL-1003 seems most promising 
[11, 12]. Based on its unique chemical structure, comprising 
an unusual bicyclic octose moiety, apramycin (EBL-1003) 
evades almost all clinically relevant aminoglycoside modify-
ing enzymes (AMEs) and is also unaffected by 16S rRNA-
methyltransferase (RMTase) -mediated pan-aminoglycoside 
resistance [13].

In Greece, in a multicenter study conducted between 2010 
and 2015, resistance of A. baumanii to multiple clinically 
important antimicrobials was found to have increased to 
very high rates, rendering most of antimicrobials in clini-
cal use, obsolete [14]. According to the European Anti-
microbial Resistance Surveillance Network (EARS-Net), 
combined resistance to fluoroquinolones, aminoglycosides 
and carbapenems resistance in Acinetobacter species from 
invasive infections in Greece varied between 84.0% in 2016 
and 90.8% in 2020 [15]. Additionally, the ECDC reported 
that countries with ≥ 50% carbapenem resistance in Acineto-
bacter spp. in 2018–2019, experienced the most noticeable 
increases (+116%) in Acinetobacter spp. BSIs in 2020–2021 
compared with 2018–2019 and suggested surveillance at 
local, national and EU/EEA levels to monitor whether this 
worrying development is halted or even reversed [4].

We therefore undertook this study so as to ana-
lyse the resistance phenotypes, the carbapenemase and 

aminoglycoside modifying gene content and the evolution 
of clonal lineages among A. baumannii blood isolates recov-
ered from Greek hospitalized patients during 2020–2021. 
Furthermore, we evaluated the in vitro activities of older 
along with newer agents such as cefiderocol, apramycin 
(EBL 1003) and the more advanced tetracyclines omadacy-
cline and eravacycline.

Material and methods

Bacterial strains

All A. baumannii strains included in the study were consecu-
tive, single-patient clinical isolates provided by the micro-
biology laboratories of 19 participating hospitals located in 
all seven Health Districts of Greece (Fig. 1). These were 
collected in a 6-month period (November 2020–April 2021) 
and originated from distinct blood infection cases. The iso-
late recovered first from each case was only included. A total 
of 271 blood isolates were studied. Each hospital contributed 
a median number of 11 (min 1, max 36) isolates.

Data on the source and the date of isolation as well as the 
initial susceptibility results at the local laboratories were 
also provided. All isolates were re-submitted for susceptibil-
ity testing using the VITEK2 system (bioMerieux, Marcy-
l’Etoile, France) and kept frozen at −80°C until the day of 
further testing.

Antimicrobial susceptibility

Initial susceptibilities of the isolates to ampicillin/sulbac-
tam, ciprofloxacin, levofloxacin, gentamicin (GM), amikacin 
(AMK), tobramycin (TOB), tigecycline (TGC) and trimeth-
oprim/sulfamethoxazole (SXT) were determined using the 
VITEK 2 system (bioMerieux, Marcy-l’Etoile, France).

Minimum inhibitory concentrations (MICs) of imipe-
nem, meropenem, minocycline, GM, AMK, TOB, apramy-
cin (EBL-1003), SXT and colistin were determined by 
the broth microdilution method [16]. Liofilchem MIC Test 
Strips (Liofilchem S.r.l., Roseto degli, Abruzzi, Italy) were 
used for MIC determinations of eravacycline, omadacy-
cline and TGC, while disk diffusion was performed for 
testing cefiderocol (Cefiderocol 30μg Disc, Liofilchem 
S.r.l.) as recommended by the European Committee on 
Antimicrobial Susceptibility Testing (EUCAST), due 
to problems in accuracy and reproducibility of all MIC 
commercially available tests [17]. Escherichia coli ATCC 
25922 and Pseudomonas aeruginosa ATCC 27853 were 
used as quality control (QC) strains. Results were consid-
ered valid if both QC strains tested in each experiment 
fell within the Clinical and Laboratory Standards Insti-
tute (CLSI) designated QC MIC ranges or were within 
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+/-1 mm of the disk diffusion EUCAST target values (27 
mm for ATCC 25922 and 26 mm for ATCC 2785) [18, 
19]. E. coli NCTC 13846 (mcr-1-positive) was addition-
ally used as a third QC strain for colistin MIC determi-
nations. Results were interpreted according to the CLSI 
and EUCAST recommendations [18, 20]. For tigecycline, 
eravacycline and omadacycline,  MIC50 and  MIC90 values 
were used as a form of susceptibility interpretive tool, due 
to lack of CLSI/EUCAST interpretive criteria for Acine-
tobacter spp. For apramycin (EBL-1003), the prelimi-
nary epidemiological cutoff value of 16 mg/L proposed 
by Juhas et al, was applied, as there are no established 
breakpoints for A. baumannii [13]. The acceptable MIC 
QC range for apramycin was set to a modal value of 4 
mg/L for E. coli ATCC 25922 and an acceptable range of 
2–8 mg/L [13]. All isolates were subcultured twice before 
testing. Multidrug-resistant (MDR), XDR and PDR strains 
were characterized as per criteria described by ECDC [21].

