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Abstract
Tigecycline is unique glycylcycline class of semisynthetic antimicrobial agents developed for the treatment of polymicrobial
infections caused by multidrug-resistant Gram-positive and Gram-negative pathogens. Tigecycline evades the main tetracycline
resistance genetic mechanisms, such as tetracycline-specific efflux pump acquisition and ribosomal protection, via the addition of
a glycyclamide moiety to the 9-position of minocycline. The use of the parenteral form of tigecycline is approved for complicated
skin and skin structure infections (excluding diabetes foot infection), complicated intra-abdominal infections, and community-
acquired bacterial pneumonia in adults. New evidence also suggests the effectiveness of tigecycline for the treatment of severe
Clostridioides difficile infections. Tigecycline showed in vitro susceptibility to Coxiella spp., Rickettsia spp., and multidrug-
resistant Neisseria gonnorrhoeae strains which indicate the possible use of tigecycline in the treatment of infections caused by
these pathogens. Except for intrinsic, or often reported resistance in some Gram-negatives, tigecycline is effective against a wide
range of multidrug-resistant nosocomial pathogens. Herein, we summarize the currently available data on tigecycline pharma-
cokinetics and pharmacodynamics, its mechanism of action, the epidemiology of tigecycline resistance, and its clinical
effectiveness.
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Introduction

The increasing incidence of multidrug-resistant (MDR) or ex-
tensively drug-resistant (XDR) bacterial pathogens is a major
public health concern that poses an economic burden to

healthcare system due to prolonged hospital stays and higher
morbidity and mortality [1]. Tigecycline is a tetracycline-class
antibacterial agent developed for the treatment of
polymicrobial MDR infections [2] including both Gram-
negative and Gram-positive bacteria. Tigecycline, known as
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GAR-936, or Tygacil, is the first, unique glycylcycline class
of semisynthetic agents which is administered in a parenteral
form [3] and was approved by the Food and Drugs
Administration (FDA) in 2005 [4]. Later, in 2010, the FDA
issued an alert that use of tigecycline in the treatment of severe
infections and sepsis was significantly associated with an in-
creased risk for all-cause mortality [5]. Currently, tigecycline
has been approved as a monotherapy in adults for three indi-
cations including complicated skin and skin structures infec-
tions (cSSTI) with the exclusion of diabetes foot infection,
complicated intra-abdominal infections (cIAI), and
community-acquired bacterial pneumonia (CAP) [6, 7], and
recent evidence suggests that tigecycline may be effective in
the treatment of severe Clostridioides difficile infection [8].
The resistance to tigecycline includes chromosomally or ac-
cessory gene-encoded mechanisms. Herein, we summarize
the currently available data on tigecycline pharmacokinetics
and pharmacodynamics, its mechanism of action, the epide-
miology of tigecycline resistance, and its clinical
effectiveness.

Structural characterization

Tigecycline is chemically (4 S, 4 aS,5 aR,12aS)- 9- [2-(tert-
butylamino) acetami do]- 4,7-bis(dimethylamino)-
l,4,4a,5,5a,6,11,12a-octahydro-3,10,12,12a-tetrahydroxy-l,
ll-dioxo-2-naphthacene-carboxamide [6, 9]. Its chemical for-
mula is C29H39N508 with molecular weight of 585.65 Da
[10]. Tigecycline is a chemically modified minocycline (9-t-
butylglycylamido derivative of minocycline) [6, 9].
Compared with other tetracyclines, tigecycline’s extended,
wide-range antibiotic activity is due to a main backbone of
minocycline with an N-alkyl-glycylamido side chain addition
to the C9 carbon of the “D” tetracycline ring [6, 9].

Pharmacokinetics and pharmacodynamics

Due to insufficient absorption from the gut, tigecycline ad-
ministration is intravenous; ~ 30–60 min every 12 h [6]. The
in vitro plasma protein binding of tigecycline at 0.1, 1, and
15 ug/mL was reported as 71, 89, and 96, respectively, and
showed nonlinear plasma-protein-binding behavior since the
unbound fraction of tigecycline decreased with an increase in
the total concentration of tigecycline [11]. Tigecycline has a
systemic clearance (from 0.2 to 0.3 L/h/kg), a large volume of
distribution (7–10 L/kg), and extensive distribution into vari-
ous tissues [10]. The recommended standard dosage regimen
for tigecycline is an initial dose of 100 mg followed by 50 mg
every 12 hrs [12]. The recommended duration of treatment
with tigecycline for cSSTI or cIAI and CAP is 5–14 and 7–
14 days, respectively [13].

Tigecycline is excreted mainly unchanged in the bile [12]
and has a very long half-life (t1/2) in humans (~ 27–42 h) [12].
Tigecycline achieves therapeutic concentrations by effectively
and extensively penetrating body fluids and tissues, such as
the lungs, skin, liver, heart, bone, and kidneys [14–16].
Tigecycline has relatively low mean steady-state serum con-
centrations of 0.403 mg/L and 0.633 mg/L in patients with
cSSTI in the standard dosing [17]. The data on tigecycline
pharmacokinetics showed that the ratio of tissue to serum
tigecycline concentrations was 38-fold, 8.6-fold, 2.1-fold,
0.35-fold, and 0.58-fold higher in the gall bladder, lungs, co-
lon, bone, and synovial fluid, measured at 4 h after adminis-
tration of a single 100 mg dose [18]; a higher ratio of tissue to
serum of tigecycline in skin and soft tissue was also found
after 1–6 days of standard treatment [15]. The penetration of
tigecycline into bones was reported by Bhattacharya et al.
(bone: serum ratio; 4.77-fold) [19]. Data from several
pharmacokinetic-pharmacodynamic (PK/PD) analyses and
clinical trials showed that the ratio for the area under the con-
centration time curve and minimal inhibitory concentration
(AUC/MIC) for serum tigecycline concentrations is a predic-
tor of therapeutic response [20, 21]. Tigecycline does not
readily cross the blood-brain barrier.

