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Abstract
The clinical impact of infections due to extended-spectrum β-lactamase (ESBL)- and/or carbapenemase-producing Entero-
bacterales (Ent) has reached dramatic levels worldwide. Infections due to these multidrug-resistant (MDR) pathogens—espe-
cially Escherichia coli and Klebsiella pneumoniae—may originate from a prior asymptomatic intestinal colonization that 
could also favor transmission to other subjects. It is therefore desirable that gut carriers are rapidly identified to try preventing 
both the occurrence of serious endogenous infections and potential transmission. Together with the infection prevention 
and control countermeasures, any strategy capable of effectively eradicating the MDR-Ent from the intestinal tract would 
be desirable. In this narrative review, we present a summary of the different aspects linked to the intestinal colonization due 
to MDR-Ent. In particular, culture- and molecular-based screening techniques to identify carriers, data on prevalence and 
risk factors in different populations, clinical impact, length of colonization, and contribution to transmission in various set-
tings will be overviewed. We will also discuss the standard strategies (selective digestive decontamination, fecal microbiota 
transplant) and those still in development (bacteriophages, probiotics, microcins, and CRISPR-Cas-based) that might be 
used to decolonize MDR-Ent carriers.

Keywords ESBL · SDD · FMT · Bacteriophages · Probiotics · Microcins

Introduction

The global spread and continuous increase of multidrug-
resistant (MDR) Enterobacterales (Ent) represent a serious 
concern for our health-care systems [1, 2]. These Gram-neg-
ative pathogens can be resistant to the commonly used third-
generation cephalosporins (3GCs) and carbapenems, mainly 
due to the production of extended-spectrum β-lactamases 
(ESBL; e.g., CTX-M-types) and carbapenemases (e.g., 
KPC-, NDM-, and OXA-48-types), respectively. Moreover, 
since such ESBL and carbapenemase genes are carried by 
mobile-genetic elements (MGEs; e.g., plasmids) co-har-
boring other antimicrobial resistance genes (ARGs), these 
organisms are also frequently co-resistant to other classes of 
antibiotics, such as quinolones, aminoglycosides, and poly-
myxins [1–4]. Overall, this phenomenon drastically limits 
our treatment options [5]. As a result, infections caused by 
ESBL- (ESBL-Ent) or carbapenemase-producing Ent (CPE) 
are responsible for higher morbidity and mortality rates 
compared to those due to less resistant organisms [6, 7]. 
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In 2018, this fact prompted the World Health Organization 
to classify both ESBL-Ent and CPE among the most criti-
cal priority pathogens for research and development of new 
therapeutic strategies and rapid diagnostics [8].

Since the Ent are common commensals of the intestinal 
microbiota [9], infections due to MDR-Ent—especially Escher-
ichia coli (Ec) and Klebsiella pneumoniae (Kp)—may arise 
from a prior asymptomatic gut colonization [10, 11]. In addi-
tion, in both hospital and community settings, long-standing 
carriers can transmit such pathogens to other people in close 
contact with them [12]. Therefore, subjects colonized with 
MDR-Ent should be rapidly and accurately identified to imple-
ment infection prevention and control (IPC) measures [13, 14]. 
More importantly, eradication of MDR-Ent from the gut of car-
riers (“decolonization”) can represent an ideal clinical solution 
to prevent difficult-to-treat infections [15], but may also limit 
the epidemiological spread of these life-threatening bacteria in 
humans [16]. In this review, we present a summary of the dif-
ferent aspects linked to intestinal colonization due to MDR-Ent.

Screening of carriers

In the hospital setting, screening for the intestinal carriage 
of MDR-Ent is an important procedure [13]. In fact, this 
approach is implemented with the aim to detect such car-
riage (e.g., patients with CPE) and prevent or contain the 
spread of MDR-Ent (e.g., occurrence of outbreaks) [14]. 
For instance, in many countries, such proactive procedures 
are routine when patients are transferred between hospitals 
or admitted from high prevalence areas [17–19]. However, 
also healthy individuals can be colonized with MDR-Ent. 
In fact, various surveys have shown that risk factors such 
as travel and previous antibiotic treatment greatly influ-
ence colonization [17, 20]. Therefore, not only subjects in 
healthcare-associated settings and in high-endemic regions, 
but also healthy people in the community can be screened 
to identify MDR-Ent carriers.

Screening of the intestinal flora for MDR-Ent (e.g., 
ESBL-Ent and/or CPE) is achieved by analyzing fecal sam-
ples (stool, perianal/perirectal, or rectal swabs) using cul-
ture- or molecular-based methods [13, 21]. A stool specimen 
is considered the gold standard, but perianal swabs are easier 
to obtain and less invasive than rectal swabs. Unfortunately, 
the performance of perianal swabs in detecting coloniza-
tion with MDR-Ent has been investigated in only two com-
parative studies. Lautenbach et al. found 90% sensitivity of 
perianal swabs for detection of fluoroquinolone-resistant 
Ec [22]. In a larger study, Kubiak et al. found that perianal 
swabs had a concordance of ≥ 98% with stool in detecting 
ESBL-Ent [23]. Notably, in both studies, selective cultures 
were performed without broth pre-enrichments (see below).

Culture‑based methods

In culture-based methods, a fecal sample (~ 50-100 µg) is plated 
directly onto various commercially available selective chromo-
genic media. For instance, to detect carbapenem-resistant Ent 
(CRE), the CHROMID® CARBA or CARBA SMART (bio-
Mérieux), and KPC or mSuperCARBA™ (CHROMagar™) 
are commonly used [13]. For the detection of 3GC- and colis-
tin-resistant (COL-R) strains, many other media exist and their 
performances have been extensively discussed elsewhere (e.g., 
[24–27]). Importantly, the main advantages that chromogenic 
media offer are the simultaneous detection of resistance pheno-
types and species-level differentiation (i.e., colonies of different 
colors). Alternatively, non-chromogenic media such as in Mac-
Conkey agar supplemented with antibiotic disks (e.g., ertapenem) 
can be used for the detection, for example, of CRE in stools [28].

Detection of MDR-Ent directly from fecal samples using chro-
mogenic media has a typical turnaround time (TAT) of 18–20 h 
(overnight incubation), though the final antimicrobial susceptibil-
ity tests require at least a further day. This approach can detect 
organisms with variable limits of detection (LOD), which typi-
cally depend on several factors such as chromogenic media brand, 
species, resistance mechanisms (e.g., KPC- vs. OXA-48-type 
carbapenemase producers), and input (i.e., stool inoculum) [13]. 
Therefore, direct plating on chromogenic media may not be suf-
ficient to detect low level carriage of MDR organisms (MDROs).

To overcome this issue, the performance (i.e., increase 
in detection) of direct plating can be optimized by an addi-
tional pre-enrichment step [29–35]. This step is usually 
achieved by overnight incubation in the presence of one 
or several antibiotics in liquid broth [29]. The benefit of 
pre-enrichment is well known, but not consistently imple-
mented due to the extra hands-on time in the clinical labo-
ratory. Importantly, the implementation of a pre-enrich-
ment step offers an increase in the recovery of low carriage 
organisms below the LOD [29]. For instance, Rondinaud 
et al. showed that an overnight pre-enrichment (100 mg 
of stools in 10 mL of brain-heart infusion broth supple-
mented by 1.5 mg/L of cefotaxime) improved the detection 
of ESBL-Ent by 11.7% without decreasing specificity [36]. 
In another study involving 343 patients, the direct culture 
identified only 71.1% of the stools positive for ESBL-Ent, 
whereas using pre-enrichments in tryptic soy broth, Mac-
Conkey or MacConkey plus cefuroxime [32 mg/L] and 
vancomycin [64  mg/L] positive samples were 88.9%, 
91.1%, and 91.1%, respectively [31].

Molecular‑based methods

Various nucleic acid-based methods exist for the detection 
of MDR-Ent directly from fecal samples. These include 
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the real-time PCR- (quantitative PCR, qPCR)-based, 
which allow for ARGs identification from fecal genomic 
DNA. Alternative to qPCR, the loop-mediated isothermal 
amplification (LAMP) is not affected by PCR-inhibitors 
typically present in fecal DNA, and is a fast and cheaper 
substitute to screen for MDR-Ent carriage [21, 37–39].

The qPCR method has been integrated into several auto-
mated systems that offer minimal hands-on time and faster 
TAT compared to culture methods. For instance, a multiplex 
qPCR approach is used by the GeneXpert® platform (Cep-
heid), which can implement the Xpert® Carba-R assay for 
the detection of major carbapenemase genes in less than 1 h 
[40, 41]. Other similar rapid qPCR-based automated plat-
forms designed to detect ESBL and/or carbapenemase genes 
are, for example, BD MAX™ Check-Points CPO® (Check-
Points), LightMix® modular carbapenemase (Roche), CRE/
ESBL ELITe MGB® (ELITechGroup), and Novodiag® 
CarbaR+ (Hologic) assays; all of which provide results 
in less than 3 h [42–46]. However, a major drawback of 
these automated systems is that they are generally unable to 
detect novel ARGs because they rely on predefined targets 
[13]. They also tend to be significantly more expensive than 
culture-based systems [47]. Nevertheless, in this context, 
we emphasize that the longer TAT of culture-based meth-
ods may actually imply higher overall healthcare costs (e.g., 
for unnecessarily preemptive isolation for non-colonized 
patients) [48].

Molecular-based methods offer equal or higher sensitiv-
ity as culture-methods, with LODs that are variable from 
method-to-method and usually gene-dependent [42, 44]. For 
instance, Nass et al. showed that an in-house qPCR designed 
to detect the blaNDM-1 carbapenemase gene in spiked stool 
had 100% sensitivity and specificity. Moreover, the LOD 
was 1–3 x   101 colony forming unit (CFU)/mL, whereas 
that of CHROMagar™ KPC selective culture plates ranged 
between  101 and  103 CFU/mL [49]. When testing 128 clinal 
rectal swabs, the BD MAX™ Check-Points CPO® showed 
sensitivity and specificity of 92.8% and 97.8%, respectively. 
In particular, 5 samples identified as positive by culture 
(ChromID® CARBA SMART plates) and by Xpert® Carba-
R were not detected by the Check-Points CPO® assay [45]. 
Compared to the broth pre-enrichment culture, GeneXpert® 
showed sensitivity and specificity of 100% and ≥ 99% for 
the detection of blaKPC and blaVIM carbapenemase genes in 
fecal samples. Moreover, the system was able to detect 100% 
of the samples spiked with blaNDM-positive K. pneumoniae 
strains at concentrations of 300 CFU/mL [41].