Detection of antimicrobial resistance genes

Genes encoding common class D carbapenemases 
(blaOXA-51-like, blaOXA-58-like, blaOXA-23-like, blaOXA-40-
like, blaOXA-143-like and blaOXA-235-like) and genes encod-
ing for RMTs were detected by multiplex PCR protocols 
with specific primers and conditions (Supplementary Table 
S1). The presence of armA gene was further confirmed by 
simplex PCR with specific primers (Suppl. Table S1). Genes 
encoding class B metallo-β-lactamases (blaIMP, blaVIM, and 
blaNDM) were detected by simplex PCR with primers and 
conditions listed in Suppl. Table S1. All RMT-negative iso-
lates (n=23) were screened for the presence of AME genes 
(aph(3′)-VI, aac(6′)-Ib, aac(3′)-Ia, aac(3′)-IV, ant(2′)-Ia), 
along with a subset of randomly selected RMT-positive iso-
lates (n=55), by simplex ‘in-house’ PCR assays with specific 
primers (Suppl. Table S1). The presence of plasmid-medi-
ated colistin resistance genes was screened by a multiplex 
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Fig. 1  Geographical map showing the location of the19 participating hospitals providing Acinetobacter baumannii blood isolates, Greece, 2020–
2021, and the percentage of the prevailing clone 
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PCR protocol optimized at the Danish National Food Insti-
tute (Kgs Lyngby, Denmark) (Suppl. Table S1). Template 
DNA was extracted from bacteria grown in Luria Bertani 
broth for 18 hr by using the  PureLinkTM Genomic DNA Mini 
Kit (LifeTechnologies,  InvitrogenTM, Carlsbad, CA, USA).

PCR‑based sequence group typing

Two trilocus multiplex PCRs (Suppl. Table S1), which selec-
tively amplify Group 1 and Group 2 alleles of the ompA, 
csuE, and blaOXA-51-like, were used to assign the sequence 
groups and the corresponding major international clones IC 
I - IC III according to Turton et al [22]. Using this scheme, 
additional groups (G4, G5, G6, G7 and G11) have been 

defined according to new combinations of the PCR ampli-
cons [23–25].

Results and discussion

Susceptibilities of isolates interpreted according to CLSI 
and EUCAST breakpoints are shown in Table 1 and MIC 
and “cumulative percentage inhibited” distributions are pre-
sented in Suppl. Table S2. Two hundred sixty-nine (99.3%) 
isolates exhibited an MDR phenotype, with 265 (97.8%) of 
them to be defined as XDR and 149 (55.0%) as PDR isolates.

Except for the intrinsic blaOXA-51-like gene, which was 
confirmed in all (100%) isolates, other forms of carbap-
enemase production were also confirmed for 268 (98.9%) 

Table 1  Percentage of 
susceptibility to antimicrobial 
agents according to CLSI and 
EUCAST clinical breakpoints

IE, breakpoints not defined due to insufficient evidence; -, breakpoints not defined; ND, not determined
* Isolates exhibiting cefiderocol 30μg disk zone diameter ≥17mm which corresponds to MIC values below 
the PK-PD breakpoint of S ≤ 2mg/L
# Isolates not resistant to colistin (according to CLSI)
^ Isolates assigned as wild type isolates without acquired resistance mechanisms (according to EUCAST)

Susceptibility % MIC Range mg/L MIC50/
MIC90 
mg/LAccording to 

CLSI break-
points

According to 
EUCAST break-
points

β-Lactam combination agents
Ampicillin-sulbactam 11.8 IE
Piperacillin-tazobactam 5.65 IE
Cephems
Cefiderocol 93.4 86.0*
Carbapenems
Imipenem 5.9 5.9
Meropenem 1.1 1.1
Lipopeptides
Colistin 15.5# 15.5^

