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Abstract
The widespread of different NDM variants in clinical Enterobacterales isolates poses a serious public health concern, which 
requires continuous monitoring. In this study, three E. coli strains carrying two novel blaNDM variants of blaNDM-36, -37 were 
identified from a patient with refractory urinary tract infection (UTI) in China. We conducted antimicrobial susceptibility 
testing (AST), enzyme kinetics analysis, conjugation experiment, whole-genome sequencing (WGS), and bioinformatics 
analysis to characterize the blaNDM-36, -37 enzymes and their carrying strains. The blaNDM-36, -37 harboring E. coli isolates 
belonged to ST227, O9:H10 serotype and exhibited intermediate or resistance to all β-lactams tested except aztreonam and 
aztreonam/avibactam. The genes of blaNDM-36, -37 were located on a conjugative IncHI2-type plasmid. NDM-37 differed 
from NDM-5 by a single amino acid substitution (His261Tyr). NDM-36 differed from NDM-37 by an additional missense 
mutation (Ala233Val). NDM-36 had increased hydrolytic activity toward ampicillin and cefotaxime relative to NDM-37 and 
NDM-5, while NDM-37 and NDM-36 had lower catalytic activity toward imipenem but higher activity against meropenem in 
comparison to NDM-5. This is the first report of co-occurrence of two novel blaNDM variants in E. coli isolated from the same 
patient. The work provides insights into the enzymatic function and demonstrates the ongoing evolution of NDM enzymes.
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Introduction

The plasmid-encoded New Delhi metallo-β-lactamase 
(NDM) is one of the most common carbapenemases world-
wide [1]. Its emergence heralds a new era of antibiotic 

resistance due to the ability to hydrolyze almost all known 
β-lactam antibiotics and the rapid worldwide dissemination 
[2]. In 2009, the first NDM variant (NDM-1) was reported 
in Klebsiella pneumoniae isolated from a Swedish patient 
of Indian origin who had a urinary tract infection [3]. Fol-
lowing the first report, 41 different NDM variants have been 
identified in numerous species of Enterobacteriaceae and 
common nonfermentative Gram-negative bacilli [4] (NDM-1 Wanshan Ma, Bo Zhu, and Wen Wang contributed equally to this 

work. Author order was determined by contributions to the study.

 *	 Siqiang Niu 
	 siqiangniu@cqmu.edu.cn

 *	 Mingju Hao 
	 haomingju@163.com

1	 Department of Clinical Laboratory Medicine, The First 
Affiliated Hospital of Shandong First Medical University 
& Shandong Provincial Qianfoshan Hospital, Shandong 
Medicine and Health Key Laboratory of Laboratory 
Medicine, No. 16766 Jingshi Road, Lixia District, Jinan, 
China

2	 Xiamen Key Laboratory of Genetic Testing, Department 
of Laboratory Medicine, The First Affiliated Hospital 
of Xiamen University, Xiamen, China

3	 Department of Laboratory Medicine, The First Affiliated 
Hospital of Chongqing Medical University, No. 1 Friendship 
Road, Yuzhong District, Chongqing, China

4	 Department of Laboratory Medicine, Shandong Provincial 
Hospital Affiliated to Shandong First Medical University & 
Shandong Academy of Medical Sciences, Jinan, Shandong, 
China

5	 School of Clinical Medicine, Jining Medical University, 
Jining, China

6	 Center for Discovery and Innovation, Hackensack Meridian 
Health, Nutley, NJ, USA

7	 Department of Medical Sciences, Hackensack Meridian 
School of Medicine, Nutley, NJ, USA

/ Published online: 22 February 2023

European Journal of Clinical Microbiology & Infectious Diseases (2023) 42:471–480

http://crossmark.crossref.org/dialog/?doi=10.1007/s10096-023-04576-y&domain=pdf
http://orcid.org/0000-0002-2714-3998


1 3

to NDM-41; NDM-32 is assigned but without any informa-
tion in NCBI).