As in culture-based approaches, molecular-based methods 
can greatly benefit from an enrichment step. For example, 
Donà et al. demonstrated that detection of the COL resist-
ance gene mcr-1 by qPCR increased when selective broth 
enrichments were used compared with native stools [50]. 
Similarly, a study by Girlich et al. found that an enrichment 

step was necessary for the detection of an OXA-181-produc-
ing Ec (OXA-181-Ec) from a rectal swab, which was previ-
ously categorized as negative by the qPCR-based Cepheid 
Xpert® Carba-R system and when using direct plating [51]. 
Therefore, molecular-based systems may require an enrich-
ment step to increase their sensitivity to detect low carriage 
of MDR-Ent in stool.

It should also be noted that these methods cannot distin-
guish between DNA from alive and dead bacteria, so the 
presence of viable MDR-Ent is overestimated (i.e., negative 
result in culture, but positive in molecular method) [52]. 
For instance, in a multisite study involving 383 patients, 
4–5% of the fecal samples resulted positive for carbapen-
emase genes with the Cepheid Xpert® Carba-R system with 
a corresponding negative result with the standard reference 
culture (MacConkey broth containing 1 mg/L meropenem 
and subculture in a MacConkey agar plate with a 10 μg 
meropenem disk) [40].

Epidemiology and risk factors

Hospital setting

The gut flora is a rich, constant, and dynamic reservoir 
that has been shown to be the major source of MDR-Ent in 
hospitalized patients [10]. Moreover, it hinges on various 
predisposing factors such as underlying diseases, exposure 
to antibiotics, and use of medical devices (e.g., nasogastric 
tubes and urinary catheters). As a consequence, intensive 
care units (ICUs) represent the setting with the highest 
risk for colonization and cross-transmission of MDR-Ent 
between patients [53, 54].

Numerous investigations have analyzed the MDR-Ent gut 
carriage in hospitalized patients. Depending on (i) the geo-
graphic region, (ii) its epidemiological situation (e.g., low-
prevalence vs. endemicity), and (iii) the type of admission 
ward, very different prevalence data have been reported. In 
contrast, similar risk factors linked to the acquisition of the 
MDR-Ent are described. For instance, in the general popu-
lation of hospitalized patients, the rates of MDR-Ent colo-
nization (ESBL-Ent and CRE) ranged between 12 and 65% 
in different countries. However, history of antibiotic use, 
duration of hospital stay, nursing home residency, receiving 
parenteral nutrition, and previous hospital admission(s) were 
constantly recognized as independent factors associated with 
the carriage [55–59].

For ICU-patients, ESBL-Ent carriage rates of 62.3%, 
8%, and 5.3% were recorded during 2014–2015 in Thai-
land, Switzerland, and France, respectively [60–62]. In 
Spain (period 2012–2013), 16% of the ICU-patients car-
ried CPE [mostly OXA-48-producing Kp (OXA-48-Kp)], 
and the main risk factors associated with this condition 
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were chronic renal disease, previous digestive/biliary 
endoscopy, hospitalization(s), intra-abdominal surgery, 
antibiotic use, and higher mortality prediction scores (e.g., 
median APACHE II score of 15) [63].

Gut colonization with MDR-Ent may also frequently 
involve pediatric patients. In Tanzania (2017–2018), Tuni-
sia (2015), Gabon (2010–2011), and Cambodia (2012), 
56%, 28.6%, 45%, and 55% of the hospitalized children 
were carriers of ESBL-Ent, respectively [64–67]. In Ser-
bia (2017–2018), gut carriage with ESBL-producing 
Kp (ESBL-Kp) or ESBL-producing Ec (ESBL-Ec) was 
recorded in 59% of the hospitalized pre-term neonates; 
previous hospitalization, delivery by cesarean section, and 
mechanical ventilation were associated with colonization 
[68]. In a study from Morocco (2013–2015), up to 59.4% 
and 12.5% of the neonatal ICU (NICU)-patients were colo-
nized with ESBL-Ent and CPE, respectively [69]. CPE car-
riage was also observed in 8.6% of inpatients in a pediatric 
hospital in China (2019), with those colonized having a his-
tory of invasive procedures and antibiotic exposures [70].

Long‑term care facilities and nursing homes

People residing in chronic care facilities are at increased 
risk of gut colonization with MDROs, but the estimated 
prevalence varies between countries [71, 72]. For instance, 
in Switzerland (2010–2020), 10.5% of the long-term care 
facilities (LTCF) residents were colonized with ESBL-Ec, 
of which 58% belonged to the pandemic sequence type (ST) 
131 lineage [73]. Consistent results were obtained in a more 
recent national Swiss study (2019), with an ESBL-Ent car-
riage of 11.6% and again a high prevalence of ST131 Ec 
strains [74]. In an Italian study (2008), 64% of the LTCF 
residents were colonized with ESBL-Ent, while 6.3% had 
CPE. Risk factors for colonization included age ≥ 86 years, 
antibiotic treatment in the previous 3 months, indwelling 
devices, chronic obstructive pulmonary disease, and physi-
cal disability [75].

In French nursing homes (2017–2018), 19.8% of the 
patients were colonized with ESBL-Ent, whereas CPE were 
not detected; use of a shared bathroom, previous antibiotic 
use and recent history of hospitalization were risk factors 
for colonization [76]. Similarly, in Belgium (2015) and Cali-
fornia (2016–2017), 11.3% and 16% of the nursing home 
residents were gut carriers of ESBL-Ent, respectively [77, 
78]. In Japan (2015–2017), this prevalence was instead as 
high as 36% [79].

Community setting

The prevalence of MDR-Ent among healthy people in the 
community has reached alarming levels and now represents 

one of the most important threats to public health [80]. In 
the 1990s, MDROs were mainly associated with nosocomial 
infections. Since then, however, there has been an emergence 
and dissemination outside the hospital context, leading to an 
increase in infections due to these pathogens [81]. In par-
ticular, community-onset infections due to ESBL-Ent were 
increasingly being reported in the early to mid-2000s, while 
reports about community-associated CRE infections started 
to emerge around 2010 [82, 83]. More recently, there have 
also been an increasing number of reports for community-
associated COL-R isolates that simultaneously possessed 
resistance mechanisms against other antimicrobials such as 
carbapenems, 3GCs, and aminoglycosides [84–86].

While intestinal colonization with MDR-Ent has been 
reported worldwide, the prevalence among the healthy 
population varies greatly between different regions. In 
a meta-analysis by Bezabih et  al. regarding ESBL-Ec, 
the average prevalence for intestinal colonization ranged 
from 6% in Europe to around 20% in the Eastern Mediter-
ranean and Africa, while it was up to 24.5% and 27% for 
the Western Pacific and South-East Asia, respectively [87]. 
However, for some countries, the reported numbers were 
much higher, with low-income countries usually showing 
a higher prevalence. For instance, studies from Tanzania 
(2018), Laos (2018), and Thailand (2010) reported rates 
of ESBL-Ent carriage in the healthy population as high as 
91.5%, 70%, and 69.3%, respectively [88–90]. Though in 
high-income Asian countries such as Japan, the prevalence 
for ESBL-Ec in 2011–2012 (8.5%) was comparable to those 
reported for European countries (e.g., 7.1% in Switzerland in 
2013–2016) [57, 91]. Furthermore, Bezabih et al. observed a 
yearly increase of 1.5% in the prevalence of ESBL-Ec with 
an estimated global prevalence of nearly 30% in 2020 [87]. 
This development is also reflected in a study conducted by 
French researchers who observed a 10-fold increase in the 
prevalence of ESBL-Ec in healthy subjects living in Paris 
from 2006 (0.6%) to 2011 (6.1%) [92]. A few studies have 
also indicated a high prevalence of healthy children in the 
community who are colonized with ESBL-Ent, such as ~ 5% 
in France (2010–2011), the Netherlands (2010–2012), and 
the USA (2013–2015), ~ 13% in Libya (2007), ~ 22% in Iran 
(2017), and 43% in Pakistan (2016) [93–98].

During 2016–2019, the prevalence of COL-R-Ent car-
riage among healthy people ranged from 2 to 3% in studies 
conducted in Taiwan, Spain (considering health-care work-
ers, HCWs), and South Africa (considering children), while 
it was 15% in two studies that analyzed healthy Chinese 
and Laotian people in 2016 and 2018–2019, respectively 
[89, 99–102]. In contrast, a study from Bolivia (2016) and 
one from Vietnam (2017–2018) reported a wide dissemi-
nation of COL-R bacteria in the healthy community with 
rates of 38.3% and 70.4%, respectively [103, 104]. From 
the 70.4% of COL-R-Ec in Vietnam, the majority (92.8%) 
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were also MDR. In both studies, the authors discussed the 
high amounts of COL used for animal breeding as a possible 
explanation for the high dissemination among the healthy 
community [103, 104]. In line with this, a study from China 
observed a decrease in Ec carrying the COL resistance gene 
mcr in the gut of healthy adults from 11.5% in 2018 to 2.4% 
in 2019 following the ban of COL as a growth promoter in 
animal breeding in 2017 [105].

CRE are also reported to colonize the intestinal tract 
of healthy individuals. In Cambodia (2011), Switzerland 
(2014), and India (2015–2017), CRE were detected in 1%, 
0.1%, and 6.4% of the healthy population, respectively 
[106–108]. In Lebanon (2018), researchers found 6% of 
healthy bakery workers to carry CR-Ec [109]. Likewise, 
in the Eastern Mediterranean, a study conducted in Kuwait 
(2016–2018) found 7.7% of people working in the food 
industry to carry CRE, while 30.5% of the Ent isolates were 
also MDR [110].

