Skip to main content
Log in

Increasing usage of chlorhexidine in health care settings: blessing or curse? A narrative review of the risk of chlorhexidine resistance and the implications for infection prevention and control

  • Review
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Chlorhexidine digluconate (CHG) is an antiseptic frequently used in hospitals to prevent healthcare-related infections. It is used in different formulations for skin antisepsis, oral care, patient bathing, and hand hygiene. Also, CHG impregnated vascular catheters and wound dressings contribute to increased exposure of hospital germs to this biocide. In the last decade, concerns are rising about decreasing susceptibility of microorganisms to CHG and its potential cross-resistance with antibiotics. This study reviewed the published data regarding the evidence of reduced CHG susceptibility, the cross-resistance with antibiotics, and the implications for infection control for S. aureus, coagulase-negative staphylococci, E. coli, K. pneumoniae, and P. aeruginosa. Despite incongruity in definitions of “resistance,” increased CHG minimal inhibitory values of these pathogens have been described, and different mutations encoding for CHG efflux pumps have been identified. Clinical relevance of species with reduced susceptibility to CHG is debatable and cross-resistance with antibiotics remains controversial. However, some studies link the increased usage of CHG to multidrug resistance, and the potential cross-resistance with colistin for K. pneumoniae is of major concern. More research in this matter is necessary. For infection control, it is advisable to use CHG applications only for indications with a clear patient benefit. It is important to follow manufacturer’s instructions, and exposure of microorganisms to sub-lethal CHG concentrations should be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kampf G (2016) Acquired resistance to chlorhexidine—is it time to establish an ‘antiseptic stewardship’ initiative? J Hosp Infect 94(3):213–227

    Article  CAS  Google Scholar 

  2. Horner C, Mawer D, Wilcox M (2012) Reduced susceptibility to chlorhexidine in staphylococci: is it increasing and does it matter? J Antimicrob Chemother 67(11):2547–2559. https://doi.org/10.1093/jac/dks284

    Article  CAS  PubMed  Google Scholar 

  3. WHO (2009) WHO guidelines on hand hygiene in health care. First global patient safety challenge - clean care is safer care. WHO, Geneva

  4. Williamson DA, Carter GP, Howden BP (2017) Current and emerging topical antibacterials and antiseptics: agents, action, and resistance patterns. Clin Microbiol Rev 30(3):827–860

    Article  CAS  Google Scholar 

  5. Ullman AJ, Cooke ML, Mitchell M, Lin F, New K, Long DA, Mihala G, Rickard CM (2015) Dressings and securement devices for central venous catheters (CVC). Cochrane Database Syst Rev 2015(9):CD010367. https://doi.org/10.1002/14651858.CD010367.pub2

    Article  PubMed Central  Google Scholar 

  6. Weber DJ, Rutala WA, Sickbert-Bennett EE (2007) Outbreaks associated with contaminated antiseptics and disinfectants. Antimicrob Agents Chemother 51(12):4217–4224. https://doi.org/10.1128/AAC.00138-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Russell AD (2003) Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations. Lancet Infect Dis 3(12):794–803. https://doi.org/10.1016/s1473-3099(03)00833-8

    Article  CAS  PubMed  Google Scholar 

  8. Morrissey I, Oggioni MR, Knight D, Curiao T, Coque T, Kalkanci A, Martinez JL (2014) Evaluation of epidemiological cut-off values indicates that biocide resistant subpopulations are uncommon in natural isolates of clinically-relevant microorganisms. PLoS ONE 9(1):e86669. https://doi.org/10.1371/journal.pone.0086669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. (EUCAST) ECoAST (2019) New definitions of S, I and R from 2019. European Society of Clinical Microbiology and Infectious Diseases, http://www.eucast.org/newsiandr/

  10. Smith K, Gemmell CG, Hunter IS (2008) The association between biocide tolerance and the presence or absence of qac genes among hospital-acquired and community-acquired MRSA isolates. J Antimicrob Chemother 61(1):78–84. https://doi.org/10.1093/jac/dkm395

    Article  CAS  PubMed  Google Scholar 

  11. Munoz-Gallego I, Infiesta L, Viedma E, Perez-Montarelo D, Chaves F (2016) Chlorhexidine and mupirocin susceptibilities in methicillin-resistant Staphylococcus aureus isolates from bacteraemia and nasal colonisation. J Glob Antimicrob Resist 4:65–69. https://doi.org/10.1016/j.jgar.2015.11.005

