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Abstract
Helicobacter pylori (H. pylori) infection is associated with some gastric diseases, such as gastritis, peptic ulcer, and gastric
cancer. CagA and VacA are known virulence factors of H. pylori, which play a vital role in severe clinical outcomes.
Additionally, the expression of outer membrane proteins (OMPs) helps H. pylori attach to gastric epithelial cells at the primary
stage and increases the virulence ofH. pylori. In this review, we have summarized the paralogs ofH. pyloriOMPs, their genomic
loci, and the different receptors of OMPs identified so far. We focused on five OMPs, BabA (HopS), SabA (HopP), OipA
(HopH), HopQ, and HopZ, and one family of OMPs: Hom. We highlight the coexpression of OMPs with other virulence factors
and their relationship with clinical outcomes. In conclusion, OMPs are closely related to the pathogenic processes of adhesion,
colonization, persistent infection, and severe clinical consequences. They are potential targets for the prevention and treatment of
H. pylori–related diseases.
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Introduction

Helicobacter pylori (H. pylori) colonizes mainly the surface of
the gastric epithelium and is an essential human pathogen that
was discovered in the twentieth century. The prevalence of
H. pylori is probably 44.3% of the entire human population
[1]. According to the statistics, its prevalence is 34.7% in
developed countries and 50.8% in developing countries, and
the worldwide annual recurrence rate is 4.3% [2]. Although
the global infection rate ofH. pylori is high, a large proportion
of infected people have no apparent symptoms and only show

gastritis under an endoscope [3, 4]. However, these asymp-
tomatic or endoscopic gastritis patients may develop changes
in their condition. More severe conditions include peptic ulcer
(PU), gastric cancer (GC), and mucosa-associated lymphoid
tissue (MALT) lymphoma [4]. The outcome of infection de-
pends mainly on the interactions among H. pylori, the stom-
ach, and the environment [5, 6]. For developing countries with
high infection rates and low economic levels, eradication of
H. pylori with antibiotics to prevent serious diseases is the
most effective and relatively cheaper method being currently
applied [7].

The outer membrane is the outer barrier of Gram-negative
bacteria, which consists of two highly asymmetric layers—the
inner monolayer contains only phospholipids and the outer
monolayer consists mainly of outer membrane proteins
(OMPs) that are resistant to the external environment [8].
OMPs have a variety of biological functions, not only in main-
taining the outer membrane structure and guaranteeing the
material transportation but also in playing an essential role in
the process of contact with the host [9]. The study ofH. pylori
OMPs will contribute to the development of vaccine and drug
targets [10, 11]. OMPs in H. pylori mainly include lipopro-
teins, porins, iron-regulated proteins, efflux pump proteins,
and adhesins [12]. The expression of OMPs in different strains
is related to the virulence of H. pylori. The pathogenicity of
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the OMPs may be achieved through the following mecha-
nisms: (1) adhesion, (2) penetration of the bacteria through
the defense barrier, and (3) evasion of the immune system.

Several strains of H. pylori have been subjected to whole-
genome sequencing, and approximately 4% of their genes
were found to encode OMPs. We further divided them into
five paralogous gene families according to their functions
[12]. Hop (outer membrane porins) and Hor (Hop-related
proteins) proteins are the best-known family. The second
and third are Hof (H. pylori OMP) and Hom (H. pylori outer
membrane) proteins, respectively. Iron-regulated OMPs are
the fourth family, and efflux pump OMPs are the fifth family.
The other types of OMPs that do not belong to any of these
families have different alleles, regional distribution character-
istics, and distinct correlations with other virulence factors.
Allelic variation and phase variation are the most common
methods used to regulate the expression of OMPs [13–15].
Usually, there are multiple alleles for each OMP, and the
functions of proteins encoded by each allele are somewhat
different. Additionally, due to geographical differences
among strains, the expression of OMPs is also variable. In this
review, we summarize recent progress in our understanding of
the five best characterized OMPs: BabA (HopS), SabA
(HopP), OipA (HopH), HopQ, and HopZ, and one family of
OMPs: Hom and their receptors, as well as their relationship
with other virulence factors and clinical outcomes.