With regard to the risk factors for people in the com-
munity, in some studies, regular contact with children and 
animals, and consumption of contaminated food (e.g., meat 
products and aquatic food) have been identified as risk fac-
tors for acquiring MDR-Ent [99, 100, 105, 106, 111–114]. 
More importantly, international travel (see below), previous 
hospitalization, and general health status (e.g., underlying 
disease, extreme age group, body mass index ≥ 25 kg/m2) 
are significantly associated with the carriage of MDR bacte-
ria (e.g., [67, 111, 115]). For instance, HIV-positive individ-
uals are at increased risk for acquiring MDR-Ent [116]. Of 
note, in such group of individuals, those receiving suppres-
sive antiretroviral therapy (ART) appear to acquire MDR-
Ent as likely as the general population. In the Swiss HIV 
cohort (2015–2016), the prevalence of 3GC-R-Ent carriers 
was found to be 6.7% [117], which is consistent with the rate 
found in healthy people (7.1%) during the same period [91]. 
In contrast, in low-income countries, subjects not receiv-
ing ART showed higher MDR-Ent colonization rates (e.g., 
23–33% in Tanzania) than the general population [118, 119]. 
Interestingly, in a recent analysis, carriage of ESBL-Ent was 
more frequent in men who have sex with men undergoing 
preexposure prophylaxis or living with HIV-positives and 
with high number of sexual partners [120].

Concerning the transmission from animals, exposure to 
livestock, their manure, and slaughter products were found 
to be significantly associated to ESBL-Ent carriage [106, 
121]. A Dutch study from 2020 that analyzed 3GC-R-Ec 
by whole-genome sequencing (WGS) confirmed the trans-
mission between broilers and people working and living on 
farms in six cases [122]. Similarly, a study from Thailand 
(2018) applied a WGS approach to analyze ESBL- and 
CR-Kp and found the same clones in pigs and farmers, sug-
gesting a direct transmission between the two groups [123]. 
In contrast, transmission from pets to humans seems to 

be less common. A recent meta-analysis found no signifi-
cantly higher risk for carriage of 3GC-R-Ent in pet owners 
compared to non-pet owners [124]. In line with this, co-
carriage of ESBL-Ent between owner and pet was rare in a 
Dutch study performed in 2020, with only 5 cases detected 
out of 550 analyzed pet-owner pairs [125]. Likewise, in a 
Swiss study (2016) in which 72 owners and their pets were 
screened for ESBL-Ec, only one case of direct transmission 
was detected, whereas in a more recent Swiss study (2021), 
no co-carriage of MDR-Ent was detected in 50 pet-owner 
pairs [126, 127].

Health‑care workers

Health-care workers (HCWs) represent a special population 
in the community that may have a significantly different col-
onization prevalence with MDR-Ent. For instance, the preva-
lence of HCWs colonized with 3GC-R-Ec was 4%, 12%, 
24%, 47%, 65%, and > 75% in Germany (2013–2014), Italy 
(2016), Egypt (2013), Rwanda (2014), Vietnam (2019), and 
Madagascar (2014–2015), respectively [55, 128–132]. Nev-
ertheless, such prevalence seems consistent to that recorded 
in the general population (see previous section). Moreover, 
the above studies did not establish a clear association (trans-
mission event) between MDR-Ent isolated from HCWs and 
MDR-Ent isolated from the patients at the same institutions. 
In fact, only the few surveys that have implemented adequate 
molecular techniques (e.g., pulse field gel electrophoresis, 
PFGE; multi-locus sequence typing, MLST; and WGS), are 
able to address this issue [133].

Among them, the MOSAR study (2008–2011) indicated 
that 3.5% of the HCWs of five rehabilitation units located 
in Israel, Italy, France, and Spain were gut colonized with 
ESBL-Ent (mostly ESBL-Ec); feeding patients was associ-
ated with carriage. However, only 1/3rd of the ESBL-Ec 
from the medical staff were actually molecularly linked 
(i.e., identical or highly-related clones) to those from their 
patients [134]. In another Spanish study (2018) involving 6 
hospitals, only 3.1% HCWs resulted colonized with ESBL-
Ent. No statistically significant risk factors for colonization 
were identified; more importantly, the rate of colonization 
was not higher than that reported for healthy people in the 
corresponding community [101]. In a Swiss study conducted 
in 4 veterinary institutions (2018), only 2 out of 108 (1.9%) 
HCWs resulted colonized with hyperepidemic clones of 
CP-Ec (i.e., ST410 producing OXA-181 and ST167 produc-
ing NDM-5); however, these CP isolates were molecularly 
identical to those frequently found among dogs and cats hos-
pitalized at the same institutions [135].

Overall, the above studies seem to indicate that HCWs 
have a low risk of being colonized with the same MDR-Ent 
affecting their patients. Nevertheless, data on this context 
are still scarce, as emphasized by the systematic analysis 
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of Peters et  al. [136]. Therefore, further high-quality 
research is needed to assess the risk of occupational colo-
nization with MDR-Ent.

International travelers

One of the main risk factors for the acquisition of MDROs 
in the community of low prevalence areas is travelling to 
endemic countries [137–141]. In particular, travels to Asia 
and Africa have been associated with a high risk for MDR-
Ent acquisition, especially ESBL-Ec [112, 138, 142–145]. 
The use of antibiotics during the trip can further contribute 
to an enhanced risk for colonization [112, 137].

In the COMBAT study (2012–2013), 34.3% of the 
overall Dutch tourists acquired ESBL-Ent when traveling 
abroad, but for those visiting southern Asia was 75.1%. 
Regarding the sub-group of travelers visiting the African 
continent, the acquisition rates were 18.9%, 27.8%, and 
42% for Western Africa, Middle and Eastern Africa, and 
Northern Africa, respectively [146]. In another Swiss 
study conducted at the same time, 69.4% of all travelers 
from Switzerland to the Indian subcontinent returned colo-
nized with ESBL-Ec, but those specifically returning from 
India had a colonization rate of 86.8% [144]. In a more 
recent study (2018–2019), we observed that 54% of Swiss 
travelers to Tanzania acquired MDR-Ent, of which 54% 
were ESBL-Ec and 16.2% were COL-R-Ec. Such MDR-
Ent had a corresponding (identical) strain among resi-
dent people, food, animal and/or environmental sources 
[139]. COL-R-Ec strains possessing the mcr-1 gene or 
chromosomal mechanisms were also isolated in 10.5% of 
the stool of Swiss travelers returning from India in 2015 
[141]. Finally, we note that the isolation of CPE in return-
ing travelers is still very rare, but their importation to low 
prevalence countries is a concern [144, 147].

Length of colonization and spontaneous 
decolonization

The duration of intestinal colonization due to MDR-
Ent has been analyzed in several studies involving adult 
patients hospitalized in acute institutions or admitted to 
various types of LTCFs. In contrast, data regarding healthy 
people in the community are scarce, with most of the sur-
veys performed on international travelers.

Hospitalized patients

In general, hospitalized people tend to remain colonized 
with MDR-Ent for the duration of their nosocomial stay, 

and approximately 50% of them show spontaneous decolo-
nization without intervention within 6 months of discharge. 
However, this phenomenon occurs over a broad timeframe 
and depends on many factors (see examples below) [148, 
149]. In addition, 15–45% of patients may retest positive 
after multiple negative screenings [150, 151]. This last phe-
nomenon has important clinical implications (e.g., isolation 
of patients) and can be possibly explained in two ways: (i) 
the MDR-Ent was not eliminated from the intestinal tract, 
but only suppressed at a concentration below the LOD for 
the screening method used [13, 29, 31, 36, 50]; (ii) patients 
were actually decolonized, but re-acquired the MDR-Ent 
because they were exposed to the same environment, inter-
ventions, and/or treatments. In this context, the number of 
consecutive negative tests needed to define the eradication of 
intestinal colonization is essential, though standard criteria 
have not yet been defined in this regard [149]. Basically, 
eradication rates may be higher when a single sample defines 
the end of carriage than when multiple negative samples are 
required. Another issue is that most studies fail to demon-
strate the persistence of the identical MDR-Ent using WGS 
techniques [149].

Several studies have well-summarized the above concepts 
[148, 149]. For instance, the meta-analysis by Bar-Yoseph 
et al. found that in the healthcare setting, 77% of colonized 
patients were still carriers of MDR-Ent at 1 month, 75% at 
3 months, 55% at 6 months, and 35% at 12 months [149]. 
In a 14-year French study (1997–2010), 40% of readmitted 
patients with prior ESBL-Ent carriage were still colonized 
[152]. During an outbreak of KPC-2-producing Kp (KPC-
2-Kp) in Germany (2010–2013), Lübbert et al. analyzed the 
gut carrier prevalence of adult patients by implementing 
both culture screening and a blaKPC-targeted PCR approach. 
Resolution of carriage was defined as at least 3 consecutive 
negative PCR tests at least 48 h apart. As a result, 69% of 
colonized patients tested positive after 1 month, 59% after 
3 months, 35% after 6 months, 26% after 1 year, and 17% 
after 2 years. Of note, two patients retested positive for KPC-
2-Kp after they had previously shown 3 consecutive nega-
tive tests, while one patient was colonized for 1191 days. 
The majority of patients who experienced spontaneous 
decolonization were those discharged from the hospital, 
whereas those who were long-term colonized usually had 
prolonged or repeated hospitalizations [153]. In a similar 
study, the multivariable logistic analysis performed by Kim 
et al. indicated that during 2015–2016, readmission [odds 
ratio (OR) = 9.96], carbapenem use (OR = 9.15), positive 
culture for a clinical sample (OR = 6.26), and duration 
of hospitalization (OR = 1.03) were predictive for persis-
tent carriage of KPC-Kp after 6 months [154]. In another 
analysis (2013–2018), the same authors also indicated that 
CP-Kp may have a higher probability of prolonged carriage 
than other species of CPE. Furthermore, OXA-48-like-Ent 
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showed a significantly increased risk of prolonged carriage 
than those producing NDMs; there was no significant dif-
ference between OXA-48-like and KPC producers [155].