    Article  PubMed  Google Scholar 

  12. Sheng WH, Wang JT, Lauderdale TL, Weng CM, Chen D, Chang SC (2009) Epidemiology and susceptibilities of methicillin-resistant Staphylococcus aureus in Taiwan: emphasis on chlorhexidine susceptibility. Diagn Microbiol Infect Dis 63(3):309–313. https://doi.org/10.1016/j.diagmicrobio.2008.11.014

    Article  CAS  PubMed  Google Scholar 

  13. Wang JT, Sheng WH, Wang JL, Chen D, Chen ML, Chen YC, Chang SC (2008) Longitudinal analysis of chlorhexidine susceptibilities of nosocomial methicillin-resistant Staphylococcus aureus isolates at a teaching hospital in Taiwan. J Antimicrob Chemother 62(3):514–517. https://doi.org/10.1093/jac/dkn208

    Article  CAS  PubMed  Google Scholar 

  14. Mayer S, Boos M, Beyer A, Fluit AC, Schmitz FJ (2001) Distribution of the antiseptic resistance genes qacA, qacB and qacC in 497 methicillin-resistant and -susceptible European isolates of Staphylococcus aureus. J Antimicrob Chemother 47(6):896–897. https://doi.org/10.1093/jac/47.6.896

    Article  CAS  PubMed  Google Scholar 

  15. Zhang M, O’Donoghue MM, Ito T, Hiramatsu K, Boost MV (2011) Prevalence of antiseptic-resistance genes in Staphylococcus aureus and coagulase-negative staphylococci colonising nurses and the general population in Hong Kong. J Hosp Infect 78(2):113–117. https://doi.org/10.1016/j.jhin.2011.02.018

    Article  CAS  PubMed  Google Scholar 

  16. Ho CM, Li CY, Ho MW, Lin CY, Liu SH, Lu JJ (2012) High rate of qacA- and qacB-positive methicillin-resistant Staphylococcus aureus isolates from chlorhexidine-impregnated catheter-related bloodstream infections. Antimicrob Agents Chemother 56(11):5693–5697. https://doi.org/10.1128/aac.00761-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Taheri N, Ardebili A, Amouzandeh-Nobaveh A, Ghaznavi-Rad E (2016) Frequency of antiseptic resistance among Staphylococcus aureus and coagulase-negative Staphylococci isolated from a university hospital in Central Iran. Oman Med J 31(6):426–432. https://doi.org/10.5001/omj.2016.86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hayden MK, Lolans K, Haffenreffer K, Avery TR, Kleinman K, Li H, Kaganov RE, Lankiewicz J, Moody J, Septimus E, Weinstein RA, Hickok J, Jernigan J, Perlin JB, Platt R, Huang SS (2016) Chlorhexidine and mupirocin susceptibility of methicillin-resistant Staphylococcus aureus isolates in the REDUCE-MRSA Trial. J Clin Microbiol 54(11):2735–2742. https://doi.org/10.1128/jcm.01444-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hijazi K, Mukhopadhya I, Abbott F, Milne K, Al-Jabri ZJ, Oggioni MR, Gould IM (2016) Susceptibility to chlorhexidine amongst multidrug-resistant clinical isolates of Staphylococcus epidermidis from bloodstream infections. Int J Antimicrob Agents 48(1):86–90. https://doi.org/10.1016/j.ijantimicag.2016.04.015

    Article  CAS  PubMed  Google Scholar 

  20. Hughes C, Ferguson J (2017) Phenotypic chlorhexidine and triclosan susceptibility in clinical Staphylococcus aureus isolates in Australia. Pathology 49(6):633–637. https://doi.org/10.1016/j.pathol.2017.05.008

    Article  CAS  PubMed  Google Scholar 

  21. Kernberger-Fischer IA, Krischek C, Strommenger B, Fiegen U, Beyerbach M, Kreienbrock L, Klein G, Kehrenberg C (2018) Susceptibility of methicillin-resistant and -susceptible Staphylococcus aureus isolates of various clonal lineages from Germany to eight biocides. Appl Environ Microbiol 84(13):3004. https://doi.org/10.1128/aem.00799-18