Main OMPs

BabA (HopS)

BabA belongs to the Hop protein family, also called blood-
group-antigen-binding adhesin. So far, three genomic loci
have been found in bab, namely, babA, babB, and babC
[16]. BabA and its babB allelic gene are irrelevant to each
other according to phylogenetic analysis, and the expression
of the two genes differs geographically. The multiple synon-
ymous and nonsynonymous substitutions of the babA gene
region indicate that it predates babB in phylogeny [17].
However, the babA diversity regionmay havemore functional
constraints, and there is a clear distinction between the US and
Asian strains [3, 18].

The primary role of BabA in the pathogenesis of H. pylori
is adhesion. Ilver et al. were the first to isolate BabA and put
forward the theory that BabA adheres to the fucosylated
LewisB histo-blood group antigen for host selectively [19,
20]. Backstrom found the strain 17,875 had two babA alleles,
which were babA1 (silence) and babA2 (expression) [21].
BabA2-cam was a derivative gene of babA2, which was ob-
tained by recombination of the previously silent babA1 gene
with the expressed and partially homologous babB locus.
Then, they confirmed that BabA2-cam could bind to

LewisB. Similarly, the binding affinity of chimeric BabB/A
adhesin to LewisB was similar to that of BabA adhesin.
However, the expression level of BabB/A was low, and phase
variation could occur through a slipped-strand mispairing
mechanism [21, 22]. These phenomena all indicate that their
transferability and heterogeneity contribute to the adaptation
of the bacteria, and some strains have the potential to period-
ically activate and inactivate their virulence according to the
host’s response to infection. The expression of BabA is acid-
sensitive and has nothing to do with the interpretation of
LewisB or the binding affinity of LewisB [23]. Bugaytsova
et al. believe that the loss expression of BabA is not related to
adaptive immunity or the toll-like receptor signaling system,
indicating that BabA has some other functions besides being
an adhesin [24].

After the calculation and analysis of the X-ray diffraction
pattern of BabA, it was found that BabA has three structural
domains for combining with LewisB, including two diversity
loops (DL1 and DL2) and one conserved loop (CL2) [16]. The
specific binding region is the hydrogen bond network struc-
ture formed between four residues of LewisB and eight amino
acids of BabA [25]. Previous research suggested thatH. pylori
had blood group binding preferences, and the specific strains
only combined with O antigen residues, resulting in people
with type O blood being more likely to suffer from PU than
those with other blood types [16]. According to the recent
study of BabA and LewisB structures, the prevalence of PU
is higher in type O blood, probably because it overexpresses
LewisB.

Multiple studies on the relationship between H. pylori and
clinical diseases have shown that, compared with the control
group, patients with PU and GC have higher BabA expres-
sion. This indicates that BabA is positively correlated with
severe clinical diseases caused by H. pylori [26, 27].
Possible mechanism to explain this phenomenon is that the
combination of BabA and LewisB triggers the type IV secre-
tion system (T4SS), which helps CagA to enter the gastric
mucosal epithelial cells [28]. Cag pathogenicity island (cag
PAI) is a large (usually 20–100 kb) DNA fragment encoding
many virulence-related genes on the H. pylori chromosome,
which often contains repetitive or inserted sequences on both
sides.Cag PAImediates the expression of CagA and is closely
associated with the occurrence of gastritis, PU, GC, and other
diseases. Cag PAI also mediates the expression of T4SS [29],
through which the vital virulence factor CagA is delivered into
attached cells. CagA will induce the production of inflamma-
tory factors, leading to intestinal metaplasia and precancerous
lesions [28].