The continuous evolution of NDM enzymes under 
the selection pressure could foster the emergence of new 
variants that possess different catalytic activities toward 
β-lactam agents [5]. For example, the NDM-5 variant 
showed enhanced hydrolytic activity compared with NDM-1 
[6], and circular dichroism spectroscopy data revealed sig-
nificant changes in the secondary structure of NDM variants 
[7]. Thus, a close surveillance of NDM-producing patho-
gens should be considered for continuous monitoring of the 
spread of NDM variants. Here, we describe the first detec-
tion of two novel NDM enzymes, designated NDM-36 and 
NDM-37, recovered from a patient with refractory urinary 
tract infection in China during 2020.

Methods

Bacterial strains

Three carbapenem-resistant E. coli strains (blaNDM posi-
tive) were isolated from the urine samples of a 62-year-old 
female patient with unilateral indwelling ureteral stents. The 
patient underwent cystectomy and chemotherapy for recur-
rence of ovarian and fallopian cancer three months ago. The 
first E. coli strain (JNQH497-NDM-37) was recovered in 
an outpatient clinic. Based on the antibiotic susceptibility 
testing results, empirical levofloxacin treatment (500 mg qd) 
was then started for urinary tract infection. After 3 weeks, 
the second strain (JNQH498-NDM-36) was isolated from 
the urine during hospital admission. The patient was then 
given meropenem (1000 mg intravenously [i.v.] q8h). The 
third E. coli strain (JNQH462-NDM-36) was identified from 
the urine 5 weeks after admission. Her conditions were 
improved after the removal of ureteral stents via cystoscopy, 
continuous meropenem treatment as well as implementation 
of nutritional support. The patient was discharged home on 
hospital day 16. Ethics committee approval of this study 
was obtained from the institutional review board of the First 
Affiliated Hospital of Xiamen University, and informed con-
sent from the patient was also obtained.

Antimicrobial susceptibility testing (AST)

MICs for all the tested strains were determined by broth 
microdilution method using a bacterial inoculum of 
5 × 105 CFU/ml according to CLSI performance standards. 
For ceftazidime-avibactam (CAZ-AVI) and aztreonam-
avibactam (ATM-AVI) MICs evaluation, AVI was tested 
at a fixed concentration of 4 mg/L, while CAZ and ATM 
were added at different concentrations ranged from 0.0312 
to 64 mg/L and 0.0156 to 32 mg/L, respectively.

Cloning of blaNDM variants

The promoter and full length of the blaNDM genes were ampli-
fied with primers NDM-F-EcoRI (5′-CCG​GAA​TTC​TTG​AAA​
CTG​TCG​CAC​CTCAT-3′) and NDM-R-XbaI (5′-CTA​GTC​
TAG​AAC​GCC​TCT​GTC​ACA​TCGAA-3′) using PrimSTAR 
Max DNA Polymerase (Takara, China). After restriction 
enzyme digestion, the PCR products were ligated to the vec-
tor PET28a to generate PET28a-NDM-5, PET28a-NDM-36, 
PET28a-NDM-37 respectively. The correct constructs were 
confirmed by Sanger sequencing, followed by transforma-
tion into E. coli DH5α. Antimicrobial susceptibilities of these 
constructs were determined as described above. The empty 
pET28a plasmid was used as a control.