    Article  CAS  Google Scholar 

  22. Vali L, Dashti AA, Mathew F, Udo EE (2017) Characterization of heterogeneous MRSA and MSSA with reduced susceptibility to chlorhexidine in Kuwaiti hospitals. Front Microbiol 8:1359

    Article  Google Scholar 

  23. do Vale BCM, Nogueira AG, Cidral TA, Lopes MCS, de Melo MCN, (2019) Decreased susceptibility to chlorhexidine and distribution of qacA/B genes among coagulase-negative Staphylococcus clinical samples. BMC Infect Dis 19(1):199

    Article  Google Scholar 

  24. do Vale BCM, Nogueira AG, Cidral TA, Lopes MCS, de Melo MCN, (2019) Decreased susceptibility to chlorhexidine and distribution of qacA/B genes among coagulase-negative Staphylococcus clinical samples. BMC Infect Dis 19(1):199. https://doi.org/10.1186/s12879-019-3823-8

    Article  Google Scholar 

  25. Deus D, Krischek C, Pfeifer Y, Sharifi AR, Fiegen U, Reich F, Klein G, Kehrenberg C (2017) Comparative analysis of the susceptibility to biocides and heavy metals of extended-spectrum beta-lactamase-producing Escherichia coli isolates of human and avian origin. Germany Diagn Microbiol Infect Dis 88(1):88–92. https://doi.org/10.1016/j.diagmicrobio.2017.01.023

    Article  CAS  PubMed  Google Scholar 

  26. Abuzaid A, Hamouda A, Amyes SG (2012) Klebsiella pneumoniae susceptibility to biocides and its association with cepA, qacDeltaE and qacE efflux pump genes and antibiotic resistance. J Hosp Infect 81(2):87–91. https://doi.org/10.1016/j.jhin.2012.03.003

    Article  CAS  PubMed  Google Scholar 

  27. Wand ME, Bock LJ, Bonney LC, Sutton JM (2017) Mechanisms of increased resistance to chlorhexidine and cross-resistance to colistin following exposure of Klebsiella pneumoniae clinical isolates to chlorhexidine. Antimicrob Agents Chemother 61(1):e01162-16. https://doi.org/10.1128/aac.01162-16

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Zhao Y, Xu C, Zhang X, Li J, Dong G, Cao J, Zhou T (2019) Chlorhexidine exposure of clinical Klebsiella pneumoniae strains leads to acquired resistance to this disinfectant and to colistin. Int J Antimicrob Agents 53(6):864–867. https://doi.org/10.1016/j.ijantimicag.2019.02.012

    Article  CAS  PubMed  Google Scholar 

  29. Naparstek L, Carmeli Y, Chmelnitsky I, Banin E, Navon-Venezia S (2012) Reduced susceptibility to chlorhexidine among extremely-drug-resistant strains of Klebsiella pneumoniae. J Hosp Infect 81(1):15–19. https://doi.org/10.1016/j.jhin.2012.02.007

    Article  CAS  PubMed  Google Scholar 

  30. Vijayakumar R, Sandle T, Al-Aboody MS, AlFonaisan MK, Alturaiki W, Mickymaray S, Premanathan M, Alsagaby SA (2018) Distribution of biocide resistant genes and biocides susceptibility in multidrug-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii—a first report from the Kingdom of Saudi Arabia. J Infect Public Health 11(6):812–816. https://doi.org/10.1016/j.jiph.2018.05.011

    Article  PubMed  Google Scholar 

  31. Nakahara H, Kozukue H (1982) Isolation of chlorhexidine-resistant Pseudomonas aeruginosa from clinical lesions. J Clin Microbiol 15(1):166–168

    Article  CAS  Google Scholar 

  32. Stickler DJ, Thomas B, Chawla JC (1981) Antiseptic and antibiotic resistance in gram-negative bacteria causing urinary tract infection in spinal cord injured patients. Paraplegia 19(1):50–58

    CAS  PubMed  Google Scholar 

  33. Stickler DJ (2002) Susceptibility of antibiotic-resistant gram-negative bacteria to biocides: a perspective from the study of catheter biofilms. Symp Ser Soc Appl Microbiol 31:163s–170s

    Article  CAS  Google Scholar 

  34. Morita Y, Murata T, Mima T, Shiota S, Kuroda T, Mizushima T, Gotoh N, Nishino T, Tsuchiya T (2003) Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1. J Antimicrob Chemother 51(4):991–994. https://doi.org/10.1093/jac/dkg173