The experimental data suggested that tigecycline exhibits a
time-dependent bactericidal activity and has a prolonged
postantibiotic effect (PAE) against Gram-positive and Gram-
negative pathogens following a 3 mg/kg dose [22–24]. In
comparison to minocycline, tigecycline has a uniformly lon-
ger PAE for tested pathogens (3.4–4 h for Staphylococcus
aureus and 1.8–2.9 h for Escherichia coli) [22, 23].

Tigecycline is eliminated from the body through biliary ex-
cretion in the feces (59%) and urine (22%). Age, sex, and renal
function do not appear to interfere with the pharmacokinetics of
tigecycline, and no dose adjustment is required for patients with
renal impairment (including hemodialysis) [25–27]. However,
clinical caution in the use of tigecycline is needed in patients
who have severe hepatic dysfunction (Child Pugh C); an initial
dose of 100 mg of tigecycline should be followed by reduced
maintenance doses of 25 mg every 12 h [27–29].

Mechanism of Action

Tigecycline is a bacteriostatic, parenteral glycylcycline antibi-
otic with a stronger (5-fold) binding affinity and structural
similarities to the tetracyclines [4, 14, 27]. The main mecha-
nism of action of tigecycline is similar to other tetracyclines in
that it acts an inhibitor of bacterial protein translation (i.e.,
elongation of the peptide chain) via reversible binding to a
helical region (H34) on the 30S subunit of bacterial ribo-
somes. The binding of tigecycline prevents the incorporation
of amino acid residues into the elongation of peptide chains
and results in the loss of peptide formation and bacterial
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growth [4, 14, 27] (Fig. 1). Tigecycline was developed to
overcome the main molecular mechanisms of tetracycline re-
sistance, such as tetracycline-specific efflux pump acquisition
[e.g., tet(A)] and ribosomal protection [e.g., tet(M)], through
the addition of a glycyclamide moiety to the 9-position of
minocycline.

Antimicrobial susceptibility testing
to tigecycline

Currently, several laboratory methods, including broth
microdilution and disk diffusion, have been used for the de-
termination of in vitro susceptibility to tigecycline [30, 31].
Broth microdilution is the reference method for the testing of
in vitro susceptibility to tigecycline, though, according to the
Clinical and Laboratory Standards Institute (CLSI) and
European Committee on Antimicrobial Susceptibility
Testing (EUCAST) guidelines [30, 31], the medium must be
prepared fresh on the day of use and must be not more than
12 h old at the time the panels are made.

For other Enterobacterales, except for E. coli, the activity
of tigecycline varies from insufficient in Proteus spp.,
Morganella morganii, and Providencia spp. to variable in
other species [31]. The interpretative minimal inhibitory con-
centration breakpoints to tigecycline recommended by
EUCAST [31], the Food and Drug Administration (FDA)
[32] , and the Bri t i sh Socie ty for Ant imicrobia l

Chemotherapy (BSAC) [33] to various bacteria are indicated
in Table 1. The CLSI interpretative minimal inhibitory con-
centration breakpoints to tigecycline are not available.

Antibacterial activity

Alterations to the tetracycline structure resulted in an expansion
of tigecycline’s spectrum of an antibacterial activity against a
wide spectrum of Gram-positive and Gram-negative pathogens
[34]. Currently, due to its effectiveness, tigecycline is the last-
line treatment option against MDR bacterial pathogens, espe-
cially carbapenem-resistant Enterobacteriaceae [35–40].
Tigecycline showed good activity against methicillin-resistant
Staphylococcus aureus (MRSA), vancomycin-resistant
enterococci (VRE), extended-spectrum β-lactamase (ESBL)-
producing Enterobacteriaceae, and penicillin-resistant
Streptococcus pneumoniae [41].

In addition, tigecycline was highly active against
Stenotrophomonas maltophilia, Moraxella catarrhalis,
Haemophilus influenzae, and Neisseria gonorrhoeae
[42–44]. Blanton et al. [45] have indicated that tigecycline is
effective against Rickettsia rickettsii [45].

Antibacterial activity was also observed against Coxiella
burnetii derived from patients with acute Q fever [46]. The flow
cytometry assay data suggest that tigecycline has antibacterial
activity [(IC50) 0.71 × 10-3 μg/mL] against Orientia
tsutsugamushi and that it may be a therapeutic option for the

Fig. 1 Tigecycline mechanisms of action and resistance
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treatment of scrub typhus [47]. The susceptibility of
Clostridioides difficile isolates was proved during pan-
European, longitudinal surveillance [48]. In addition, clinical da-
ta on the use of tigecycline administered alone, or as a part of
combination therapy of oral vancomycin and intravenous metro-
nidazole, showed its efficiency in patients with a severe course of
Clostridium difficile infection (CDI) [49]; however, randomized
controlled trials are necessary before tigecycline can be recom-
mended for routine use in the treatment of CDI [50].

Some pathogens, such as P. aeruginosa, Proteus spp.
Providencia spp., andMorganella spp., are intrinsically resis-
tant to tigecycline [51–53] and the development of acquired
resistance to tigecycline has been described in several bacte-
rial species such as Acinetobacter baumannii, Klebsiella
pneumonia, Enterobacter spp., and Bacteroides fragilis [49].

Mechanisms of tigecycline resistance

In the last decades, the emergence of tigecycline resistance has
been reported worldwide [49, 54, 55] though there are relatively
few data available regarding the molecular basis for resistance to

tigecycline. As shown in vitro, the Tet proteins [e.g., Tet(X),
Tet(A), Tet(K) and Tet(M)] have the potential to acquire muta-
tions leading to a reduced susceptibility (i.e,. increased MICs) to
tigecycline [56] possibly through the horizontal transfer of mo-
bile genetic elements carrying several resistance genes. In addi-
tion, the mobile tigecycline-resistance tet(X) gene variants are
newly emerging tigecycline resistance mechanisms in humans
and animals [57]. The Tet(X) is a flavin-dependent
monooxygenase that originated from Bacteroides spp. and was
detected in Enterobacteriaceae and some Acinetobacter spp.
isolates [58–60].

In Gram-negative bacteria, the chromosomally encoded,
overexpression of resistance-nodulation division (RND) ef-
flux pumps such as AdeABC, AdeFGH, AdeIJK, MexXY,
and AcrAB are important molecular mechanisms in the resis-
tance of bacteria to tigecycline [61–63].