Expression of the NDM proteins

The sequences of NDM-5, -36, -37 without peptide signal 
region were amplified by PCR using primers EcoRI-NDM 
(29-271AA)-F (5′—CCG​GAA​TTC​ATG​GAA​TTG​CCC​AAT​
AT—3′) and HindIII-NDM (29-271AA)-R (5′—CCC​AAG​
CTT​TCA​GCG​CAG​CTT​GTC​GGCC -3′), followed by inser-
tion into plasmid pET28a in E. coli BL21 (Invitrogen). Pro-
tein was expressed in E. coli strain BL21 grown in LB at 37 
℃. Once an OD600 of 0.4–0.6 was reached, 0.1 mM ZnCl2 
and 0.5 mM isopropyl-β-d-thiogalactoside were added into 
the LB medium. The temperature was then lowered to 20 ℃, 
and the expression was allowed to occur overnight. Later, the 
cells were lysed by sonication, and the supernatant was loaded 
to a HisTrap™ HP column (GE Healthcare, Little Chalfont, 
UK). Finally, the purified proteins were dialysised in the buffer 
(50 mM HEPES, 100 μM ZnCl2, 250 mM NaCl, and 20 mg/L 
BSA) at 4 °C overnight [8].

Steady‑state kinetic parameters

Steady-state kinetic experiments were performed following the 
hydrolysis of the β-lactams at 25 °C in 50 mM HEPES (pH 
7.5) plus 100 μM ZnCl2. The data of the real-time absorbances 
of meropenem (298 nm), imipenem (297 nm), ceftazidime 
(257 nm), aztreonam (318 nm), cefotaxime (264 nm), cefepime 
(254 nm), piperacillin (232 nm), ceftriaxone (240 nm), and 
ampicillin (235  nm) were collected with a SHIMADZU 
UV2550 spectrophotometer (Kyoto, Japan). Kinetic parameters 
were determined under initial-rate conditions using the Graph-
Pad Prism 8.1 software to generate Michaelis–Menten curves 
or by analyzing the complete hydrolysis time courses [9].

Conjugation experiment

Conjugation experiments were performed using E. coli 
J53AziR as recipients as previously described [10]. Briefly, 
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overnight cultures of the donor strain (JNQH497, 498) 
and the recipient strains were mixed (1:1) and applied to 
0.45-μm filter paper respectively, which were then placed 
on an LB agar plate, followed by overnight culture at 37 
℃. Transconjugants were selected on Mueller–Hinton agar 
containing sodium azide (100 mg/L)/meropenem (2 mg/L) 
for transconjugates. The selected transconjugants were con-
firmed by PCR targeting the blaNDM gene. Conjugation fre-
quency was calculated by dividing the number of transcon-
jugants by the number of recipient cells.

Pulsed‑field gel electrophoresis (PFGE) 

To further explore the relatedness of JNQH497, 498, 462 
strains, we used PFGE to analyze the genetic relatedness. 
PFGE of Xbal-digested genomic DNA samples were per-
formed with a CHEF MAPPER XA apparatus (Bio-Rad, 
USA), as previously described [11].

Whole‑genome sequencing (WGS)

The strains were subject to next generation sequencing using 
the Illumina HiSeq system (Illumina, San Diego, CA, USA). 
Genomic DNA was isolated using a WizardR Genomic DNA 
Purification Kit (Promega, Madison, WI, USA). Sequencing 
reads were de novo assembled using Spades 3.12.0 [12]. To 
resolve the complete plasmid sequence carrying blaNDM in 
JNQH497 and JNQH498, the Oxford Nanopore (MinION 
system) sequencing was conducted and assembled with Illu-
mina sequences to achieve a high-quality genome assem-
bly. The hybrid assembly was performed using Unicycler 
v0·5.0 [13]. The whole-genome sequences were annotated 
by Prokka [14] automatically followed by manual curation.

Genomic analysis

In silico multi-locus sequence typing was performed using 
MLST 2.0 [15], while the acquired antimicrobial resistance 
genes were identified using the ABRicate program (https://​
github.​com/​tseem​ann/​abric​ate) to query the CARD database 
(http://​genom​icepi​demio​logy.​org/). Identification of sero-
types was performed using ECTyper (v.1.0) [16] with default 
parameters (https://​github.​com/​phac-​nml/​ecoli_​serot​yping). 
The plasmid replicons in the sequenced isolates were identi-
fied using PlasmidFinder 2.0 [17]. Single-nucleotide poly-
morphisms (SNPs) and small insertions (INS) were detected 
using Snippy v3.2 (https://​github.​com/​tseem​ann/​snippy) by 
mapping the Illumina sequence reads of the JNQH498 and 
JNQH462 to the complete chromosome sequence of isolate 
JNQH497. Blastn was used to examine sequences homolo-
gous to the sequenced plasmids in the NCBI database. Com-
parison between homologous plasmids was conducted using 
CGview server [18]. OriT Finder was used to determine the 