Pediatric patients

Löhr et  al. investigated the duration of fecal carriage 
with ST17 and ST485 CTX-M-15-producing Kp (CTX-
M-15-Kp) in infants colonized during a NICU outbreak 
(2008–2009) in Norway. The median carriage duration 
in infants after discharge was 12.5 months (the longest 
was 23.5 months). Risk factors for prolonged carriage 
were delivery by caesarean section and treatment with 
antibiotics during hospitalization [156]. Nordberg et al. 
performed a prospective cohort study (2008–2015) on 13 
neonates colonized with an ST101 CTX-M-15-Kp respon-
sible for an outbreak in two Sweden NICUs. As a result, 
the MDR pathogen was still found in two children at 23 
and 26 months [157].

Long‑term residents

Unlike hospitalized patients, intestinal colonization with 
MDR-Ent in subjects admitted to long-term institutions 
can last for months. During 2013–2019, in a Dutch nurs-
ing home with an unusually high prevalence of rectal 
ESBL-Ec carriage, the colonization dynamics of ST131 
ESBL-Ec vs. non-ST131 strains were evaluated. Sponta-
neous decolonization was observed in 33% of the ST131 
carriers vs. 62% of those with other STs (P = 0.03). Sur-
vival analysis to calculate the median time to clearance 
showed that the half-life of carriage for the ST131 was 
13 months, whereas only 2–3 months for other lineages 
(P < 0.001) [158].

General population in the community

In a Dutch analysis (2014–2015), following a cross-sectional 
study (sample time T0), a subset of ESBL-Ec/ESBL-Kp gut 
carriers (n = 76) and non-carriers (n = 249) volunteered to 
provide 5 fecal swabs with an interval of 1 month (sample 
times T1 to T5). The median time between T0 and T1 was 
125 days (range, 71–234 days). Of the initially positive par-
ticipants (colonized), 25 (32.9%) remained positive in all sub-
sequent samples (> 8 months), while 31 (12.4%) of initially 
negative individuals acquired ESBL-Ec/ESBL-Kp strains. 
Colonized subjects often carried the same blaESBL gene and 
plasmid, but sometimes in different host strains, indicative for 
horizontal gene transfer of MGEs (plasmids). Prolonged car-
riage was significantly associated with travel to countries with 
a high-prevalence of ESBL producers and being colonized 
with Ec strains of (i) phylogenetic groups B2/D, (ii) ST131, 
and (iii) producing CTX-M-9 group ESBLs [159].

International travelers

Several cohort surveys conducted on healthy travelers assessed 
the MDR-Ent intestinal carriage among positive subjects after 
returning home. The VOYAG-R and the COMBAT stud-
ies (both in 2012–2013) reported that 10–25%, 5–14%, and 
2–11% of the travelers returning colonized with MDR-Ent 
were still colonized with MDR-Ent at the 3-, 6-, and 12-month 
follow-ups, respectively [146, 160]. Other similar studies 
reported that after 6 months, 20–28% of the travelers who 
tested positive upon return were still colonized with MDR-
Ent [140, 161–163]. Overall, these figures indicated that only 
6 months after returning travelers have similar colonization 
rates to the non-traveling general population in high-income 
countries (e.g., 3–6% in Europe and North America) [20, 91]. 
Therefore, traveling abroad can be considered an additional 
risk factor for infection and/or transmission of MDR-Ent in 
the first 6 months upon return.

Some studies have also tried to assess the factors associated 
with sustained carriage in post-trip subjects. The VOYAG-
R study revealed that carriage duration increased with travel 
destination, with Asia representing a higher risk compared to 
Africa and Latin America. This phenomenon might be linked 
to the higher concentration of MDR-Ent in the intestinal tract 
of people returning from Asia than those traveling back from 
other continents [160]. The COMBAT study reported that car-
riage of CTX-Ms-Kp and traveling to the Middle East were 
associated with a shorter carriage duration [146]. In another 
analysis, Armand-Lefèvre et al. suggested that long-term gut 
carriage in post-travelers is primarily due to the acquisition 
of specific epidemic clones of Ec (e.g., ST10, ST14, ST38, 
ST69, ST131, and ST648) that provide good adaptation to the 
human intestinal microbiota [164]. In our analyses, we noted 
that travelers may carry a median of 2 MDR-Ent clones (range 
1 to 5) and that prolonged colonization in the follow-up period 
is due to clonal persistence or presence of the same plasmid 
in a new bacterial host [163]. Moreover, no specific micro-
biota patterns before travel were significantly associated with 
a higher risk of 3GC-R-Ent colonization [140]. In contrast, 
Peng et al. suggested that having low Actinobacteria richness 
and low abundance of short-chain fatty acid-producing bac-
teria in the gut microbiota may increase the risk of acquiring 
ESBL-Ent [165].

Impact of colonization

Clinical impact

As discussed above, MDR-Ent gut colonization is increas-
ing in many settings. Thus, clinicians have to consider the 
risk of endogenous infections due to these difficult to treat 
pathogens. In this context, we emphasize that infections 
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due to MDR-Ent are associated with higher health-care 
costs, morbidity and mortality [6, 7].

Numerous studies have indicated an association 
between previous gut colonization and infection due to 
MDR-Ent. However, this association seems to depend 
on the type of patients. For instance, Reddy et al. noted 
that 8.5% of the patients colonized with ESBL-Ent and 
admitted to high-risk wards during 2000–2005 developed 
a subsequent bloodstream infection (BSI) due to the same 
organism [166]. In a prospective analysis at three ICUs, 
Christiaens et al. reported that 69% of patients that were 
gut colonized with ESBL-Ent also had an infection or 
colonization with these organisms in another body site; in 
contrast, this was observed only in 12% of non-colonized 
subjects [167]. Another prospective study (2011–2012) 
with 497 hematological patients identified previous coloni-
zation as the most important risk factor (OR = 52) for BSI 
due to ESBL-Ent [168]. In a Swedish analysis considering 
a general hospitalized population (2004–2014), 6% of the 
gut carriers of ESBL-Ent developed an infection, but only 
0.7% of them had a BSI [169]. This seems to support the 
hypothesis that gut colonization with MDR-Ent is a risk 
factor for BSI only in compromised patients. In a German 
study (2014–2015), 2386 ESBL-Ec and 585 ESBL-Kp rec-
tal carriers admitted to a tertiary care centre were analyzed 
prospectively. Authors noted that the medical conditions of 
patients colonized with ESBL-Kp were more severe than 
those of patients colonized with ESBL-Ec. Moreover, a 
hospital-acquired infection (HAI) was observed in 7.8% 
and 13.8% following gut colonization with ESBL-Ec and 
ESBL-Kp, respectively. The most frequent types of infec-
tions were urinary tract infections (UTIs), surgical site 
infections, and BSIs. Patients colonized with ESBL-Kp 
had a significantly higher risk of developing HAIs with 
these pathogens than patients colonized with ESBL-Ec 
[relative risk (RR) = 1.62; P = 0.020] [10].

In the community, travel-related gut colonization with 
MDR-Ent seems to represent a non-negligible risk fac-
tor for infection, especially for UTIs [11, 170]. Several 
studies indicated that having traveled abroad (especially 
to Asian countries) within the year prior to symptoms is 
a 4- to 14-fold risk factor for UTI caused by an ESBL-
Ec [171–174]; this is also true for children (OR = 8.93) 
during the first 6 months after the trip [175]. Moreover, 
Soraas et al. reported a 21-fold risk of UTI in adults when 
a shorter period of 6 weeks after travel was considered 
[176]. However, for all of these studies, analysis of fecal 
samples was not performed. Therefore, a definite link 
between previous gut colonization and subsequent UTI 
cannot be established.

Contribution to the transmission of MDR‑Ent

In a survey performed at our institution (2008–2010), index 
patients with carriage of ESBL-Ec or ESBL-Kp (mostly 
CTX-M-15 producers) were prospectively analyzed together 
with their hospital and household contacts after discharge. 
Hospital transmission rates were 4.5% and 8.3% for ESBL-
Ec and ESBL-Kp, respectively. Incidence of ESBL-Kp 
hospital transmission was significantly higher than that of 
ESBL-Ec (P < 0.0001) despite the implementation of IPC 
measures. In the households, transmission rates were 23% 
for ESBL-Ec and 25% for ESBL-Kp, indicating that this 
setting exceed the nosocomial for the transmission of ESBL 
producers [12]. In another study (2008–2009), transmission 
from infants colonized with CTX-M-15-Kp during an NICU 
outbreak to parents/relatives was also observed in 32% of 
the households [156]. It should also be noted that there are 
numerous accounts in the literature of colonized patients 
hospitalized in other institutions (including abroad) who 
imported MDR-Ent to low-prevalence countries [177–181]. 
These patients can transmit their MDR-Ent and consequently 
generate outbreaks. Paradigmatic examples of this phenome-
non are those associated to the importation of KPC-Kp (e.g., 
[182, 183]).

With regard to the LTCF setting, data are scarce. In a 
Dutch analysis performed in 2013–2014, transmission rates 
of ST131 ESBL-Ec were comparable, or even lower, than 
those of ESBL-Ec belonging to other lineages [184]. In 
another survey at a French LTCF (2009), patients and hos-
pital staff carried a wearable sensor to monitor their interac-
tions over a 4-month period. As a result, it was shown that 
ESBL-Kp can spread between individuals during close-prox-
imity interactions, whereas this was not the case for ESBL-
Ec, suggesting that only ESBL-Kp should be controlled by 
contact reduction interventions [185].