Acinetobacter baumannii

The occurrence of increased MICs and resistance to tigecyc-
line among Acinetobacter spp. was associated with the

Table 1 Tigecycline international
in vitro susceptibility breakpoints. Bacterial family/species International

breakpoints standard
Broth microdilution (mg/L) Disk diffusion (mm)

Enterobacteriaceae EUCAST S ≤ 0.5, R > 0.5 S ≥ 18, R < 18

FDA S ≤ 2, R ≥ 8 S ≥ 19, R ≤ 14
BSAC S ≤ 1, R > 2 S ≥ 24, R ≤ 19

Staphylococcus spp. EUCAST S ≤ 0.5, R > 0.5 S ≥ 18, R < 18

FDA S ≤ 0.5 S ≥ 19
BSAC S ≤ 0.5, R > 0.5 S ≥ 26, R ≤ 25

Enterococcus spp. EUCAST S ≤ 0.25, R > 0.25 S ≥ 18, R < 18

FDA S ≤ 0.25 S ≥ 19
BSAC S ≤ 0.25, R > 0.5 S ≥ 21, R < 20

Streptococcus groups A,
B, C and G

EUCAST S ≤ 0.125, R > 125 S ≥ 19, R < 19

FDA S ≤ 0.25 S ≥ 19
BSAC S ≤ 0.25, R > 0.5 S ≥ 25, R < 19

Streptococcus pneumoniae EUCAST - -

FDA S ≤ 0.06 S ≥ 19
BSAC - -

Clostridioides difficile EUCAST S ≤ 0.25, R > 0.25 -

FDA S ≤ 4, R > 16 -

BSAC S ≤ 0.25 -

Acinetobacter spp. EUCAST - -

FDA S ≤ 2, R ≥ 8 -

BSAC S ≤ 1, R > 2 S ≥ 20, R < 20

Pseudomonas spp. EUCAST - -

FDA S ≤ 2, R ≥ 8 -

BSAC - -

EUCAST European Committee on Antimicrobial Susceptibility Testing, FDA Food and Drug Administration,
BSAC British Society for Antimicrobial Chemotherapy, S sensitive, R:Resistance
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upregulation of AdeABC, AdeFGH, AdeIJK, AbeM, and
AdeDE pumps and also the presence of the tetX gene [64,
65] although some studies noted that additional efflux pumps
or different molecular mechanisms might contribute to tige-
cycline resistance [58, 66, 67]. The nucleotide and amino acid
alterations in the AdeRS two-component system may lead to
adeABC overexpression and tigecycline resistance [68].
Besides it was found that the BaeSR system positively regu-
lates the expression of adeA and adeB and stimulated
tigecycline-resistant strains [69].

Additional mechanisms of decreased susceptibility to tige-
cycline, such as a novel RND pump, the presence of tet(X1) or
tetA genes, a mutation in the trm gene encoding S-adenosyl-
L-methionine (SAM)-dependent methyltransferase, and a
frameshift mutation in the plsC gene that encodes for 1-acyl-
sn-glycerol-3-phosphate acyltransferase, have been detected
in the clinical A. baumannii isolates[69–71].

Enterobacteriaceae

The intrinsic resistance to tigecycline in Enterobacteriaceae
has been described in Morganella morganii and Proteus
mirabilis and was attributed to the constitutive upregulation
of the multidrug AcrAB efflux pump [50]. The AcrAB efflux
pumps and their regulatory genes also play a role in the de-
creased susceptibility to tigecycline in E. coli and Klebsiella
spp. [55, 62, 72–74].

Currently, SoxS, MarA, RamA, and Rob have been char-
acterized as global regulators of the AcrAB pump in
Enterobacteriaceae [75] although the exact mechanism of
AcrAB pump overexpression has not been clarified [76, 77].

Escherichia coli

Tigecycline is a possible substrate for the AcrAB and AcrEF
pumps in E. coli [78]. The physiological role of the AcrAB
pump in E. coli is critical, and it excretes a diversity of lipo-
philic and amphiphilic antibiotics as substrates [79]. MarA,
SoxS, and Rob have been suggested as regulators involved
in theMDR phenotype in E. coli [80]. One of the major mech-
anisms involved in the E. coliMDR phenotype is mediated by
the mar regulon that stimulates the downregulation of the
OmpF outer membrane porin and also stimulates the upregu-
lation of the AcrAB efflux pump [81, 82]. In E. coli, MarA
(controlled by the local repressor MarR) acts as a positive
regulator of the AcrAB–TolC efflux pump [83].
Additionally, in some E. coli strains that have high tigecycline
MICs, a frameshift mutation (insertion of a cytosine at posi-
tion 355) has been described in marR (one of the targets for
reduced susceptibility to tigecycline) that led to the overex-
pression of MarA and AcrAB pumps [83]. Linkevicius et al.

[84] selected tigecycline-resistant E. coli mutants in vitro and
evaluated their biological fitness and cross-resistance.

A relatively low-level resistance and a high fitness cost
were identified in isolates with mutations of efflux regulatory
network genes (lon, acrR, and marR) and related lipopolysac-
charide core biosynthesis pathway genes (lpcA, rfaE, rfaD,
rfaC, and rfaF). Remarkably, the fitness cost of mutations in
E. coli under tigecycline exposure may decrease the ability of
mutants to trigger a successful infection [84]. The reduced
fitness and virulence in clinical isolates when acrA and tolC
were inactivated have already been described, implying that
the AcrAB pump may also play a role in adaptation and host
virulence [85]. However, more in vivo research is needed to
determine how these different mutation types are involved in
bacterial virulence.