conjugation module [19]. In order to examine the plasmid 
replicon distribution of blaNDM-bearing plasmids, plas-
mid sequences were downloaded from NCBI (https://​ftp.​
ncbi.​nlm.​nih.​gov/​refseq/​relea​se/​plasm​id) and compared. 
Plasmid distance trees were generated using Mashtree 
[20]. The amino acid sequences of blaNDM were retrieved 
from BLDB [4] and NCBI database, and were aligned using 
Clustal Omega [21]. Evolutionary analyses were conducted 
in MEGA X for inferring maximum-likelihood phylogenies 
[22].

Results

Antimicrobial susceptibility testing

Broth microdilution susceptibility testing showed that 
JNQH497, JNQH462, and JNQH498 were resistant to 
ampicillin, cefazolin, cefotaxime, ceftazidime, merope-
nem, amikacin, levofloxacin, and ceftazidime/avibactam, 
but were susceptible to aztreonam (MICs, ≤ 0.25 mg/L), 
aztreonam/avibactam (MICs, ≤ 0.008 mg/L), and colistin 
(MICs = 0.125 mg/L) (Table 1). NDM-36-producing iso-
lates (JNQH498, JNQH462) exhibited decreased suscep-
tibility to imipenem and meropenem comparing with the 
isolate harboring NDM-37 (JNQH497). Of note, JNQH498 
and JNQH462 were resistant to imipenem (MIC, 8 mg/L), 
while JNQH497 was intermediate to imipenem with an MIC 
value of 2 mg/L.

Identification of blaNDM‑36, ‑37 in E. coli strains

Whole-genome sequencing analysis showed all strains 
belonged to sequence type 227 (ST227) and O9:H10 
serotype. Two novel NDM-encoding genes were identi-
fied in JNQH462 and JNQH498, designated blaNDM-36 
(NG_076641.1) and blaNDM-37 (NG_076642.1), respectively. 
Relative to blaNDM-5, blaNDM-37 contained one missense point 
mutations at positions 781 (C → T), generating amino acid 
substitution His261Tyr. Relative to NDM-37, NDM-36 con-
tained one additional missense point mutation at position 
698 (C → T), resulting in amino acid substitution Ala233Val.

Combination of long-read and short-read sequenc-
ing revealed that strain JNQH497 harbored a 4.75-Mb 
chromosome and two plasmids, designated pJNQH497-1 
(263-Kb), and pJNQH497-2 (103.3-Kb). blaNDM-37 was 
carried by pJNQH497-1 which belongs to IncHI2-type 
plasmid. JNQH498 harbored a 4.75-Mb chromosome 
and one plasmid, designated pJNQH498-1 (263-Kb). 
blaNDM-36 was carried by pJNQH498-1 which also belongs 
to IncHI2-type plasmid. blaNDM-36 and blaNDM-37 were 
located in an ΔTn125-like region with the structure of 
“tnpA-IS5-blaNDM-37-bleMBL-trpF-tat,” containing Tn3 
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family transposase IS3000 upstream and IS1380 family 
transposase ISEcp1 downstream (Fig. 1). In addition to 
the truncated Tn125 cluster, multiple aminoglycoside 
resistance genes [APH(4)-Ia, AAC(3)-IV, APH(3′)-Ia, 
APH(3′)-Ib, APH(6)-Id, ANT(3′)-IIa, AAC(6′)-Ib], flu-
roquinolone [rmpA, AAC(6′)-Ib-cr), and sulphonamide 

resistance genes (sul1, sul2) were also found on the same 
plasmid (Fig. 2). Further, OXA-1 and TEM-150 genes 
producing ESBL were located on pJNQH497-1 and 
pJNQH497-2 respectively in JNQH497. OXA-1 gene was 
located on pJNQH498-1 while TEM-150 was absent in 
JNQH498.