In the community setting, Valverde et al. reported that 
in 2004–2005, Spanish people with a community-acquired 
infection (mostly UTI) and their household members rep-
resented a reservoir for ESBL-Ec. In particular, 70% and 
17% of the patients and relatives were colonized at gut level 
with ESBL-Ec, respectively. Moreover, 66% of the strains 
isolated from both groups were indistinguishable by imple-
menting the PFGE analysis [186]. Transmission of MDR-
Ent may also occur between returning travelers, who are 
gut colonized, and their household contacts, though data on 
this aspect are scarce. In the COMBAT study, a transmis-
sion rate of 4.7% was observed between positive travelers 
upon return and members of the same household who had 
not traveled [146].
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Strategies to decolonize carriers

Since colonized patients are at high-risk of developing 
severe infections, there have been numerous attempts to 
eradicate MDR-Ent gut carriage. In a systematic review per-
formed in 2019 by the ESCMID–EUCIC (European Society 
of Clinical Microbiology and Infectious Diseases–European 
Committee on Infection Control), authors analyzed the avail-
able literature (i.e., 27 studies) regarding the strategies to 
decolonize gut carriers of MDR Gram-negatives. As a result, 
it was not recommended the routine use of interventions 
aimed at achieving decolonization from 3GC-R-Ent and 
CRE. However, these guidelines were mainly based on stud-
ies implementing the selective digestive decontamination 
(SDD) with oral antibiotics. Moreover, for fecal microbiota 
transplantation (FMT), authors did not provide recommen-
dations due to the scarcity of data [187].

In this section, we will provide an overview of the 
main strategies used to attempt to decolonize MDR-Ent 
gut carriers. We will also analyze the novel and alterna-
tive approaches that may be developed in the near future.

Selective digestive decontamination 
with antibiotics

Selective decontamination of the digestive tract (SDD) and 
selective oropharyngeal decontamination (SOD) are pro-
phylactic antibiotic interventions for patients colonized with 
Staphylococcus aureus or aerobic Gram-negative bacteria. 
Most studies investigate the effectiveness of SDD and SOD 
in immunocompromised or critically ill patients [187, 188].

SDD includes topical antibiotics applied to the mouth and 
stomach, whereas in SOD, antibiotics are applied only in the 
mouth. Antimicrobial agents with poor enteral absorption 
used for SDD include COL sulphate, neomycin sulphate, 
gentamicin, and paromomycin. SDD and SOD can also be 
combined with a short course of systemic antibiotics (e.g., 
nitrofurantoin, fluoroquinolones, cotrimoxazole, fosfomycin 
or erythromycin) [15, 187]. The choice of the topical and 
systemic antimicrobial agent combinations depends on the 
resistance patterns, co-occurrence of infection, the targeted 
colonizing microorganism and institutional preferences.

As anticipated above, routine decolonization of 3GC-R-
Ent and CRE gut carriers is not recommended by the ESC-
MID–EUCIC panel [187]. In such analysis, Tacconelli et al. 
summarized the results of studies performed until August 
2017 and considered the effectiveness of the SDD measuring 
either microbiological or clinical outcome or both. However, 
we note that the analysis included 19 studies in which SDD 
was used to decolonize MDR-Ent carriers, of which only 2 
were randomized controlled trials (RCTs).

In the first RCT (2008-2010), Saidel-Odes et al. admin-
istered for 7 days an oral gel with gentamicin and COL sul-
phate (0.5 g, 4×/day) and an oral solution of gentamicin 
(80 mg, 4×/day) and COL (1 M units, 4×/day) to 20 patients 
with CR-Kp gut carriage. After 2 weeks, the rate of CR-Kp 
colonization was significantly reduced compared to the pla-
cebo arm consisting of 20 patients (61.1% vs. 16.1%, respec-
tively; P < 0.0016). A difference between the 2 arms was 
still maintained at 6 weeks, but with a non-significant differ-
ence (58.5% vs. 33.3%, respectively; P = NS) [189]. In the 
RCT of Huttner et al. (2009–2012), 54 patients (27 in each 
arm) colonized with ESBL-Ent received oral COL sulphate 
(50 mg, 4×/day) plus neomycin sulphate (250 mg, 4×/day) 
for 10 days. Twenty-eight ± 7 days after the SDD, there was 
no statistical difference regarding the persistence of ESBL-
Ent gut colonization between treatment and placebo arms 
(51.9% vs. 37.0%, respectively; P = 0.27) [190].

Although non-randomized, several studies included in the 
Tacconelli’s analysis deserve to be mentioned. In a retro-
spective cohort (2012–2015), Machuca et al. analyzed the 
clinical effect of a 14-day SDD with gentamicin (80 mg, 
4×/day) or streptomycin (80 mg, 3×/day) plus neomycin 
(40 mg, 3×/day) in 44 individuals colonized with COL-R 
KPC-Kp. The authors compared the outcome after 180 days 
with 33 controls. As a result, gentamicin use resulted in a 
lower risk of crude mortality [hazard ratios, (HR) = 0.15], 
lower risk of infection with COL-R KPC-Kp (HR = 0.86), 
and an increased microbiological success (i.e., at least 2 
negative rectal swabs after > 48 h after the completion of 
SDD; HR = 5.67). On the other hand, neomycin plus strep-
tomycin was only associated with a lower risk of mortality 
(HR = 0.22) [191]. In the retrospective study (2010–2012) 
of Lübbert et al., 14 patients colonized with KPC-2-Kp 
received a 7-day course of SDD employing oral COL sul-
phate (1 M units, 4×/day) and gentamicin (80 mg, 4×/day). 
Decolonization of KPC-2-Kp was achieved in 6/14 patients 
(43%) after a mean of 21 days, but was also observed in 
23/76 (30%) of the controls (P = 0.102). Of note, SDD treat-
ment resulted in the development of secondary resistance to 
COL (19% increase in resistance rate) and gentamicin (45% 
increase) in post-treatment isolates [192]. An increase in 
aminoglycoside-resistant Gram-negatives was also noted by 
Oostdijk et al. in 16 Dutch ICUs (2009–2013) implementing 
the SDD [193].

More recent analyses merit to be cited. In the multicenter 
RCT of de Lastours et al. (2016–2017), the risk of second-
ary resistance to COL after its implementation for the SDD 
was confirmed and the underlying molecular mechanisms 
of resistance were elucidated [194]. In a cluster-randomized 
trial (2013–2017) involving 13 European ICUs with 8665 
patients, Plantinga et al. showed that SDD (COL plus ami-
noglycosides) was associated with higher eradication and 
diminished acquisition of MDR organisms in the rectum 
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compared to the controls (HR = 1.76 and HR = 0.51 for 
3GC-R-Ent; HR = 3.17 and HR = 0.56 for CR Gram-nega-
tives, respectively) [195]. Döbele et al. assessed the impact 
of SDD of hematological patients colonized with ESBL-Ent 
on the incidence of BSI after chemotherapy. To do so, a sto-
chastic simulation model was created. The model estimated 
that decolonization prior to chemotherapy reduces the inci-
dence of ESBL-Ent BSI by up to 27%. The greatest benefit 
was estimated in high prevalence settings, whereas in low-
prevalence settings the model estimated no benefit [196].

Overall, in line with the ESCMID–EUCIC panel, we 
believe that evidence for successful SDD regimens is still 
limited, mostly because of the lack of well-designed and 
large/multicenter RCTs with long-term follow-ups. Future 
studies also need to assess the impact on secondary resist-
ance and disruption patterns in the gut microbiome.

Fecal microbiota transplantation

The fecal microbiota transplantation (FMT) was initially 
designed and implemented for the treatment of the recur-
rent Clostridioides difficile infection. It consists in the infu-
sion of liquid stool (via an enteral route, an endoscope, or 
capsules for ingestion) from a healthy individual into the gut 
of a patient who suffers from gut dysbiosis. Its mechanism 
of action is based on the establishment of a new intestinal 
microbiota community to restore normal gut function [197].

More recently, the FMT has also been shown to be use-
ful for the treatment of other intestinal pathological con-
ditions [198], including the possible eradication of coloni-
zation and recurrent infections due to different species of 
MDROs [199]. In this context, in recent years, the selection 
and screening of healthy donors together with the collec-
tion, preparation and storage of their stools underwent an 
extensive discussion to reach international standardized pro-
cedures. Among them, stool testing must include the search 
for MDROs (e.g., 3GC-R-Ent and CRE) [200]. This is essen-
tial to prevent the transmission of MDROs that could lead 
to adverse infectious events. For instance, DeFilipp et al. 
described two patients with a BSI due to ESBL-Ec after 
receiving FMT from the same donor. One of the patients 
died because of severe sepsis [201].

In 2016, Manges et  al. reviewed some clinical cases 
where the FMT was positively implemented to solve gut 
colonization with ESBL-Ent or CPE [202]. For example, a 
kidney transplant recipient with recurrent ESBL-Ec pyelone-
phritis leading to graft failure underwent FMT to be eligible 
for re-transplantation. After 1 week, the rectal culture was 
still positive for ESBL-Ec. However, a negative result was 
obtained at the second week, and subsequent rectal cultures 
remained negative during the 12-week follow-up period; 
UTIs were also not observed [203]. After the work of Man-
ges et al., more promising and similar cases were described. 

For instance, a renal transplant recipient was suffering from 
recurrent UTIs and BSIs due to an ESBL-Kp that was also 
present in the stool. After several unsatisfactory treatments 
with meropenem, FMT was implemented and ESBL-Kp was 
not isolated from both urine and fecal samples during the 
following 8 months [204].

Several small cohort studies have also been performed on 
this matter. These analyses were mainly uncontrolled and not 
randomized (summarized in [15, 199, 205]). Moreover, the 
overall results were not always promising, as speculated in 
the single case reports mentioned above. Specifically, FMT 
was successful against colonization due to MDROs in 63% of 
the case series studies with a control arm. However, a decol-
onization rate of only 33–46% was observed for MDR-Ec 
and MDR-Kp [206]. For example, during 2012-2014, 15 gut 
carriers of ESBL-Ent underwent an FMT showing success-
ful decolonization only in 3 subjects (at 1-, 2- and 4-weeks 
follow-up). Seven out of the 12 non-responders underwent a 
second FMT, but only 3 of them resulted decolonized in all 
time points (after 1-, 2-, and 4 weeks) [207]. In another mul-
ticenter prospective study (2015–2017), 8 patients colonized 
with CRE underwent FMT. As a result, 1 week and 3 months 
after the FMT, only 3 (37.5%) and 4 (50%) subjects were free 
of CRE colonization, respectively [208].