Klebsiella pneumoniae

InK. pneumoniae, tigecycline resistance is related extensively
to the overexpression of RamA [86, 87]. There is a positive
association between the upregulation of ramA with an over-
expression of AcrAB [75, 87–89]. Nevertheless, no associa-
tion between the upregulation of ramA and AcrA expression
has been described [90]. RarA is a new AraC-type global
regulator that acts via the control of AcrAB and OqxAB efflux
pump expression and is mediated by the MDR phenotype in
K. pneumoniae [62, 88, 91]. However, He et al. have reported
no marked correlation between OqxAB and tigecycline resis-
tance [73]. Sheng et al. [92] have also proposed that RamA
may be a positive regulator of the OqxAB pump since variants
in ramR have been suggested as a mechanism of acrAB down-
regulation and tigecycline resistance [77, 92, 93]. IS5 element
integration in the new efflux pump operon kpgABC is corre-
lated with a novel mechanism for the rapid in vivo develop-
ment of tigecycline non-susceptibility [94]. Villa et al. [77]
highlighted the role of the ribosomal S10 protein mutation (a
mutation in the rpsJ gene that has already been reported to
reduce tigecycline susceptibility in both Gram-negative and
positive bacteria) in conferring tigecycline resistance. In addi-
tion, an alternative pathway involved in K. pneumoniae resis-
tance to tigecycline is the overexpression of marA that is as-
sociated with AcrAB upregulation overexpression [62, 88].
The failure of tigecycline treatment in patients with
carbapenem-resistant K. pneumoniae (CRKP) strains that har-
bor the tetA gene has been reported [95]. Additional tigecyc-
line resistance mechanisms conferred by Tet proteins (mainly
Tet(X)) have been published, [96]. In a recent study conducted
in China [97], mutations in the ramR and tet(A) efflux genes
were found to be the major tigecycline resistance mechanisms
among the studied tigecycline- and carbapenem-resistant
K. pneumoniae isolates.
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Serratia marcescens

The upregulation of the SdeXY–HasF efflux pump (a part of
the RND efflux pump family) has been associated with tige-
cycline resistance in S. marcescens [98]. The upregulation of
the SdeXY–HasF efflux system that confers resistance to tige-
cycline is also active against ciprofloxacin and cefpirome. On
the other hand, in an experimental mutant strain, the insertion-
al independent inactivation of the sdeY and hasF genes also
led to a reduced sensitivity to ciprofloxacin, cefpirome, and
tetracycline [98].

Enterobacter spp.

InEnterobacter spp., the ramA-mediatedmechanisms involving
AcrAB efflux pump regulation are the primary mechanisms of
tigecycline resistance [62, 99]. In E. aerogenes and E. cloacae,
the nucleotidemutations include frameshifts, deletions, and ami-
no acid variations in ramR (mainly in the ligand-binding do-
main) that lead to the overexpression of ramA and tigecycline
resistance [62]. However, the other probable alternative mecha-
nisms of tigecycline resistance that have been reported in
E. cloacae include ramA overexpression without any ramR al-
terations; rarA overexpression and upregulation of the OqxAB
pump; and upregulation of the AcrAB through SoxS, RobA,
and RamA [62, 85]. Further in vivo and in vitro investigations
are needed to characterize fully the probable other efflux pumps
and/or regulators involved in tigecycline resistance mechanisms
in Enterobacteriaceae [73, 75, 90, 100].

Salmonella spp.

In S. enterica, a positive correlation between the upregulation
of ramA (via an inactivating mutation in ramR) and the con-
secutive overexpression of AcrAB with tigecycline resistance
have been reported [101–103], although how ramA is con-
trolled in bacteria other than Salmonella spp. is currently un-
known. Similar to tigecycline resistance in carbapenem-
resistant K. pneumoniae isolates, the combination of muta-
tions in ramR and tet(A) genes was also reported in
tigecycline-resistant S. enterica [61, 97, 104].

Pseudomonas aeruginosa

Currently, several Resistance-Nodulation- Division (RND) ef-
flux pumps including MexAB-OprM, MexCD-OprJ, MexEF-
OprN, and MexXY-OprM have been suggested as mecha-
nisms for drug resistance in P. aeruginosa [105–110]. Dean
et al. suggested the overexpression of MexXY-OprM as a
drug efflux-mediated tigecycline resistance mechanism [110,

111]. In addition, the overexpression of the SdeXY pump
frequently underlies tigecycline intrinsic resistance in
P. aeruginosa [110]. In addition, the expression of other ef-
flux pumps in MDR P. aeruginosa isolates has also been
reported [112, 113].

Gram-positive bacteria

Relatively few data on tigecycline resistance in gram-positive
bacteria are available. Overexpression of the multi-antimicrobial
extrusion protein (MATE) family efflux pump MepA has been
suggested as mechanism of decreased susceptibility to tigecyc-
line in Staphylococcus aureus but does not confer resistance [52,
114, 115]. More recently, Fiedler et al. confirmed that overex-
pression of two tetracycline-resistance determinants, a tet(L)-
encoded Major facilitator superfamily (MFS) pump and a
tet(M)-encoded ribosomal protection protein, confer tigecycline
resistance in Enterococci spp. [116]. The mechanisms of resis-
tance to tigecycline are shown in Fig. 1.

Effectiveness of tigecycline in clinical settings

In September 2010, the FDA Adverse Event Reporting
System (FAERS) reported [117] an increased risk of mortality
with tigecycline (4%; 150/3788) compared with other antibi-
otics (3%; 110/3646) used to treat similar infections.
However, data from a prospective, multicenter, non-
interventional study demonstrated the efficacy and safety of
tigecycline in a population of severely ill patients with com-
plicated infections [118]. In a retrospective observational
study, Kwon et al. [119] evaluated the efficacy and safety
profile of tigecycline in comparison with colistin in XDR
A. baumannii-positive patients. No difference was observed
between both antibiotic groups in terms of treatment success
andmortality rates. Serum creatinine elevation and nephrotox-
ic prevalence cases were observed more commonly in the
colistin group (p = 0.028). On the other hand, the excess mor-
tality of 16.7% (60.7 vs. 44%, 95% confidence interval 0.9–
32.4%, p = 0.04) was reported in 294 of subjects treated with
tigecycline versus colistin for the treatment of pneumonia
caused by the multidrug-resistant A. baumannii [120].

In September 2013, FAERS analyzed the data from 10
clinical trials conducted only for FDA-approved uses
(cSSSI, cIAI, CABP) [121]. This analysis showed a higher
risk of mortality among subjects treated with tigecycline com-
pared with comparators: 2.5 (66/2640) vs. 1.8% (48/2628),
respectively. In general, the deaths resulted from worsening
infections, complications of infection, or other underlying
medical conditions.