Aminoglycosides
Amikacin 1.5 1.5
Gentamicin 1.1 1.1
Tobramycin 4.8 4.8
Apramycin (EBL-1003) - - 2–16 4/8
Tetracyclines
Minocycline 18.8 IE
Tetracycline 0.7 -
Tigecycline - IE 0.12–16 4/8
Eravacycline - - 0.06–>32 2/4
Omadacycline - - 0.12–>32 8/>32
Quinolones
Ciprofloxacin 0.7 ND
Levofloxacin 0.7 0.7
Folate pathway antagonists
Trimethoprim-sulfamethoxazole 1.85 1.85
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isolates. All carried a blaOXA-23-like and four isolates addi-
tionally carried the blaNDM (Table 2). The presence of an 
RMT-coding gene was confirmed in 246 (90.8%) isolates, 
all carrying the armA and exhibiting high-level resistance 
(MIC ≥ 256 mg/L) to amikacin, gentamicin and tobramycin. 
Additionally, 162 (59.8%) of the isolates carried a blaTEM. 
Isolates without the armA harbored mainly the aph(3′)-VI 
(75.0%) conferring resistance to amikacin and the aac(3)-I 
(37.5%) conferring resistance to gentamicin. Isolates resist-
ant to tobramycin (16.7%) harbored the aac(6′)-Ib. Among 
isolates with an armA, although not all tested, aph(3′)-VI 
(90.1%) was the predominant AME gene, followed by 
aac(6′)-Ib (27.2%) and aac(3)-I (9.1%).

The vast majority (n=241; 88.9%) of A. baumannii isolates 
were assigned to sequence group G1 corresponding to IC II 
(Table 2). Five isolates (1.8%) were assigned to G2 correspond-
ing to IC I (Table 2). Two isolates from the same hospital were 
assigned to G4 and one isolate to G11, with their PCR-based 
band pattern differing from that of IC II or of IC I respectively, 
only by the absence of the csuE allele, which could simply be 
due to a single polymorphism in the primer annealing regions 
(Table 2). Seven, eleven and two isolates from 4, 3, and 2 hos-
pitals respectively, were assigned to G5, G6 and G7 sequence 
groups, showing mixed combinations of amplicons in the two 
trilocus multiplex PCRs (Table 2). The blaOXA-23 was found 
in isolates of all sequence groups (Table 2), while isolates co-
harboring blaNDM (n=4) were polyclonal as two were assigned 
to G1 (IC II) (also harbored the armA), one in G2 (IC I) and 
one in G5 (Table 2) and were isolated in 4 different hospitals, 
two in Athens and two in Thessaloniki.

This study highlights the dissemination of XDR/PDR 
blaOXA-23-armA-harboring A. baumannii isolates, correspond-
ing to IC II (87.8%), in Greek hospitals. OXA-23-producing 
carbapenem resistant A. baumannii (CRAb) were first described 

in our country in 2010 [26]. According to published data, CRAb 
isolates collected in Greece during 2015 belonged mainly to 
IC II and produced OXA-23 almost uniformly, whereas similar 
collections prior 2004 revealed predominance of the IC I clone 
and the OXA-58 carbapenemase [27, 28]. A. baumannii isolates 
shown to carry the armA gene were first recovered in 2003 in 
South Korea [29], and since then this gene has been reported in 
strains from China, Vietnam, Japan, North America, Norway, 
Italy, Bulgaria, Iran, and Algeria [30]. ArmA methylates the N7 
position of nucleotide G1405 in 16S rRNA and confers high-
level resistance to all widely used aminoglycosides (4,6-disub-
stituted deoxystreptamines), including plazomicin, which is the 
agent most recently introduced in clinical practice [13]. The 
association between IC II and armA was first reported in Greece 
in 2020 and described for CRAb isolates recovered from five 
hospitals within the Athens metropolitan area during 2015-2016 
[31]. The armA is always located on a functional composite 
transposon Tn1548, and it is often now reported among OXA-
23-producing A. baumannii strains. However, the two resist-
ance genes are not physically linked on a single plasmid [30]. 
Wherever multilocus sequence typing data are available, most 
OXA-23-ArmA positive A. baumannii isolates were identified 
to belong to ST2 and are consequently members of IC II [32].