    Article  CAS  PubMed  Google Scholar 

  35. Koljalg S, Naaber P, Mikelsaar M (2002) Antibiotic resistance as an indicator of bacterial chlorhexidine susceptibility. J Hosp Infect 51(2):106–113. https://doi.org/10.1053/jhin.2002.1204

    Article  CAS  PubMed  Google Scholar 

  36. Schlett CD, Millar EV, Crawford KB, Cui T, Lanier JB, Tribble DR, Ellis MW (2014) Prevalence of chlorhexidine-resistant methicillin-resistant Staphylococcus aureus following prolonged exposure. Antimicrob Agents Chemother 58(8):4404–4410. https://doi.org/10.1128/aac.02419-14

    Article  PubMed  PubMed Central  Google Scholar 

  37. Johnson RC, Schlett CD, Crawford K, Lanier JB, Merrell DS, Ellis MW (2015) Recurrent methicillin-resistant Staphylococcus aureus cutaneous abscesses and selection of reduced chlorhexidine susceptibility during chlorhexidine use. J Clin Microbiol 53(11):3677–3682. https://doi.org/10.1128/jcm.01771-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wesgate R, Grasha P, Maillard JY (2016) Use of a predictive protocol to measure the antimicrobial resistance risks associated with biocidal product usage. Am J Infect Control 44(4):458–464. https://doi.org/10.1016/j.ajic.2015.11.009

    Article  CAS  PubMed  Google Scholar 

  39. Bock LJ, Wand ME, Sutton JM (2016) Varying activity of chlorhexidine-based disinfectants against Klebsiella pneumoniae clinical isolates and adapted strains. J Hosp Infect 93(1):42–48. https://doi.org/10.1016/j.jhin.2015.12.019

    Article  CAS  PubMed  Google Scholar 

  40. Hardy K, Sunnucks K, Gil H, Shabir S, Trampari E, Hawkey P, Webber M (2018) Increased usage of antiseptics is associated with reduced susceptibility in clinical isolates of Staphylococcus aureus. MBio 9(3). https://doi.org/10.1128/mBio.00894-18

  41. Cho OH, Baek EH, Bak MH, Suh YS, Park KH, Kim S, Bae IG, Lee SH (2016) The effect of targeted decolonization on methicillin-resistant Staphylococcus aureus colonization or infection in a surgical intensive care unit. Am J Infect Control 44(5):533–538. https://doi.org/10.1016/j.ajic.2015.12.007

    Article  PubMed  Google Scholar 

  42. Eed EM, Ghonaim MM, Khalifa AS, Alzahrani KJ, Alsharif KF, Taha AA (2019) Prevalence of mupirocin and chlorhexidine resistance among methicillin-resistant coagulase-negative staphylococci isolated during methicillin-resistant Staphylococcus aureus decolonization strategies. Am J Infect Control 47(11):1319–1323. https://doi.org/10.1016/j.ajic.2019.05.004

    Article  PubMed  Google Scholar 

  43. Johnson MD, Schlett CD, Grandits GA, Mende K, Whitman TJ, Tribble DR, Hospenthal DR, Murray PR (2012) Chlorhexidine does not select for resistance in Staphylococcus aureus isolates in a community setting. Infect Control Hosp Epidemiol 33(10):1061–1063. https://doi.org/10.1086/667744

    Article  PubMed  Google Scholar 

  44. Sangal V, Girvan EK, Jadhav S, Lawes T, Robb A, Vali L, Edwards GF, Yu J, Gould IM (2012) Impacts of a long-term programme of active surveillance and chlorhexidine baths on the clinical and molecular epidemiology of meticillin-resistant Staphylococcus aureus (MRSA) in an intensive care unit in Scotland. Int J Antimicrob Agents 40(4):323–331. https://doi.org/10.1016/j.ijantimicag.2012.06.007

    Article  CAS  PubMed  Google Scholar 

  45. Warren DK, Prager M, Munigala S, Wallace MA, Kennedy CR, Bommarito KM, Mazuski JE, Burnham CA (2016) Prevalence of qacA/B genes and mupirocin resistance among methicillin-resistant Staphylococcus aureus (MRSA) isolates in the setting of chlorhexidine bathing without mupirocin. Infect Control Hosp Epidemiol 37(5):590–597. https://doi.org/10.1017/ice.2016.1