In a multicenter RCT (2016-2017), Huttner et al. evalu-
ated whether 5 days of oral SDD with COL and neomycin 
followed by FMT could eradicate intestinal carriage with 
ESBL-Ent and/or CPE. The primary outcome was the detect-
able gut carriage of these MDR-Ent by culture 35–48 days 
after randomization. Nine out of 22 (41%) patients who 
received the treatment resulted negative for ESBL-Ent/CPE, 
while in the control group were 5/17 (29%). As a result, the 
use of antibiotics plus FMT slightly decreased MDR-Ent 
carriage, but the differences were not statistically significant 
[209]. In another multicenter RCT (2016–2017), Leo et al. 
also evaluated whether oral SDD with COL and neomycin 
followed by FMT could eradicate colonization with ESBL-
Ent and/or CPE in 16 patients. As a result, 9 (56%) treated 
carriers and 3 (33.3%) out of 9 controls were considered 
decolonized 35–48 days after randomization. Metagenomic 
analyses indicated that antibiotic treatment resulted in a sig-
nificant change in microbiota composition with reduced spe-
cies richness and diversity, lower Firmicutes/Bacteroidetes 
ratio, decreased proportions of Proteobacteria and Entero-
bacteriaceae, and an increase of ARGs abundance. This 
effect was transient, with a post-FMT microbiota signifi-
cantly enriched of Bifidobacterium species and Collinsella 
aerofaciens, which likely limited the gut colonization by 
MDR-Ent. In contrast, the proportion of Enterobacteriaceae 
in the post-FMT microbiota was lower compared to the base-
line (but without statistical significance). Finally, both ESBL 
and carbapenemase genes were more abundant at baseline 
than at any later sampling point in 10 out of 16 cases [210].
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Further, authors have also attempted to understand the 
molecular mechanisms responsible for the positive imple-
mentation of FMT. In 2019–2020, Lee et al. investigated 
with 16S rRNA sequencing the dynamic changes of micro-
biota before and after the use of FMT to decolonize 10 CPE 
carriers. The rates of the decolonization were 40%, 50%, 
and 90% within 1, 3, and 5 months, respectively. A signifi-
cant alteration was observed in the gut microbiota following 
FMT, but this was different between early decolonization 
carriers (within 4 weeks) and late decolonization carriers. In 
fact, before FMT, the early decolonized patients possessed 
a higher relative abundance of Bacteroidetes and showed 
a microbiota convergence with that of their donors within 
4 weeks. Of note, the genera Hungatella was only detected in 
the late decolonization carriers. The authors concluded that 
molecular characterization of the microbiota of CPE carri-
ers could predict the outcome of FMT and also determine 
if repeated FMTs are needed [211]. In a recent prospective 
analysis (2018–2019), Haggai et al. administered oral cap-
sulized FMT for 2 days (15 capsules per day) to 13 CPE car-
riers. At 1 month, CPE eradication was successful in 9 (69%) 
patients; 10/13 participants were retested after 6 months and 
8/10 of them were negative. Shotgun metagenomic sequenc-
ing indicated that bacterial communities showed significant 
changes in both alpha- and beta-diversities for patients who 
achieved CPE eradication than those who underwent fail-
ure. Notably, in post-FMT samples, beta-diversity analysis 
identified sample clustering according to treatment outcome. 
In post-FMT samples, the abundance of Ent decreased in 
responders and increased in non-decolonized subjects. The 
post-FMT microbiota of responders was compositionally 
similar to that of donors, whereas that of non-responders 
was different and rich of ARGs [212]. In another study 
(2018), Liu et al. analyzed the longitudinal dynamics of the 
gut virome and bacteriome in 3 recipients who were suc-
cessfully decolonized from CRE (two carriers of CR-Kp and 
one with both CR-Kp and CR-Ec) with two FMTs. After 
FMTs, the gut microbiota changed greatly and resembled 
that of the donor, especially when the Ruminococcus genus 
was dominant. Furthermore, Klebsiella phages expanded 
with a concordant decrease in Klebsiella spp. and increase 
in Escherichia phages in the CR-Ec carriers. This may indi-
cate that bacteriophages brought by the FMT may play a key 
role in MDR-Ent decolonization (see next section) [213].

Overall, the currently available information regarding 
the use of the FMT to decolonize gut carriers of MDR-Ent 
indicates that this approach may have beneficial effects 
on intestinal carriers. However, as already noted by ESC-
MID–EUCIC [187] several years ago, no definite sugges-
tions can be made. This is mainly due to the limited num-
ber of studies on this matter and the lack of standardized 
protocols. Moreover, these studies have serious limitations, 
including the lack of true controls and long-term safety data 

[206]. Therefore, randomized clinical trials involving large 
sample sizes and consensus on standardized protocols are 
warranted. In this context, we note that several RCTs are 
ongoing (https:// clini caltr ials. gov/ ct2/ home).

Bacteriophages

Bacteriophages are the most abundant bacterial predators 
[14]. As evolving and self-replicating biological entities, 
they benefit from a unique nature compared to traditional 
antibacterial drugs and are now recognized as a crucial 
potential alternative in the global fight against antimicrobial 
resistance (AMR) [214, 215]. They have been used since 
the 1920s in the former Soviet Union countries and are a 
valuable prescription-free element of the standard medical 
practice in this part of the world [216]. In Western countries, 
the onset and exacerbation of the AMR crisis, combined 
with recent technological advancements, have provided a 
boost to the renaissance of phage therapy research [217].

Study reporting on their investigation to treat MDR bacte-
rial infections, either alone or in combination with antibiot-
ics, are now numerous and a great proportion of them show 
encouraging results [217]. However, scientific articles on 
their use for decolonization of intestinal carriage are less 
numerous and even rarer are studies specifically addressing 
phage-based-decolonization of MDR-Ent. A discrepancy 
partially explained by the divergences in the study of phage-
based decolonization in vivo compared with phage-based 
treatment of infections. In fact, during the latter, inflamma-
tory processes caused by the bacterial infection stimulate 
an immune response, which in turn plays a pivotal role in 
supporting phage action in clearing the infection [83, 217]. 
Notably, these host-mediated supportive proinflammatory 
responses are also involved in facilitating the clearance of 
phage-resistant mutants, which are often less virulent than 
their susceptible counterparts. In their absence, as in intes-
tinal colonization, phage-resistant mutants often rapidly 
emerge after treatment [218].

In this regard, we can highlight the study of Feng et al. 
[218]. In their murine model, a stable colonization with an 
ST11 CR-Kp was established with a continuous administra-
tion of meropenem in drinking water as pre-treatment for 
3 days. The targeted strain was then challenged with two 
lytic phages, alone or in combination, isolated and char-
acterized in the same study. Phage-resistant mutants were 
characterized by reduced virulence, diminished capsule 
production, and no change in antimicrobial susceptibility. 
In this case, phage resistance mechanisms were attributed 
to capsule polysaccharides and exopolysaccharide coding 
genes. Moreover, the combination of the two phages (vs. 
monophage administration) showed a higher and faster 
reduction in CR-Kp count with no development of adverse 
events. Notably, the two phages were not administered 

https://clinicaltrials.gov/ct2/home
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through the same route. One was given orally, while the 
other—not detectable in the feces—via enema, possibly 
introducing a methodological bias. Additionally, in a clini-
cal situation where multiple CR-Kp strains colonize the 
intestine, a more complex cocktail may be necessary. On 
this regard, multiple rounds of phage isolation from bacte-
rial phage-resistant mutants would need to be considered to 
maximize the targeted lytic activity. These considerations 
as well as further limitations were extensively discussed by 
the authors [218]. Noteworthy, we also observed the emer-
gence of phage-resistant mutants using a bioreactor system 
simulating an intestinal colonization with a ST131 CTX-
M-15-Ec challenged with a phage cocktail. Interestingly, 
using the in vitro continuous culture system, we observed 
an individual-related tendency in the emergence of phage 
resistance, which might depend on the particular flora of 
the individual [219].

Researchers from the Institute Pasteur focused on the 
impact of phage-based decolonization on the intestinal 
flora [220]. In 2016, they reported encouraging results 
on the in vitro and in vivo efficacy of three lytic bacterio-
phages against an antibiotic-resistant uropathogenic Ec (AR-
UPEC) strain. Bacteriophages, isolated and characterized 
in the same study, were used as both single therapy and as 
a cocktail in an experimental murine model. A continuous 
antibiotic pressure was not required in order to maintain 
high levels of colonization (the antibiotic was removed 
from drinking water 3 days before treatment start). Gut car-
riage levels and the impact of phage treatment vs. antibiotic 
treatment on the microbiota composition defined the two 
study outcomes. Seven days after phage treatment start, 
the AR-UPEC strain showed a distinct decrease in differ-
ent gut sections, and the same results could be replicated 
with a 100-fold higher dose in only 4 days. Notably, in this 
model, the level of intestinal carriage was higher than the 
ones described in humans colonized with the same strain 
(i.e., possible weaker efficacy when administered in a clini-
cal setting). The authors also observed that the bacterial 
count and phage titre decreased at the same rate, providing 
further evidence for phage’s self-clearing property in the 
absence of the host. In regard to the effects on microbiota 
composition, antibiotic treatment disturbed, at a much higher 
level, its diversity (based on 16S rRNA sequence analyses), 
confirming the valuable, highly targeted effects of some bac-
teriophages [220]. Moreover, they observed an increase in 
the genus Barnesiella after phage treatment, which was pre-
viously associated with a decrease in vancomycin-resistant 
Enterococcus faecium colonization [221]. This observation 
opens the discussion—not deepened in this review—on the 
implementation of phages to restore the healthy microbiota 
as a microbiome-based decolonization approach as with 
prebiotics, probiotics or symbiotics (i.e., strengthening colo-
nization resistance) [220, 222–224].