There are very few antimicrobial agents in the market 
that retain activity against CRAb, including polymyxins 
(colistin), aminoglycosides and tetracyclines (such as tige-
cycline and minocycline), limited by suboptimal pharma-
cokinetic characteristics, emergence of resistance, and/
or toxicity [33]. This study confirmed that the most active 
antimicrobial in clinical use was minocycline, with 18.8% 
of the isolates exhibiting an MIC of ≤ 4mg/L, which is the 
CLSI susceptibility breakpoint. Only 15.5% of the isolates 
exhibited a colistin MIC of ≤ 2mg/L and were assigned as 
wild type isolates without acquired resistance mechanisms 

Table 2  Epidemiological and genotypic features of Acinetobacter baumannii strains included in the study

*  UN, untypeable

Sequence Group/Clonal lineages Total No / Rate (%) G1/IC II G2/IC I G4/IC II G5 G6 G7 G11/IC I UN*

blaOXA-51- harboring 3 / 1.1 1 1 1
   blaOXA-51 2 1 1
   blaOXA-51, blaTEM 1 1

blaOXA-51, blaOXA-23 - harboring 264 / 97.4 238 4 2 6 11 1 1 1
   blaOXA-51, blaOXA-23 12 4 1 2 1 3 1 1
   blaOXA-51, blaOXA-23, armA 83 75 2 5 1
   blaOXA-51, blaOXA-23, armA, blaTEM 161 155 1 2 3
   blaOXA-51, blaOXA-23, blaTEM 7 4 2 1

blaOXA-51, blaOXA-23, blaNDM- harboring 4 / 1.5 2 1 1
   blaOXA-51, blaOXA-23, blaNDM 2 1 1
   blaOXA-51, blaOXA-23, blaNDM, armA 1 1
   blaOXA-51, blaOXA-23, blaNDM, armA, blaTEM 1 1

Total No/Rate (%) 241/88.9 5/1.8 2/0.7 7/2.6 11/4.1 2/0.7 1/0.4 2/0.7
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(Table 1, Suppl. Table S2). The alarmingly high resistance 
rates observed for colistin (84.5%) and minocycline (81.2%) 
in this study might be related to the isolate source (blood) 
and the predominance of IC II [34]. Both assets, according 
to Petropoulou et al., showed generally more resistant pro-
files compared to non-blood and IC I isolates, in a previous 
national collection of carbapenem-resistant A. baumannii 
strains isolated in 2015 [34]. The high colistin resistance 
rate is most probably related to alterations in the pmrCAB 
operon, as no mcr gene was detected in any of the isolates 
tested and could be ascribed to increased colistin consump-
tion in Greece, due to limited therapeutic options against 
A.baumannii.

In our study, the recently developed, FDA / EMA - 
approved cefiderocol was active against 86.0% or 93.4% of 
all A. baumannii isolates according to EUCAST or CLSI 
susceptibility breakpoints respectively (Table 1, Fig. 2). This 
is consistent with published reports of a susceptibility rate 
of approximately 94% per CLSI criteria for CRAb isolates 
originating from North America and Europe [35]. In spite 

of its documented high level of potency, clinical data do not 
yet support widespread use for patients with A. baumannii 
infections [36]. It is currently mainly being used for salvage 
therapy, administered with or without other in vitro active 
agents, but has not yet been introduced in clinical practice 
in Greece. This means that local Acinetobacter populations 
have so far been completely unaffected by any sort of impact 
this agent might exert; raising concern as to the importance 
of the resistance rate found herein (6.6% per CLSI /14% per 
EUCAST criteria). Eravacycline MIC values, in this study, 
ranged from 0.06 to >32mg/L, with  MIC50/90 values of 2/4 
mg/L (Table 1, Suppl. Table 2, Fig. 3). This also recently 
developed and FDA/EMA-approved agent was 8-fold more 
active than minocycline and 2-fold more active than tigecy-
cline by  MIC50 /90 value comparison, which were in accord-
ance with data from a single-center study in Greece with 
100 XDR or PDR A. baumannii isolated in 2021 [37] and a 
worldwide study conducted in 2015-2017[38]. Increased era-
vacycline MIC values have been associated with increased 
expression of the AdeABC efflux pump [36].