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mendes ET, Ranzani OT, Marchi AP, Silva MT, Filho JU, Alves T, Guimaraes T, Levin AS, Costa SF (2016) Chlorhexidine bathing for the prevention of colonization and infection with multidrug-resistant microorganisms in a hematopoietic stem cell transplantation unit over a 9-year period: impact on chlorhexidine susceptibility. Medicine (Baltimore) 95(46):e5271. https://doi.org/10.1097/md.0000000000005271

    Article  CAS  Google Scholar 

  47. Marolf CT, Alter R, Lyden E, Fey PD, Rupp ME (2017) Susceptibility of nosocomial Staphylococcus aureus to chlorhexidine after implementation of a hospital-wide antiseptic bathing regimen. Infect Control Hosp Epidemiol 38(7):873–875. https://doi.org/10.1017/ice.2017.80

    Article  PubMed  Google Scholar 

  48. O’Grady NP, Alexander M, Burns LA, Dellinger EP, Garland J, Heard SO, Lipsett PA, Masur H, Mermel LA, Pearson ML, Raad II, Randolph AG, Rupp ME, Saint S, Committee HICPA (2011) Guidelines for the prevention of intravascular catheter-related infections. Am J Infect Control 39(4 Suppl 1):S1-34. https://doi.org/10.1016/j.ajic.2011.01.003

    Article  PubMed  Google Scholar 

  49. Rosato AE, Tallent SM, Edmond MB, Bearman GM (2004) Susceptibility of coagulase-negative staphylococcal nosocomial bloodstream isolates to the chlorhexidine/silver sulfadiazine-impregnated central venous catheter. Am J Infect Control 32(8):486–488. https://doi.org/10.1016/j.ajic.2004.06.002

    Article  PubMed  Google Scholar 

  50. Jun KI, Choi Y, Kwon K, Shin MJ, Park JS, Song KH, Kim ES, Park KH, Jung SI, Cheon SH, Kim YS, Yoon NR, Kim DM, Choe PG, Kim NJ, Kim HB (2019) Chlorhexidine sensitivity in staphylococci isolated from patients with central line-associated bloodstream infection. J Hosp Infect 103(3):276–279. https://doi.org/10.1016/j.jhin.2019.07.009

    Article  CAS  PubMed  Google Scholar 

  51. Skovgaard S, Larsen MH, Nielsen LN, Skov RL, Wong C, Westh H, Ingmer H (2013) Recently introduced qacA/B genes in Staphylococcus epidermidis do not increase chlorhexidine MIC/MBC. J Antimicrob Chemother 68(10):2226–2233. https://doi.org/10.1093/jac/dkt182

    Article  CAS  PubMed  Google Scholar 

  52. Bouadma L, Klompas M (2018) Oral care with chlorhexidine: beware! Intensive Care Med 44(7):1153–1155. https://doi.org/10.1007/s00134-018-5221-x

    Article  PubMed  Google Scholar 

  53. Vieira PC, de Oliveira RB, da Silva Mendonça TM (2020) Should oral chlorhexidine remain in ventilator-associated pneumonia prevention bundles? Med Intensiva (Engl Ed). https://doi.org/10.1016/j.medin.2020.09.009

    Article  Google Scholar 

  54. Conceicao T, Coelho C, de Lencastre H, Aires-de-Sousa M (2016) High prevalence of biocide resistance determinants in Staphylococcus aureus isolates from three African countries. Antimicrob Agents Chemother 60(1):678–681. https://doi.org/10.1128/aac.02140-15