In a meta-analysis [122] of 5 trials, comparing tigecycline
monotherapy versus combination therapy for the treatment of
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patients with hospital-acquired pneumonia, no significant dif-
ference was observed in the development of the mortality rate
from two prospective cohort studies (OR = 2.22, 95% CI
0.79–6.20 p = 0.13).

In a systematic review and meta-analysis [123], including
24 controlled studies, tigecycline-induced secondary bacter-
emia was found in 4.6% (91/1961) of patients with blood-
stream infections. All-cause mortality and clinical cure rates
for tigecycline were relatively similar to control antibiotic
agents. Tigecycline, in combination with other antimicrobial
agents, was suggested as a suitable choice for at-risk patients
with BSI. However, tigecycline is not superior to comparator
agents for the treatment of serious infections [2].

Due to the rise of multidrug-resistant infections, tigecycline
has been used for non-approved indications. In a Spanish uni-
versity hospital, one-third of tigecycline prescriptions were
non-approved mainly as a rescue therapy and concomitantly
with other antibiotics in patients with nosocomial pneumonia
[124]; and in an Argentinean hospital, it was 79%, especially in
ventilator-associated pneumonia due to MDR Acinetobacter
spp. [125]. In a Taipei Veterans’ General Hospital, tigecycline
was used for non-Food and Drug Administration-approved in-
dications, to treat healthcare-associated pneumonia (38,
57.6%), bacteremia (3, 4.5%), catheter-related infections (3,
4.5%), urinary tract infection (4, 6.1%), osteomyelitis (4,
6.1%), and others (2, 3%) [126]. In a Turkish university hospi-
tal, tigecycline was used in the intensive care unit for patients
infected with carbapenem-resistant Acinetobacter baumannii
[127]. A study carried out in a Lebanese tertiary-care hospital
reported 81% of tigecycline non-approved indications in criti-
cally ill patients with non-inferior outcome to that of FDA-
approved indications [128].

In a pediatric population, tigecycline is not recommended
in children and adolescents below 18 years of age. However,
clinical studies reported the efficacy of a tigecycline therapy
combined with other antimicrobial agents in the treatment of
multidrug-resistant infection, i.e., nosocomial infections in
newborn infants [129–131] and carbapenem-resistant gram-
negative bacteria infections in liver transplant recipients
[132]. Recently, tigecycline was used as a treatment in a case
of ventriculoperitoneal shunt-related meningitis in a 5-month-
old infant [133].

Adverse effects

Available evidence from 15 randomized controlled trials (RCTs),
including a recent meta-analysis [134], assessed the available
data with regard to the effectiveness and safety of tigecycline in
comparison to other antimicrobials in the treatment of 7689 adult
patients with infectious diseases. Adverse events and all-cause
mortality were frequent in the tigecycline group. Twelve of the
15 RCTs (6292/7689) described various adverse events with
tigecycline use. The adverse events rate was considerably higher

in the tigecycline group compared with the comparator drug
group (OR= 1.49, 95% CI = 1.23 to 1.80, p< 0.0001).

Based on the results from the preclinical animal safety stud-
ies, tigecycline was not thought to be teratogenic [27]; however,
in rats and dogs a decrease of white and red blood cells, bone
marrow hypocellularity, reductions in fetal weights, and an in-
creased incidence of fetal loss and minor skeletal abnormalities
were reported [27, 135]. Now, tigecycline is categorized as
teratogenic effect class D and should be used with caution in
specific populations, including nursing mothers, pregnant
women, pediatrics, and patients with severe hepatic impairment
[4, 13, 27, 135, 136]. In addition, the use of tigecycline may
affect tooth development particularly if used during the last half
of pregnancy and in children under the age of 8 as it can cause
permanent tooth discoloration [137].

The human clinical trial studies and the FAERS [138] report-
ed that the most common side effects following tigecycline ad-
ministration, especially in adults aged between 18 and 50 years,
and which were more likely in women, are gastrointestinal (GI)
symptoms, i.e., nausea, vomiting, and diarrhea. Further reported
side effects relevant to tigecycline administration were pancrea-
titis, acute generalized exanthematous pustulosis, local reaction
at the i.v. site, increased hepatic function, thrombophlebitis, pru-
ritus, fever, mitochondrial dysfunction-associated acutemetabol-
ic acidosis abdominal pain, headache, cholestatic, jaundice, and
Steven-Johnson syndrome [2, 139–144].

Clinical studies showed a significant higher (~ > 4-fold)
incidence of nausea and vomiting induced by tigecycline in
patients treated for cSSSI compared with patients treated with
vancomycin/aztreonam. However, in patients with cIAI, the
incidence of nausea and vomiting occurred equally often in
patients treated with imipenem/cilastatin as it did in patients
treated with tigecycline (25%/20% for tigecycline and 21%/
15% for imipenem/cilastatin group, respectively). In
community-acquired bacterial pneumonia, the occurrence of
GI symptoms was higher in the group of patients treated with
tigecycline than the group treated with levofloxacin [138].

Themechanism of action of tigecycline-associated nausea and
vomiting remains uncertain and their incidence is dose-related
[145]. Whether it is preventable by the pre-emptive use of anti-
emetics as concomitant drugs (metoclopramide. ondasetron,
prochlorperazine, sucralfate, and trimethobenzamide) is unclear
[146, 147] . From 2514 patients, the total discontinuation rate
was 7% during tigecycline treatment and discontinuation was
most frequently associated with nausea (1%) and vomiting
(1%) [138].

The phase III clinical trials evaluated tigecycline tolerabil-
ity and efficacy in patients receiving tigecycline (i.e., 100-mg
IV loading dose followed by 50 mg IV q12h) [2, 148–151].
The difference in the incidence of nausea and vomiting be-
tween tigecycline and the comparators (vancomycin+aztreo-
nam or imipenem/cilastatin) was statistically significant
(p < 0.05) in ≥ 2 of the 4 Phase III trials.
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Table 2 The prevalence of tigecycline resistance by continents and pathogens.