Fig. 1   Linear genetic context 
of blaNDM-37 on IncHI2-type 
plasmid pJNQH497-1. The 
region of blaNDM-2 in Tn125 
on JN872328 is shown for 
comparison. Genes, mobile 
elements, and other features are 
colored based on their func-
tional classification. Light blue 
shading indicates shared regions 
of homology

Fig. 2   Comparison of 
pJNQH497-1 (CP091926), 
pJNQH498-1 (CP104385), 
p8c59NDM (NZ_MT407547.1), 
pHNGD64-NDM (NZ_
MW296099.1), pNDM33-1 
(NZ_CP076648.1), and 
draft genome sequences of 
JNQH462. Open reading frames 
(ORFs) of pJNQH497-1 are 
shown as the outermost ring, 
with plasmid replicons, plasmid 
transfer associated (oriT, 
T4SS, T4CP, relaxase), and 
antimicrobial resistance genes 
highlighted. pJNQH497-1 was 
used as the reference for Blastn 
comparison
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Comparison of sequences and PFGE patterns

Comparison of complete sequences of JNQH497 and 
JNQH498 showed the blaNDM-36 harboring plasmid 
(pJNQH498-1) was almost the same as the blaNDM-37 harbor-
ing plasmid (pJNQH497-1, 99.99% nucleotide identity and 
100% coverage) (Fig. 2). There were only 13 SNPs between 

the two plasmids including the c.698C > T in blaNDM gene. 
Blastn analysis revealed that pJNQH497-1 was almost iden-
tical (100% query coverage and 99% identity) to the plas-
mid p8C59-NDM (NZ_MT407547.1) and displayed high 
similarity with pHNGD64-NDM [23] (NZ_MW296099.1, 
89% query coverage and 99.8% identity) and pNDM33-1 
[24] (NZ_CP076648.1, 86% query coverage and 99.9% iden-
tity). p8C59-NDM, pHNGD64-NDM, and pNDM33-1 also 
belonged to IncHI2-type and were carried by E. coli isolated 
from animal sources in China; however, they all harbored 
blaNDM-5, and the host E. coli strains belonged to ST10, 
ST4063, and ST48, respectively. In addition, a premature 
stop codon was introduced into the coding region of ompD 
(c.238G > T p.Glu80*) in JNQH498 and JNQH462 strains 
while it was absent in JNQH497 (Table S1).

The major plasmid types carrying blaNDM from reference 
NCBI database (n = 876) included IncX3 (29.68%), IncFII 
(15.41%), IncFIB (12.79%), and IncC (9.59%) (Fig.  3). 
Twelve blaNDM harboring plasmids were found to be IncHI2 
type (1.37%), which were mainly found in mainland China 
with the exception of two plasmids from Taiwan and Nepal 
respectively. Notably, three blaNDM bearing IncHI2 plasmids 
also coharbored mcr9.1 colistin resistance genes (Fig. 4).

The PFGE showed JNQH497, 498, 462 had highly simi-
lar band patterns which indicated they were closely related 
(Fig. 5).Fig. 3   The plasmid replicon distribution of blaNDM-bearing plasmids 

from NCBI reference sequences

Fig. 4   Phylogenetic analysis of 13 sequences of IncHI2-type plasmids harboring blaNDM. Colors in columns illustrated source species, presence 
of mcr resistance genes, host, and collection location

476 European Journal of Clinical Microbiology & Infectious Diseases (2023) 42:471–480
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Transferability of blaNDM harboring plasmids 
and conjugation module analysis