    Article  PubMed  Google Scholar 

  55. Furi L, Ciusa ML, Knight D, Di Lorenzo V, Tocci N, Cirasola D, Aragones L, Coelho JR, Freitas AT, Marchi E, Moce L, Visa P, Northwood JB, Viti C, Borghi E, Orefici G, Morrissey I, Oggioni MR (2013) Evaluation of reduced susceptibility to quaternary ammonium compounds and bisbiguanides in clinical isolates and laboratory-generated mutants of Staphylococcus aureus. Antimicrob Agents Chemother 57(8):3488–3497. https://doi.org/10.1128/aac.00498-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fritz SA, Hogan PG, Camins BC, Ainsworth AJ, Patrick C, Martin MS, Krauss MJ, Rodriguez M, Burnham CA (2013) Mupirocin and chlorhexidine resistance in Staphylococcus aureus in patients with community-onset skin and soft tissue infections. Antimicrob Agents Chemother 57(1):559–568. https://doi.org/10.1128/aac.01633-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McNeil JC, Kok EY, Vallejo JG, Campbell JR, Hulten KG, Mason EO, Kaplan SL (2016) Clinical and molecular features of decreased chlorhexidine susceptibility among nosocomial Staphylococcus aureus isolates at Texas Children’s Hospital. Antimicrob Agents Chemother 60(2):1121–1128. https://doi.org/10.1128/aac.02011-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McNeil JC, Hulten KG, Kaplan SL, Mason EO (2014) Decreased susceptibilities to retapamulin, mupirocin, and chlorhexidine among Staphylococcus aureus isolates causing skin and soft tissue infections in otherwise healthy children. Antimicrob Agents Chemother 58(5):2878–2883. https://doi.org/10.1128/aac.02707-13

    Article  PubMed  PubMed Central  Google Scholar 

  59. Horner C, Utsi L, Coole L (2015) Denton M (2017) Epidemiology and microbiological characterization of clinical isolates of Staphylococcus aureus in a single healthcare region of the UK. Epidemiol Infect 145(2):386–396. https://doi.org/10.1017/s0950268816002387

    Article  Google Scholar 

  60. Dittmann K, Schmidt T, Muller G, Cuny C, Holtfreter S, Troitzsch D, Pfaff P, Hubner NO (2019) Susceptibility of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) to chlorhexidine digluconate, octenidine dihydrochloride, polyhexanide, PVP-iodine and triclosan in comparison to hospital-acquired MRSA (HA-MRSA) and community-aquired MRSA (CA-MRSA): a standardized comparison. Antimicrob Resist Infect Control 8:122

    Article  Google Scholar 

  61. Block C, Furman M (2002) Association between intensity of chlorhexidine use and micro-organisms of reduced susceptibility in a hospital environment. J Hosp Infect 51(3):201–206. https://doi.org/10.1053/jhin.2002.1246

    Article  CAS  PubMed  Google Scholar 

  62. Noguchi N, Suwa J, Narui K, Sasatsu M, Ito T, Hiramatsu K, Song JH (2005) Susceptibilities to antiseptic agents and distribution of antiseptic-resistance genes qacA/B and smr of methicillin-resistant Staphylococcus aureus isolated in Asia during 1998 and 1999. J Med Microbiol 54(Pt 6):557–565. https://doi.org/10.1099/jmm.0.45902-0

    Article  CAS  PubMed  Google Scholar 

  63. Longtin J, Seah C, Siebert K, McGeer A, Simor A, Longtin Y, Low DE, Melano RG (2011) Distribution of antiseptic resistance genes qacA, qacB, and smr in methicillin-resistant Staphylococcus aureus isolated in Toronto, Canada, from 2005 to 2009. Antimicrob Agents Chemother 55(6):2999–3001. https://doi.org/10.1128/aac.01707-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vali L, Davies SE, Lai LL, Dave J, Amyes SG (2008) Frequency of biocide resistance genes, antibiotic resistance and the effect of chlorhexidine exposure on clinical methicillin-resistant Staphylococcus aureus isolates. J Antimicrob Chemother 61(3):524–532. https://doi.org/10.1093/jac/dkm520

    Article  CAS  PubMed  Google Scholar 

  65. Lu Z, Chen Y, Chen W, Liu H, Song Q, Hu X, Zou Z, Liu Z, Duo L, Yang J, Gong Y, Wang Z, Wu X, Zhao J, Zhang C, Zhang M, Han L (2015) Characteristics of qacA/B-positive Staphylococcus aureus isolated from patients and a hospital environment in China. J Antimicrob Chemother 70(3):653–657. https://doi.org/10.1093/jac/dku456