Asian
Countries

Pathogen Area No. (%) of Resistant rate Type of
study

First author, year

Klebsiella pneumoniae Saudi
Arabia

1 Case report Al-Qadheeb et al., 2010 [160]

Acinetobacter spp. India 224/32 (14.2) Original
research

Taneja et al., 2011 [161]

Acinetobacter spp. Kuwait 250/34 (13.6) Original
research

Al-Sweih et al., 2011 [162]

E. coli India 166/0 (0) Original
research

Manoharan et al., 2010 [163]
Acinetobacter spp. 50/6 (12)

Pseudomonas aeruginosa 50/47 (94)

S. aureus 125/0 (0)

S. pneumoniae 102/0 (0)

Enterococcus spp. 100/0 (0)

Enterobacteriaceae Taiwan 412/10 (2.4) Original
research

Hsu et al., 2011 [164]

Stenotrophomonas maltophilia Taiwan 377/66 (17.5) Original
research

Wu et al., 2012 [165]

Stenotrophomonas maltophilia China 442/71 (16.1) Original
research

Zhang et al., 2012 [166]

Enterobacteriaceae (MBL-producing) Taiwan 95/36 (37.9) (resistant or
intermediately susceptible)

Original
research

Liao et al., 2011 [167]

Enterobacteriaceae
(NDM-1-producing)

Pakistan 64/7 (11) Original
research

Perry et al., 2011 [168]

E. coli Lebanon 150/0 (0) Original
research

Araj and Ibrahim, 2008 [169]
K. pneumoniae 100/3 (3)

Acinetobacter spp. 64/0 (0)

Acinetobacter baumannii Taiwan 393/27 (6.9) (resistant or
intermediately susceptible)

Original
research

Liu et al., 2008 [170].

Acinetobacter baumannii (MDR) India 26/15 (57.7) Original
research

Behera et al., 2009 [171]

Acinetobacter baumannii
(imipenem-non-susceptible)

Taiwan 114/21 (18) Original
research

Lee et al., 2009 [172]

Acinetobacter baumannii (MDR) Thailand 148/4 (2.7) (resistant or
intermediately susceptible)

Original
research

Tiengrim et al., 2006 [173]

Acinetobacter baumannii (MDR) Israel 82/54 (66) Original
research

Navon-Venezia et al., 2007
[174]

Acinetobacter baumannii (MDR) Taiwan 134/61 (45.5) Original
research

Chang et al., 2012 [175]

Colistin-resistant Acinetobacter spp. South
Korea

145/14 (9.7) (non-susceptible) Original
research

Park et al., 2009 [176]

OXA carbapenemase-producing
Acinetobacter baumannii

South
Korea

47/11 (23.4) Original
research

Kim et al., 2010 [177]

Acinetobacter baumannii (MDR) Turkey 82/21 (25.8) Original
research

Dizbay et al., 2008 [178]

S. aureus India 127/68 (53.5) Original
research

Swati Sharma.,2017 [179]

Acinetobacter baumannii Taiwan 393/27 (6.9) Original
research

Liao CH.,2008[180]

Stenotrophomonas maltophilia China 450/61 (13.56) Original
research

Jin Zhao.,2018[181]

Carbapenemase-producing Klebsiella
pneumoniae

Saudi
Arabia

1 case Case report Nada S.
Al-Qadheeb.,2010[160]

Carbapenem-resistant Klebsiella
pneumoniae

Taiwan 16/16 (100) Original
research

Sheng-Kang Chiu., 2017[182]

Enterobacter spp. Asia 516/4 (0.8) Original
research

Harald Seifert., 2018[183]
Serratia marcescens 204/1 (0.5)

E. coli 314/1 (0.3)

K. pneumoniae 541/7 (1.3)

Bacteroides fragilis Europe 824/14 (1.7) Nagy et al., 2011 [184]
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Table 2 (continued)

European
Countries

Original
research

Acinetobacter baumannii Spain 142/17 (12) Original
research

Insa et al., 2007 [185]
S. maltophilia 120/2 (2)

E. coli Spain 220/0 (0) Original
research

Tubau et al., 2010 [186]
K. pneumoniae 28/0 (0)

K. oxytoca 14/0 (0)

Enterococcus faecalis 53/1 (1.9)

Enterococcus faecium 39/0 (0)

Enterobacter cloacae 23/1 (4.3)

M. morganii 14/0 (0)

P. mirabilis 12/4 (33.3)

P. vulgaris 7/1 (14.3)

Citrobacter spp. 9/0 (0)

S. aureus 18/0 (0)

viridans group streptococcus 23/1 (4.3)

E. coli (ESBL-producing) Italy 430/7 (1.6) Original
research

Grandesso et al., 2010 [187]

Klebsiella spp. Poland 108/7 (7.5) Original
research

Sekowska and Gospodarek,
2010 [188]

KPC-producing Klebsiella pneumoniae Spain 215/24 (11.2) Original
research

Vázquez et al., 2008 [73]

ESBL producing E. coli Belgium Nonsusceptibility rates
26/9 (35)

Original
research

Naesens et al., 2009 [189]

ESBL-producing Klebsiella spp. 10/10 (100)

Enterobacter spp. 27/26 (96)

Enterobacteriaceae France 1070/52 (4.9) Original
research

Froment Gomis P et al., [190]
Acinetobacter baumannii 47/25 (53)

Bacteroides fragilis 645/102 (15.8)

MDR-producing Enterobacteriaceae Greece 152/12 (7.9) (Intermediate) Original
research

Falagas ME et al., [191]

Enterobacteriaceae spp.
(carbapenem-resistant)

Europe 280/32 (11.4) Original
research

Sader HS et al., [192]

Enterobacteriaceae (imipenem
resistant)

Greece 110/1 (1) Original
research

Papaparaskevas J et al., [193]

Enterococcus spp. (vancomycin
resistant)

151/0 (0)

Methicillin-resistant S. aureus 338/3 (<1)

ESBL-positive E. coli Eastern
Europe

337/5 (1.5) Original
research

Balode A et al., [194]

Vancomycin-resistant Enterococci France 18/0 (0) Original
research

Cattoir V et al., [195]
Methicillin-resistant S. aureus 631/0 (0)

ESBL-positive E. coli 275/3 (1.1)