On this regard, Wang et  al. recently investigated the 
therapeutic effect of the combined administration of phage-
cocktail and FTM to treat Salmonella enterica Typhimu-
rium-induced mouse colitis, compared to phage treatment 
and to FMT alone [225]. The cocktail was composed of 2 
phages lytic for serotypes O4 and O9 isolated from sewage 
and yak feces from Tibet and belonging to the Siphoviridae 
family. The effect of the combined therapy was evaluated 
by gavaging fecal matter (or phosphate buffered saline for 
the control group) 3 h after a single dose of phage cocktail, 
after which FMT was given at 12, 24, and 36 h after infec-
tion. The results clearly showed that the combined therapy 
phage-FMT was superior to both single treatments. Nota-
bly, after 72 h, Salmonella Typhimurium was completely 
eradicated, clinical symptoms of colitis and pathological 
damages reduced significantly, and the intestinal barrier and 
short-chain fatty acid levels recovered. Moreover, analysis 
of the species richness and diversity showed a shift towards 
a healthy microbial diversity, including the genus Lactoba-
cillus. This latter has been reported to play a pivotal role 
in reducing inflammation during colitis in mice, and the 
prebiotic effect of its increase may be strongly related to 
treatment success. Noteworthy, prior to implementing this 
study design, the authors attempted to treat the same mouse 
model first exclusively with the two combined phages and 
then exclusively with FMT. In the first case, they were able 
to show an initial reduction of bacterial count in the colon, 
but without completely eradicating the pathogenic strain in 
the long-term and without completely restoring the com-
plex diversity of the intestinal microbiota. In a follow-up 
investigation, the authors attempted to use FMT as a sin-
gle treatment, but again without success. Bacterial counts 
in the colon remained high, as did inflammatory damage, 
and no significant recovery of the intestinal microbiota was 
observed. These initial results, together with the outcome 
of the combined therapy, suggest that both roles—(i) elimi-
nation of the pathogen by the phages and (ii) support in 
restoring the intestinal barrier and microbiota composition 
by FMT—are necessary for a successful therapy [225].

The challenge of phage therapy as sole treatment strategy 
was also highlighted by Javaudin et al. in 2021 [226]. In this 
French study, the authors explored the efficacy of 4 lytic bac-
teriophages against an ESBL- and OXA-48-Ec in two dis-
tinct mouse models of intestinal colonization. Phages were 
first isolated and characterized, then administered orally and 
rectally as microencapsulated and non-microencapsulated 
particles. Colonization models were attained by continu-
ous administration of either amoxicillin or pantoprazole in 
drinking water, with the latter additionally combined with 
amoxicillin for the first 8 days. In the first model, phage 
treatment only transiently reduced the count of the targeted 
Ec strain 9 days after treatment start, while in the second, 
the targeted strain was not altered at all by the intervention. 
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The use of encapsulated phages did not modify the targeted 
bacterial count in either case [226].

In the clinic, phage therapy can currently only be used as 
extrema ratio treatment and is therefore mostly administered 
together with several antibiotics, posing a major problem in 
the data interpretation. With special regard to decolonization 
from intestinal carriage with MDR-Ent, we can report only 
on two published case-studies. The first, published in 2019 
by Kuipers et al. in The Netherlands and the second in 2020 
by Corbellino et al. in Italy [227, 228].

Kuipers et al. reported the successful combined therapy 
of phages plus meropenem in a 58-year-old renal transplant 
patient with recurrent UTIs due to an ESBL-Kp and an 
epididymitis [228]. Although susceptible to carbapenems 
in vitro, the strains could not be eradicated with repeated 
treatment courses. A urine sample from the patient was sent 
to the Eliava Institute of Bacteriophages (Tbilisi, Georgia), 
which in turn sent a personalized phage cocktail for oral 
ingestion and bladder irrigation. Detailed information on 
the content of the cocktail, including dose and endotoxin 
concentration, was not provided by the Eliava Institute. 
Upon delivery, the lytic activity of the cocktail against the 
ESBL-Kp strain was tested by the authors. Phage treatment 
was then performed by the patient (i.e., bladder irrigation 
via catheter). The urethritis symptoms diminished within 
the first days of treatment, rapidly disappeared, and did not 
recur. Urine cultures remained negative for ESBL-Kp (tested 
for up to 14 months), and no adverse events were reported 
[228]. Notably, the patient’s epididymitis was treated in par-
allel with meropenem for 6 weeks, unfortunately hampering 
the extrapolation of data on phage effectiveness as a sole 
treatment strategy.

Corbellino et al. administered a personalized phage treat-
ment to a 57-year-old patient with a high risk of recurrent 
invasive infections due to a long-standing multi-site colo-
nization (i.e., in the gastrointestinal and urinary tract, as 
well as in a permanent ureteral stent) with a ST307 KPC-
3-Kp [227]. Antibiotic cycles with ceftazidime-avibactam 
(CZA) (still active toward the MDR-Kp isolates) showed to 
be unsuccessful. Five Kp isolates from urine, rectal swab 
and ureteral stent were sent to the Eliava Institute. There, 
a personalized cocktail of lytic phages was prepared over 
9 weeks. The patient collected the preparation in person 
and received instructions for use. The treatment included a 
3-week course of the cocktail by oral and intra-rectal routes. 
Two weeks after treatment, the ureteral stent was replaced 
and remained MDR-Kp free. The strain was also not detected 
in the feces, rectal swabs, and urine. Attempts to detect car-
bapenemase genes from rectal swabs by molecular methods 
also failed. Notably, following phage therapy, 4 further com-
plicated UTIs and one sepsis occurred. However, in all these 
5 distinct episodes, the KPC-3-Kp never reappeared. Despite 
these promising results, the authors remained cautious about 

judging the cause of MDR-Kp eradication. For instance, they 
pointed out that because of the half-life of CZA combined 
with reduced creatinine clearance (due to the patient’s soli-
tary kidney), a possible synergy between phages and the 
antibiotic cannot be excluded. In fact, although phages were 
given in this case as the only treatment, CZA concentration 
in urine and blood was not measured upon phage treatment 
start [227]. Moreover, spontaneous decolonization cannot 
be excluded (see above).

In conclusion, the clinical application of phages, includ-
ing personalized phage therapy, still needs to overcome a 
number of concerns and technical barriers to be considered 
an effective decolonization strategy [227]. Particularly, high-
quality data on safety and efficacy from RCTs are crucial 
to determine their microbiological, epidemiological, and 
clinical outcomes [214, 227, 229]. This will include a better 
assessment of the development of phage resistance, their 
possible transfer of undesirable genes, their interaction with 
our immune system and microbiome [214, 217, 230–233]. 
Lastly, complex pharmaceutical regulatory requirements 
must be clarified [233]. In particular, obstacles to their pro-
duction and use in the European Union and the UK must be 
overcome through new regulations; furthermore, incentives 
must be created for pharmaceutical companies to increase 
their interest in this still uncertain area [214]. Notably, 
personalized phage therapy still falls into the category of 
new infection control measures, which entails a long and 
complicated approval process [234]. Only when these chal-
lenges will be consistently addressed, phages will be able 
to contribute in a major way to the global fight against the 
emergence and selection of new resistant bacteria, including 
their use as a valuable, well-studied and safe decolonization 
alternative [219, 227, 233].

Probiotics

Probiotics are food supplements containing alive bacteria or 
fungi that are intended to be ingested and reach the intestinal 
tract (mainly the colon) intact. Most probiotics derive from 
fermented foods (e.g., yogurt, cheese) that contain a large 
quantity of Lactobacillales able to replace the initial high 
concentration of Ent in these nutrients thanks to the produc-
tion of lactic acid. Moreover, probiotic organisms can com-
pete with intestinal pathogens by excreting toxins, antimi-
crobial compounds (e.g., short-chain fatty acids, microcins) 
and adherence factors, potentiating the immune system and 
reinforcing mucosa production [235, 236]. Therefore, probi-
otics could be implemented as food additives to eradicate the 
pathogenic and/or MDR-Ent colonizing the intestinal tract in 
humans and animals. This hypothesis is supported primarily 
by numerous studies in animal models (e.g., mice) in which 
the oral administration of Bifidobacterium bifidum, Lacto-
bacillus rhamnosus, Lactobacillus plantarum, Lactobacillus 
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fermentum, or Bacillus coagulans had favorable effects on 
the elimination of pathogenic Ent. Furthermore, probiotics 
have been positively implemented to prevent and mitigate 
gut colonization with Ent (including MDR-Ent) in food ani-
mal breeding (e.g., broiler) [237].

In humans, the most commonly administered probiotics 
used to eradicate the gut carriage of MDR-Ent contain lyo-
philized Saccharomyces boulardii, Lactobacillus, or Bifido-
bacterium species (individually or in various combinations) 
[236]. For instance, in the study of Ramos-Ramos et al. 
(2010–2014), 8 long-term carriers of OXA-48-Ent received 
for 3 weeks a daily oral administration of a prebiotic (lac-
titol;  Emportal®) plus a probiotic (B. bifidum and Lacto-
bacillus acidophilus;  Infloran®). During the study period, 
all patients showed a relative reduction on the OXA-48-Ent 
intestinal loads. However, at weeks 3, 6, and 9, only 4, 6, and 
3 patients had negative OXA-48-Ent cultures, respectively 
[238]. In an RCT (2017–2019), Ljungquist et al. adminis-
tered twice a day for 2 months a probiotic mixture of 8 differ-
ent living bacteria (Vivomixx®) to 40 outpatients who were 
colonized with ESBL-Ent for at least 3 months. At the end 
of the trial, only 5 (12.5%) of the patients had achieved suc-
cessful eradication of ESBL-Ent (i.e., 3 consecutive negative 
cultures at 3, 6, and 12 months follow-up) [239]. In a LTCF, 
Zollner-Schwetz et al. evaluated the impact of the multispe-
cies probiotic OMNi-BiOTiC® 10AAD on the intestinal and 
inguinal skin colonization due to MDR Gram-negatives in 
12 patients (including 8 with Ec and 3 with Klebsiella spp.). 
At the end of probiotic treatment (week 12), 9/12 patients 
were still colonized; furthermore, at weeks 20, 24, and 36, 
patients colonized were 5/12, 5/12, and 8/12, respectively. 
Analysis of the fecal microbiome at the beginning and at the 
end of treatment displayed statistically significant growth of 
the genus Enterococcus [240].