Conjugation assays showed the blaNDM-36 and blaNDM-37 har-
boring IncHI2-type plasmids were successfully transferred 
into E. coli J53 from JNQH498 and JNQH497 strains. E. 
coli J53 transconjugants acquired resistance to levofloxacin 
and most β-lactam antibiotics except aztreonam/avibactam 
(Table 1), which indicated the resistant markers to fluroqui-
nolones were co-transferred with blaNDM genes. The conju-
gation frequency was 10−3 per recipient cell for JNQH497, 
whereas it was only 10−8 for JNQH498. Conjugation module 

analysis revealed the conjugation genes are in two separate 
regions: transfer region 1 carries the origin of transfer site 
(oriT), type IV coupling protein gene (T4CP), and genes 
encoding the relaxase and some type IV secretion compo-
nents. Region 2 encodes most type IV secretion proteins 
(Fig. 2). Blastn analysis revealed all the conjugation modules 
were also found in JNQH498, JNQH462 strains.

Expression of the NDM proteins and enzyme activity 
analysis

Susceptibility testing of pET28a constructs showed that 
expression of the  blaNDM-36 and blaNDM-37 genes in  E. 
coli DH5α conferred resistance to most of the tested β-lactams 
except aztreonam and ATM/AVI. Kinetic data showed that 
NDM-36 had higher affinity to cefotaxime than that of NDM-
37, with the Km value reduced by 82.62 μM, whereas NDM-
36 displayed slightly lower affinity than those of NDM-5, -37 
for imipenem and meropenem. The kcat/Km ratio for ampi-
cillin and cefotaxime of NDM-36 was higher than those of 
NDM-37, -5, but imipenem kcat/Km ratio was slighter higher 
than those of NDM-37, -5. In comparison to NDM-5, although 
NDM-36, -37 had lower kcat/Km ratio for imipenem, they had 
higher kcat/Km ratio for meropenem. These results suggested 
NDM-36 had higher hydrolytic activity toward ampicillin and 
cefotaxime relative to NDM-37, -5, and that NDM-37, -36 had 
lower catalytic activity against imipenem but higher activity 
against meropenem relative to NDM-5 (Table 2).

Phylogenetic analysis of NDM protein sequences

Phylogenetic analysis of the protein sequence of NDM vari-
ants is represented in Fig. 6. Evolutionary analysis of the 
amino acid sequences showed the amino acids were sub-
stituted at 30 polymorphic sites except for NDM-18, which 
has five amino acids tandem repeat (QRFGD) at positions 
44 to 48 relative to NDM-1 [25]. The NDM variants had 
most hotspot mutation at amino acid positions 88, 154, and 
130 (Fig. 6).

Fig. 5   PFGE patterns of 
JNQH497, JNQH498, and 
JNQH462 strains digested with 
XbaI. Sizes of the bands of 
H9812 are represented on the 
left of lane M

Table 2   Steady-state kinetic parameters of purified NDM-5, NDM-36 and NDM-37 enzymes

ND not detectable due to a low initial rate of hydrolysis

β-Lactam NDM-5 NDM-36 NDM-37

Km (μM) kcat (s−1) kcat/Km 
(μM−1 s−1)

Km (μM) kcat (s−1) kcat/Km 
(μM−1 s−1)

Km (μM) kcat (s−1) kcat/Km 
(μM−1 s−1)

Ampicillin 98.47 337.071 3.423 71.32 287.295 4.029 93.12 185.77 1.995
Cefotaxime 38.46 146.679 3.814 25.58 122.428 4.786 108.2 193.318 1.787
Ceftazidime 30.07 107.713 3.582 44.93 108.004 2.404 31.23 91.746 2.938
Cefepime 33.84 77.337 2.285 19.41 42.304 2.179 18.53 37.497 2.024
Aztreonam ND ND ND ND ND ND ND ND ND
Imipenem 73.02 278.501 3.814 100 145.021 1.45 55.53 126.934 2.286
Meropenem 67.84 133.13 1.962 98.52 287.295 2.916 25.89 82.909 3.202
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Discussion