ESBL-positive K. pneumoniae 274/60 (21.9)

Enterobacter hormaechei France 1 case Case report Daurel et al., 2009 [196]

Enterococcus faecalis Germany 1 case Case report Werner et al., 2008 [197]

African
Countries

carbapenem resistant A. baumannii
complex

South
Africa

232/17 (7.6) Original
research

Nahid H Ahmed et al., 2012
[198]

Acinetobacter baumannii South
Africa

(Non-susceptible)
705/53 (7.5)

Original
research

Olga Perovic et al., 2015 to
2016 [199, 200]

E. coli Africa 199/0 (0) Original
research

Harald Seifert et al.,
2018[183]Klebsiella pneumoniae 185/0 (0)

Enterobacter spp. 188/2 (1.1)

Serratia marcescens 79/1 (1.3)

carbapenem resistant A. baumannii
complex

South
Africa

232/17 (7.6) Original
research

Ahmed et al., 2010 [198]
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Clinical and pharmacokinetic literature outcomes stated
that co-administration of tigecycline with food led to an im-
provement in the gastrointestinal adverse events; however it
did not change the drug’s pharmacokinetics [152].

In pancreatitis, the data from all phase 3 and 4 clinical
trials found no significant difference in the incidence of
pancreatitis between patients treated with tigecycline and
patients treated with comparators [153]. On the other
hand, a significantly higher rate of pancreatitis of 20%
(cases = 10) was observed in a French study [154]. The
exact mechanism of tigecycline-induced pancreatitis is
unclear; however, some suggested mechanisms are
hypertriglyceridemia and toxic metabolite formation that

might be involved in the development of tigecycline-
induced pancreatitis [153–155].

Several studies also reported tigecycline-induced coagulopa-
thy [156, 157]. The impact of a recommended dose of tigecyc-
line, 50 mg q12h and/or a higher dose of 100 mg q12h, on
coagulation parameters in 50 patients with severe infection
was evaluated in a Chinese retrospective analysis [158]. A con-
siderable decrease in the levels of plasma fibrinogen (p < 0.001)
and a significant increase in the mean values of prothrombin
time (PT) and activated partial thromboplastin time (aPTT)
(p ≤ 0.002) were observed. In another study, non-anion gap
acute metabolic acidosis (NAGAMA), developed through mi-
tochondrial toxicity, was observed after an unusually high dose

Table 2 (continued)

American
Countries

Acinetobacter baumannii USA 1 Case series Anthony et al., 2008
[148]

Bacteroides fragilis USA 1 Case report Sherwood et al., 2011
[201]

E. coli USA 131/0 (0) Original
research

DiPersio and Dowzicky, 2007
[202]Klebsiella pneumoniae 174/16 (9.2)

E. aerogenes 24/5 (20.8)
E. cloacae 126/32 (25.4)
S. marcescens 20/4 20
Bacteroides fragilis USA 1 Case report Sherwood et al., 2011

[201]
E. faecium Latin

America
106/0 (0) Original

research
Rossi F et al., [203]

Enterobacter spp. 766/2 (0.3)
K. pneumoniae 763/10 (1.3)
E. coli 932/0 (0)
S. marcescens 328/2 (0.6)
E. coli USA 6643/0 (0) Original

research
Denys GA et al., [204]

K. pneumoniae 4951/208 (4.2)
Klebsiella oxytoca 1170/13 (1.1)
Serratia marcescens 2421/99 (4.1)
Enterobacter spp. 6065/285 (4.7)
ESBL-E. coli Latin

America
870/0 (0) Original

research
Fernández-Canigia L et al.,
[205]ESBL-K. pneumoniae 1045/15 (1.4)

K. oxytoca 311/0 (0)
Enterobacter spp. 2804/14 (0.5)
S. marcescens 1126/9 (0.8)
ESBL-producing K. pneumoniae USA 337/7 (2) Original

research
Dowzicky MJ et al., [206]

K. oxytoca 801/2 (0.2)
E. coli 4861/0 (0)
E. aerogenes 1095/11 (0.01)
E. cloacae 2866/56 (0.02)
S. marcescens 1698/11 (<0.01)
S. aureus Mexico 250/23 (9) Original

research
Garza-González et al., 2010
[207]Klebsiella pneumoniae 150/5 (3)

E. coli 150/6 (4)
A. baumannii 550/6 (1)
Enterobacter cloacae 100/7 (7)
Serratia 100/0 (0)
E. coli Canada 3789/4 (0.1) Original

research
Lagacé-Wiens et al., 2011
[208]

CTX-M-producing Enterobacteriaceae USA 67/0 (0) Original
research

Castanheira et al., 2010 [209]

ESBL, extended-spectrum b-lactamase; MDR, multidrug-resistant. MBL, Metallo-β-lactamase. NDM; New Delhi Metallo-beta lactamase.
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of 100 mg, twice daily following a single 200 mg loading dose
of tigecycline administration; however, the mechanism of
NAGAMA is unclear [34]. The routine monitoring of pancrea-
titis, NAGAMA, and coagulation parameters may be a necessity
when administering tigecycline to critically ill patients.

Interaction

The coadministration of tigecycline and warfarin (25 mg sin-
gle dose) to healthy volunteers resulted in a 40 and 23% de-
crease in the clearance of R-warfarin and S-warfarin and their

AUC, from time zero extrapolated to infinity, was increased
by 68 and 29%, respectively [159]. The prothrombin time, or
any other suitable anticoagulation test, should be used if tige-
cycline is administered with warfarin.

The prevalence of tigecycline resistance by continent

A summary of tigecycline resistance studies according to the
individual countries worldwide are shown in Table 2 and
Table 3.

Table 3 Worldwide reports of
tigecycline resistance in gram
negative and positive-bacteria.