    Article  CAS  PubMed  Google Scholar 

  66. McDanel JS, Murphy CR, Diekema DJ, Quan V, Kim DS, Peterson EM, Evans KD, Tan GL, Hayden MK, Huang SS (2013) Chlorhexidine and mupirocin susceptibilities of methicillin-resistant staphylococcus aureus from colonized nursing home residents. Antimicrob Agents Chemother 57(1):552–558. https://doi.org/10.1128/aac.01623-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hong SI, Lee YM, Park KH, Ryu BH, Hong KW, Kim S, Bae IG, Cho OH (2019) Clinical and molecular characteristics of qacA- and qacB-positive methicillin-resistant Staphylococcus aureus causing bloodstream infections. Antimicrob Agents Chemother 63(4). https://doi.org/10.1128/aac.02157-18

  68. Cho OH, Park KH, Song JY, Hong JM, Kim T, Hong SI, Kim S, Bae IG (2018) Prevalence and microbiological characteristics of qacA/B-positive methicillin-resistant Staphylococcus aureus isolates in a surgical intensive care unit. Microb Drug Resist 24(3):283–289. https://doi.org/10.1089/mdr.2017.0072

    Article  CAS  PubMed  Google Scholar 

  69. Chan MKL, Koo SH, Quek Q, Pang WS, Jiang B, Ng LSY, Tan SH, Tan TY (2018) Development of a real-time assay to determine the frequency of qac genes in methicillin-resistant Staphylococcus aureus. J Microbiol Methods 153:133–138. https://doi.org/10.1016/j.mimet.2018.09.017

    Article  CAS  PubMed  Google Scholar 

  70. Kong H, Fang L, Jiang R, Tong J (2018) Distribution of sasX, pvl, and qacA/B genes in epidemic methicillin-resistant Staphylococcus aureus strains isolated from East China. Infect Drug Resist 11:55–59. https://doi.org/10.2147/idr.S153399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Correa JE, De Paulis A, Predari S, Sordelli DO, Jeric PE (2008) First report of qacG, qacH and qacJ genes in Staphylococcus haemolyticus human clinical isolates. J Antimicrob Chemother 62(5):956–960. https://doi.org/10.1093/jac/dkn327

    Article  CAS  PubMed  Google Scholar 

  72. Prag G, Falk-Brynhildsen K, Jacobsson S, Hellmark B, Unemo M, Soderquist B (2014) Decreased susceptibility to chlorhexidine and prevalence of disinfectant resistance genes among clinical isolates of Staphylococcus epidermidis. APMIS 122(10):961–967. https://doi.org/10.1111/apm.12239

    Article  CAS  PubMed  Google Scholar 

  73. Lepainteur M, Royer G, Bourrel AS, Romain O, Duport C, Doucet-Populaire F, Decousser JW (2013) Prevalence of resistance to antiseptics and mupirocin among invasive coagulase-negative staphylococci from very preterm neonates in NICU: the creeping threat? J Hosp Infect 83(4):333–336. https://doi.org/10.1016/j.jhin.2012.11.025

    Article  CAS  PubMed  Google Scholar 

  74. Asadollahi P, Jabalameli F, Beigverdi R, Emaneini M (2018) Assessment of disinfectant and antibiotic susceptibility patterns and multi-locus variable number tandem repeat analysis of Staphylococcus epidermidis isolated from blood cultures. Iran J Microbiol 10(2):90–97

    PubMed  PubMed Central  Google Scholar 

  75. Mondal A, Venkataramaiah M, Rajamohan G, Srinivasan VB (2016) Occurrence of diverse antimicrobial resistance determinants in genetically unrelated biocide tolerant Klebsiella pneumoniae. PLoS ONE 11(11):e0166730. https://doi.org/10.1371/journal.pone.0166730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the teaching center “Désiré Collen” of the Catholic University of Leuven for their support in determining the database search strategy.

Author information

Authors and Affiliations

Authors

Contributions

Bea Van den Poel performed the literature search and is the main author. Veroniek Saegeman and Annette Schuermans supervised the review process and are co-authors of the article.

Corresponding author

Correspondence to Bea Van den Poel.

Ethics declarations

Ethics approval

This study protocol was approved by the Ethical Committee of the University Hospital of Leuven.

Informed consent

No informed consent was needed for this study since no personal data were involved.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van den Poel, B., Saegeman, V. & Schuermans, A. Increasing usage of chlorhexidine in health care settings: blessing or curse? A narrative review of the risk of chlorhexidine resistance and the implications for infection prevention and control. Eur J Clin Microbiol Infect Dis 41, 349–362 (2022). https://doi.org/10.1007/s10096-022-04403-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-022-04403-w

Keywords

Navigation