Fig. 2  Cefiderocol 30μg disk 
diameter distribution. The 
dashed line in blue represents 
the CLSI susceptibility break-
point, and the dashed line in 
red separates the zone diameters 
of ≥17 mm, which according to 
EUCAST, correspond to MIC 
values below the PK-PD break-
point of S ≤ 2 mg/L 30
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Lastly, omadacycline MICs ranged between 0.12 and 
>32, with 129 isolates (47.6%) exhibiting MICs ≥16  (MIC50 
8: mg/L) and 53 isolates (19.6%) exhibiting MICs >32 
 (MIC90>32mg/L) (Table 1, Suppl. Table S2, Fig. 3).

A noteworthy finding of our study was the in vitro activ-
ity of the crystalline free base of apramycin (EBL-1003). Its 
structural distinction has been demonstrated to evade almost 
all aminoglycoside-resistance mechanisms of clinical rel-
evance, including methylation of N7 at ribosomal site G1405 
by 16S rRNA methyltransferases that inactivates the whole 
range of the 4,6-disubstituted deoxystreptamines [13]. All iso-
lates in this study exhibited an MIC of ≤ 16mg/L  (MIC50/90 
4 / 8 mg/L) suggesting 100% susceptibility according to the 
preliminary ECOFF (16mg/L) defined by Juhas et al for A. 
baumannii (Fig. 4, Table 1, Suppl. Table S2) [13]. This is 
consistent with previous reports, which showed that the vast 
majority of the analyzed A. baumannii clinical isolates from 
Europe, Asia, Africa and South America were more suscep-
tible to apramycin than to other aminoglycosides [13, 31, 39, 
40]. Based on the high susceptibility rates, the bactericidal 
activity reported in a neutropenic murine thigh infection 
model [41], and its low toxicity [42], apramycin (EBL-1003) 
may represent a promising next-generation aminoglycoside 
for the treatment of MDR Gram-negative systemic infections 
in Greece and elsewhere.

Regarding possible limitations, this study has not utilized 
whole genome sequencing nor multilocus sequence typing 
to further elucidate resistance mechanisms to various anti-
microbials (i.e., colistin, minocycline, etc.), or to determine 
armA location. On a different note, there was no evaluation 
of the novel combination agent of sulbactam-durlobactam 
(SUL-DUR), the new member of the diazabicyclooctane 
class of β-lactamase inhibitors, with broad spectrum activ-
ity against Ambler class A, C and D serine β-lactamases, 

resulting in the restoration of CRAb isolates susceptibility 
to β-lactams [43] which appears promising in in vitro studies 
in Greece [34]. Another possible limitation is the evaluation 
of cefiderocol activity by disk diffusion and not by MIC 
determination. On August  18th, 2022, EUCAST published 
a warning against all commercially available MIC determi-
nation tests and recommended, cefiderocol testing by disk 
diffusion until confirmatory MIC determination issues are 
resolved. When correctly performed and calibrated using 
quality material and recommended quality control guide-
lines, disk diffusion adequately predicts susceptibility as 
zone diameters of ≥17 mm for the cefiderocol 30 μg disk 
corresponds to MIC values below the PK-PD breakpoint of 
S ≤ 2 mg/L [17].

Overall, our findings highlight the continued importance 
of CRAb as a health care-associated pathogen with lim-
ited treatment options. CRAb isolates causing infections in 
Greek hospitals almost exclusively produce OXA-23, the 
vast majority co-produce the ArmA methyltransferase and 
belong mainly to IC II. From a clinical point of view, despite 
its possible limitations, this study importantly illustrates 
the in vitro activities of three novel and one experimental 
agent against contemporary blood A. baumannii isolates. 
In vitro activity of older colistin appears to have dramatically 
decreased, while eravacycline seems unable to become the 
game changer for the treatment of A. baumannii infections. 
Cefiderocol demonstrated potent in vitro activity inhibiting 
more than 86% of the isolates in this multicenter study, sup-
porting the necessity of further studies to elucidate the role 
of cefiderocol against A. baumannii infections. Finally, the 
highlight of this study was the promising in vitro activity 
verified for apramycin (EBL-1003) against this very diffi-
cult-to-treat isolate collection, a result that warrants further 

Fig. 4  Aminoglycosides 
MIC distribution. The dashed 
line represents the prelimi-
nary apramycin (EBL-1003) 
epidemiological cut-off value 
(ECOFF) [13]
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evaluation for the use of apramycin in the treatment of XDR 
or PDR A. baumannii infections.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10096- 023- 04616-7.
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