First author, year Type of study Area Pathogen Resistant
rate (%)

Anna Giammanco et al.,
2014[210]

Original
research

Worldwide E. coli 0.2

Klebsiella spp. 6

Enterobacter aerogenes 12

Klebsiella oxytoca 5.9

K. pneumoniae 5.7

Sue C. Kehl et al., 2004 -
2012[211]

Original
research

Worldwide E. coli < 0.1

K. pneumoniae 3.5

Klebsiella oxytoca 0.6

Enterobacter spp. 2.6

Serratia marcescens 3.8

Mendes et al et al., 2010 [212] Original
research

Worldwide Acinetobacter spp. 3

Garrison MW et al., 2009 [213] Original
research

Worldwide E. cloacae 1.5

E. coli 0.01

K. oxytoca 0.2

K. pneumoniae 1.1

S. marcescens 0.6

Hoban DJ et al., 2015 [214] Original
research

Worldwide Enterobacter spp 1.1

E. coli < 0.1

Klebsiella oxytoca 0.2

Klebsiella pneumoniae 0.8

Serratia marcescens 0.7

Sader HS et al., 2013 [215] Original
research

Worldwide S. aureus 0

Enterococcus spp. 0.2

Streptococcus
pneumoniae

0.2

E. coli 0

Klebsiella spp. 1.4

Bertrand X et al., 2012 [216] Original
research

Worldwide Klebsiella pneumoniae 5.1

Enterobacter cloacae 4.3

E. coli < 0.1

Serratia marcescens 4.5

Harald Seifert et al., 2018 [183] Original
research

Worldwide E. coli < 0.1

Klebsiella pneumoniae 0.6

Enterobacter spp. 0.8

Serratia marcescens 0.4
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Asia

In Asia, the occurrence of tigecycline resistance was reported
in different bacterial species ranging from 0.% to 66% with a
different distribution within the individual Asian countries
(Table 2). The most frequently reported species, regarding
tigecycline resistance, was A. baumannii [174] with a high
resistance rate of 66% revealed in Israel [150].

In Enterobacteriaceae, a tigecycline resistance of 11%was
reported for NDM-1-positive isolates from Pakistan and, a
resistance of 37.9% was reported for tigecycline non-
susceptible Metallobeta-lactamases producing isolates from
Taiwan [167]; the prevalence of tigecycline-resistant
K. pneumoniae was found to be 1.3% [183]. The reports of
tigecycline-resistant K. pneumoniae came from Saudi Arabia
[160, 169, 173], Taiwan[144], and Lebanon[169]; further
tigecycline resistance was reported for Escherichia coli,
Enterobacter cloacae, and S. marcescens [194, 217].

In other gram-negatives, tigecycline resistance was reported
in S. maltophilia from Taiwan and China [165, 166, 181] and in
90% of Pseudomonas aeruginosa isolates from India [163].

For gram-positive pathogens, a tigecycline resistance rate
of 3% in MRSA isolates [49, 218] was reported from India by
Veeraraghavan et al. and in the study of Sharma et al.; 53.5%
(n = 68) of S. aureus isolates showed non-susceptibility to
tigecycline [179]. In recent years, the trend of increasing min-
imal inhibitory concentrations to tigecycline and linezolid was
observed in Taiwan; however, strains with resistance to these
agents were rare [219]. Interestingly, a 2% tigecycline resis-
tance rate was reported in S. pneumoniae isolates gathered
between 2004 and 2010 from the Asia-Pacific region, while
in 2015, all S. pneumoniae isolates investigated were suscep-
tible to tigecycline [220].

Europe

Tigecyc l ine res i s tance i s f requent ly s tudied in
Enterobacteriaceae in Europe (Table 2). In ESBL producing
Enterobacteriaceae, tigecycline resistance was reported in
Italy, Belgium, Turkey, and France [187, 194, 195, 207]. Sader
et al. reported that 11.4% of European carbapenem-resistant
Enterobacteriaceae are not susceptible to tigecycline [192]. In
France, cephalosporin-resistant Enterobacteriaceae were shown
to be not susceptible to tigecycline in 23.8% of isolates [190].

For other gram-negative pathogens, resistance to tigecycline
was reported in Acinetobacter baumannii [185, 221–224], as
well as S. marcescens [211] and H. influenzae [211]. In gram-
positive pathogens, tigecycline resistance was reported in two
and three MRSA isolates from the Netherlands [225]. In Spain,
tigecycline resistance was identified in E. faecium, E. faecalis
and viridans streptococci [186] and in Germany, in E. faecalis
[197]. In anaerobes, tigecycline resistance was investigated in

the B. fragilis group in a Europe-wide study involving 13 coun-
tries, and a resistance rate of 1.7% was detected [226].

America

In the USA, high resistance rates to tigecycline were reported
in K. pneumoniae (9.2%), E. aerogenes (20.8%), K. oxytoca
(38.5%), E. cloacae (25.4%), and S. marcescens (20.0%)
[202]. Sporadic cases were detected in A. baumannii [148,
150, 227–229] and B. fragilis [201]. ESBL-producing
Enterobacteriaceae were shown to be tigecycline-resistant in
the USA and Latin America [206]. In gram-positive patho-
gens, tigecycline resistance was reported in 9% of S. aureus
in Mexico [207].

Africa

The tigecycline resistance rates in isolates collected between
2004–2016 in Africa were 5.8% ( 37/642) lower than in
Europe (37.4%; 240/642) and North America (36.8%; 236/
642) [49]. In the study of Seifert et al., 1.1% of Enterobacter
spp. and 1.3% of S. marcescens isolates were tigecycline-
resistant [183]. In the South of the continent, resistance to
tigecycline was reported in A. baumannii, K. pneumoniae,
Enterobacter spp., C. freundii, P. aeruginosa, and
S. marcescens [198, 230–234].

Conclusion

Tigecycline is a unique glycylcycline class of semisynthetic
agents designed to overcome the main tetracycline resistance
mechanisms. Although tigecycline was approved for cSSTI,
cIAI, and CAP in adults, its therapeutic potential is undoubt-
edly wider. Its antimicrobial activity against anaerobes and its
greater penetration into tissues is advantageous for the treat-
ment of inflammatory lesions and granulomas. Recently avail-
able clinical data support the use of tigecycline in severe
C. difficile infections. In vitro antimicrobial susceptibility test-
ing showed the susceptibility of a number of pathogens to
tigecycline including those MDR pathogens associated with
healthcare infections. However, the bacteriostatic activity of
tigecycline is probably associated with a higher mortality risk
in patients with sepsis or severe infection.
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