Probiotics have also shown their inability to prevent the 
intestinal colonization with MDR-Ent. For instance, in the 
RCT by Wieërs et al. (2017–2019), 120 elderly patients who 
received amoxicillin-clavulanate for 10 days were treated 
for 30 days with placebo, S. boulardii CNCM I-745® or a 
probiotic mixture containing S. boulardii, L. acidophilus, 
Lacticaseibacillus paracasei, and Bifidobacterium lac-
tis (Bactiol duo®). The prevalence of colonization with 
ESBL-Ent increased at the end of the antibiotic treatment 
in the placebo, Saccharomyces and probiotic mixture arms 
from 10.3%, 7.7%, and 23.1% to 15.4%, 16.7%, and 27.8%, 
respectively (P = NS). The colonization rates were normal-
ized to the initial values ~ 61 days after the first dose of anti-
biotics (11.1%, 8.0%, and 19.2%, respectively) indicating no 
significant differences in the 3 arms [241]. In another RCT 
(2014–2017), Danish adults traveling to India for 10–28 days 
received either L. rhamnosus (Dicoflor®) or no probiotics 
during their overall journey (both arms, n = 30). As a result, 
preventive treatment with the probiotic had no effect on the 

occurrence of ESBL-Ent colonization, with the incidence 
being the same in both randomization groups [242].

In conclusion, in contrast to data from animal studies, 
probiotic supplements appear to only reduce abundance, but 
not to completely eradicate MDR-Ent. We also emphasize 
that although the use of probiotics is well tolerated, it also 
carries certain risks [236]. In fact, some patients with under-
lying diseases (e.g., certain inflammatory bowel diseases), 
immunocompromised, or with predisposing conditions (e.g., 
central lines and other permanent indwelling catheters) were 
reported to develop a Lactobacillus spp. BSI and/or endocar-
ditis after receiving a probiotic containing these organisms 
(e.g., [243–245]).

Siderophore‑microcins

Microcins (Mcc) are low molecular mass (< 10 kDa) anti-
microbial peptides (AMPs), usually secreted by Ent (mainly 
Ec), that have the capacity to inhibit other bacteria. In some 
cases, the AMP is post-translationally modified by the link-
age of a siderophore moiety derived from enterobactin. 
These siderophore-Mcc can enter and kill bacteria by mim-
icking iron–siderophore complexes as a “trojan horse.” So 
far, four siderophore-Mcc have been described: MccE492, 
MccH47, MccI47, and MccM. The MccE492 is produced by 
Kp, while MccI47 is found in Ec. Both MccH47 and MccM 
have been reported in phylogroup B2 Ec. Overall, Mcc have 
a role in microbial competitions within the intestinal micro-
flora by exerting potent antibacterial activity against phylo-
genetically related bacteria [246, 247]. Basically, this is the 
strategy that pathogenic Ent use to overcome the autoch-
thonous gut flora and to colonize the gastro-intestinal tract. 
For instance, UPEC strains (phylogroup B2) chromosomally 
produce MccH47 and MccM to emerge and dominate in 
the gut as a prerequisite to generate subsequent UTIs [246].

On the other hand, production of Mcc may in turn be 
implemented as a therapeutic option against the pathogenic 
Ent. For example, the oral preparation of strain Ec Nissle 1917 
is historically used as a probiotic for the treatment of bacte-
rial intestinal diseases. In a mouse model, it was shown that 
administration of strain Ec Nissle 1917 was able to limit the 
growth of adherent-invasive Ec and Salmonella enterica in the 
gut, whereas its mutant (not secreting MccH47 and MccM) 
was unable to do so [248]. In a recent study, Mortzfeld et al. 
purified the siderophore MccI47 and showed its potent in vitro 
activity against MDR-Ent, including ESBL-Ec and KPC-Kp 
strains. More importantly, they engineered a Nissle 1917 Ec 
strain with a plasmid expressing MccI47. Then, the recombi-
nant Ec was administered to mice, which showed the capacity 
to significantly reduce the amount of KPC-Kp colonizing the 
gut [249]. In another study, the ability of a bacteriophage cock-
tail and a genetically modified Ec strain Nissle 1917 producing 
Mcc-C7 (probiotic) to reduce gut colonization due to an ST131 
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Ec in a murine model was evaluated. ST131 Ec was adminis-
tered on day 0, while treatment was administered on days 0, 3, 
and 5. When administered together, the two strategies showed 
synergistic activity against ST131. Specifically, fecal count was 
significantly reduced on days 1, 4, and 7; however, on day 10, 
the count for ST131 was again comparable to the control [250].

Overall, these preliminary studies demonstrate the poten-
tial of certain microcins for modulating the gut flora. This 
is a fundamental step towards the use of engineered probi-
otics and live biotherapeutic products aimed to selectively 
remove MDROs from the intestinal tract. Investigations into 
the optimization, scale-up, and manufacturing of these next-
generation therapeutic agents will be needed before entering 
human trials.

CRISPR‑Cas‑like methods (microbiome editing)

CRISPR-Cas-based (clustered regularly interspaced short 
palindromic repeats) technologies are attractive choices for 
the development of next-generation antimicrobials [251]. 
Since its revolutionary conception, CRISPR-Cas-based 
technologies have found their way to the field of AMR. 
Specifically, various efforts to fight resistant organisms with 
CRISPR-Cas technology have been proposed, which take 
advantage of unique delivery systems [252]. For example, 
CRIRPS-Cas technology can be advantageous as it can be 
coupled with specific delivery systems to target specific bac-
terial species (e.g., delivery of the CRISPR-Cas system to 
Ec using bacteriophages or conjugative plasmids), and to 
specifically target ARGs once inside a host bacterium (e.g., 
CRISPR-Cas targeting the region(s) of an ARG) [252].

In vivo targeting of Ec and other MDR-Ent has been 
conducted in mouse models with bacteriophage M13 and 
conjugative plasmids delivery systems [253, 254]. Similarly, 
both systems have been used as well to target enterohemor-
rhagic Ec in the Galleria mellonella insect model [255]. In 
other insect models, CRISPR-Cas systems have been used to 
target, for example, the ompA gene of Cedecea neteri (rare 
Gram-negative) in Aedes aegypti (yellow fever mosquito) 
[256], and an adhesion gene in Snodgrassella alvi important 
for the gut colonization in bees [257].

A precise methodology to deliver the CRIPR-Cas system 
and to target specific ARGs (or other sequences; e.g., replicon 
sequence sites) takes advantage of highly conjugative plas-
mids (i.e., suicide plasmids). This approach has been used 
in vitro, for example, by Reuter et al. to target blaOXA-48 and 
tra genes important for replication in Ec and other Ent species 
[258]. In a similar approach, He et al. showed that this system 
can be used to simultaneously target IncX4/I2/HI2 plasmids 
and ARGs such as mcr-1, blaKPC-2, and blaNDM-5 in Ec [259]. 
In contrast, other studies have developed CRISPR-Cas sys-
tems to successfully target in Ec only ARGs such as ESBL 

(e.g., blaCTX-M-14), carbapenemase (blaNDM-5) and colistin-
resistance (mcr-1) genes [259–263].

It is clear that the use of CRISPR-Cas systems for the tar-
geted decolonization of MDR-Ent is promising. However, 
before its implementation in humans, further research using 
in vivo models is needed to address the main CRISPR-Cas 
problems such as de novo resistance and off-target effects [264].

The need of in vivo models

As discussed above, numerous alternatives could be imple-
mented in the near future to attempt decolonizing intesti-
nal carriers of MDR-Ent. Some of these approaches have 
already shown promising results in in vitro experiments that 
could potentially have a significant clinical impact in human 
medicine (e.g., the CRISPR-Cas approach, [252]). However, 
these findings remain to be validated in preclinical in vivo 
models before they can be used in human clinical trials.

The in vivo mouse model has so far represented the 
gold-standard to study several aspects linked to the intes-
tinal colonization due to Ent pathogens (e.g., [218, 225, 
226, 249]). Nevertheless, though this approach exhibits 
several advantages—such as the gastrointestinal similari-
ties to humans—many strong limitations can be found in 
terms of cost, societal, ethical, and logistical issues, which 
can all together generate very long and laborious inves-
tigation periods [265]. Therefore, numerous alternative 
models have been suggested. Among the most prominent 
there are invertebrates (e.g., Drosophila melanogaster, 
Caenorhabditis elegans, G. mellonella) and Danio rerio 
(Zebrafish), which could provide an innovative, suitable, 
cost-effective, and highly scalable substitute for the mouse 
[265]. However, only in G. mellonella and Zebrafish, a gut 
colonization model with MDR-Ent has been tried so far 
[266]. In addition, such alternative models do not possess 
a natural intestinal microbiota similar to that of mammals 
[267, 268].

Overall, new in vivo models are needed to perform 
screening and large-scale investigations aimed to study 
new approaches to decolonize the gut carriers of MDR-
Ent. In this context, we emphasize that numerous funding 
calls focusing on the advancement of the 3R (Replace-
ment, Reduction and Refinement) research have been 
recently launched worldwide [269]. In our laboratory, 
we are studying and developing a new in vivo model of 
MDR-Ent intestinal colonization using Zophobas morio 
larvae (https:// data. snf. ch/ grants/ grant/ 206400), follow-
ing a 3R call in Switzerland. Since these larvae possess a 
human-like microbiota [270, 271], this model could offer 
numerous advantages over the murine model (e.g., fewer 
ethical issues, lower costs, faster results, and no need for 
an animal experimentation facility).

https://data.snf.ch/grants/grant/206400
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Conclusions

Nowadays, many people in hospital and in the community 
may be colonized with MDR-Ent at the intestinal level. Iden-
tification of such at-risk people is not a particular problem, 
especially in high-income countries. Indeed, many valid and 
rapid diagnostic methods have been developed, and both risk 
factors and predisposing conditions for colonization are now 
well known. In contrast, effective strategies to eradicate MDR-
Ent from the gut are not yet available. Both SDD and FMT 
may have some beneficial effects, but further RCTs considering 
also their combination are needed. In addition, the alterna-
tive and new decolonization approaches have been evaluated 
only in vitro or, more rarely, in murine models (mostly for 
bacteriophages).

We believe that future research should focus on the devel-
opment of novel decolonization strategies that could be used 
alone or as a complement to others (e.g., in conjunction with 
FMT). Their potential should first be evaluated with reliable 
alternatives and large-scale in vivo model studies before 
being tested in human clinical trials. The development of 
these new in vivo models will be a key aspect in this field in 
the near future.
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