The widespread of NDM variants among E. coli strains and 
other Enterobacteriaceae isolates represents a large threat 
to the public health globally [26]. To date, a total of 41 
NDM variants have been named and described, of which 
40 sequences have been deposited in the GenBank data-
base. In this study, two novel blaNDM variants were carried 
by E. coli strains isolated from the same patient. Sequence 
analysis showed that NDM-37 differed from NDM-5 by 

a single amino acid substitution (His261Tyr) due to one 
missense point mutations at positions 781 (C → T). One 
additional missense point mutation at position 698 (C → T) 
in blaNDM-37 resulting in NDM-36. As such, this study pro-
vides a good explanation to increase our understanding 
that blaNDM variants are undergoing continuous evolution 
and thus need to be closely monitored.

WGS revealed the new variants of blaNDM-36, -37 were 
located on a conjugational IncHI2-type plasmid. IncHI2 
plasmids are larger than most of the other conjugative plas-
mids and have been found to be associated with various 

Fig. 6   Evolutionary analysis and genetic variations among the NDM 
variants and its first source of spread. The percentage of replicate 
trees in which the associated taxa clustered together in the bootstrap 
test (1000 replicates) are shown next to the branches. Schematic rep-

resentation of blaNDM-1 gene in the alignment showing the mutations 
at various nucleotide positions leading to the occurrence of NDM 
variants. Each unique color of NDM variants in the column showing 
mutant residues at different position
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resistance genes including mcr, ESBL, and carbapenemase 
encoding genes in Enterobacteriaceae [27–29]. Complete 
transfer operons were identified in the plasmids, which is 
consistent with the finding that the blaNDM-36 and blaNDM-37 
harboring IncHI2-type plasmids can be transferred by con-
jugation. In addition, the identification of highly similar 
IncHI2 plasmids in different E. coli STs suggested this plas-
mid had horizontal inter-species transfer between different 
E. coli clones, probably due to various antibiotic selection 
pressures as the plasmid contained multiple resistance genes.

It is noteworthy to mention, as shown in Table 1, most of 
the antibiotic susceptibility profiles of NDM-carrying clini-
cal isolates were consistent with those of the corresponding 
E. coli DH5α transformants and J53 transconjugants, except 
for imipenem and meropenem. Compared with JNQH497, a 
premature stop codon was introduced into the coding region 
of ompD (c.238G > T p.Glu80*) in JNQH498 and JNQH462 
strains. OmpD had been reported to be the main mechanism 
that mediated reduced susceptibility to imipenem in Entero-
bacter spp [30]. As such, it is speculated the premature stop 
codon likely accounts for the inconsistency of imipenem 
and meropenem susceptibility between pET28a-NDM-36 
and pET28a-NDM-37 as compared to the corresponding 
source isolates. In addition, considering these isolates hav-
ing MICs for meropenem ≤ 8 mg/L, the patient was given 
high-dose extended-infusion meropenem for urinary tract 
infection [31]. However, due to the excellent in vitro activity 
of ATM/AVI and the carriage of ESBL encoding genes, util-
ity of aztreonam in combination with ceftazidime-avibactam 
might be one promising treatment strategy [32].

In summary, this study identified two novel NDM-type 
β-lactamases, NDM-36 and NDM-37, from E. coli strains 
isolated from a patient with refractory urinary tract infec-
tion. To the best of our knowledge, this is the first report 
describing two novel NDM variants detected from the same 
patient. This work extended our understanding of enzymatic 
function and demonstrated the ongoing evolution of NDM 
enzymes. Emergence of new NDM variants could be driven 
by de novo resistance evolution. A close surveillance of 
NDM-producing pathogens should be enacted for continued 
monitoring of the spread of NDM variants.
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