SabA (HopP)

The sab gene has two alleles, sabA and sabB. SabA is the
second most commonly reported OMP in H. pylori. It is

1822 Eur J Clin Microbiol Infect Dis (2020) 39:1821–1830



named sialic-acid-binding adhesin according to its binding
receptors and it belongs to the Hop family, also known as
HopP or OMP17. SabB is known as HopO or OMP16 [12].
However, genomic analysis showed that the strains often both
have sabA and sabB genes, which may selectively express
SabA during the colonization of H. pylori in the host. The
specific mechanism may be a phase variation caused by
slipped-strand mispairing in a 5′ dinucleotide repeat region,
which affects the on-off states of sabA and sabB [30]. Like
BabA, the expression of SabA is rapidly regulated in response
to changes in the gastric environment, such as inflammation
[31]. On the one hand, the expression of SabA can be regu-
lated at the gene level through phase variation; on the other
hand, H. pylori can also adjust the expression of genes at the
cell level through its two-component signal transduction
(TCST) system. The TCST can adapt to the changes in the
environment at the transcriptional level to selectively express
SabA. This is also known as acid-responsive signaling be-
cause the pH of the environment is one of the factors that
activates the signal [32, 33].

Pang et al. analyzed X-ray diffraction patterns after the
extraction of SabA and found that the adhesion domain of
SabA was highly similar to the tetratricopeptide repeat fold
family, which is often gathered into multiprotein complex-
mediated protein interactions. The adhesion domain of SabA
is mainly a barrel transmembrane domain. Its N-terminal and
C-terminal form right angles from the head domain and create
a shaft together. This group also conducted experiments
in vitro and found that the SabA adhesion domain could bind
to sialyl-LewisX, sialyl-LewisA, and LewisX, but not to other
Lewis antigens, such as LewisA, LewisB, or LewisY [34].
The expression of sialyl-LewisX can be further regulated, af-
ter the combination of SabA and sialyl-LewisX. This process
relies on specific glycosyltransferase β3GlcNAcT5, which
can upregulate the expression of sialyl-LewisX, enhancing
the combination of SabA and sialyl-LewisX, which increases
the colonization ability of H. pylori [35]. SabA can also com-
bine with ganglioside in addition to sialyl-LewisX and
LewisX. Benktander et al. extracted two gangliosides sialyl-
neolactohexaosylceramide and sialyl-neolactooctaosy-
lceramide that combined with SabA [36].

The expression of SabA is called its “on” state, while the
nonexpression is called its “off” state. The clinical strains of
H. pylori SabA have a frequent “on/off” state, which means
that SabA can be rapidly regulated in response to the changes
in the gastric ecological environment [37].When the pH in the
stomach decreases, the expression of SabA is increased,
which reflects the ability of H. pylori to adapt to the host.
Meanwhile, the combination of SabA and ganglioside also
mediates the chronic infection process of H. pylori [38]. A
study in Japan showed a close relationship between SabA
and GC [39]. However, another study reported that Asian
strains with SabA-positive status had little influence on the

clinical outcomes [40], so the relationship between SabA
and clinical diseases is still controversial.

OipA (HopH)

Outer inflammatory protein A (OipA) is also a member of the
Hop family, sometimes referred to as HopH. The location of
oipA on the H. pylori chromosome is approximately 100 kb
from the cag PAI [41]. There are no available studies on the
structure of OipA and its receptors so far.

The oip gene also has an “on/off” state, and when OipA is
expressed, CagA is usually positive, which means these two
proteins have a close link [42, 43]. Except for CagA, OipA
seems to have no significant interactions with the other viru-
lence factors. Several studies have reported that OipA can
increase the secretion of interleukin-8 (IL-8) and other inflam-
matory factors to cause neutrophil infiltration, aggravating the
inflammation in the stomach and helping H. pylori to colo-
nize, and this is why it is called an outer inflammatory protein
[42, 44]. OipA also inhibits the apoptosis of gastric cells [45],
reducing the incidence of β-catenin nuclear translocation and
cancer when the oip gene is switched off [46]. However, an
in vitro study showed that OipA did not induce an increase in
IL-8 expression [42]. Therefore, a more extensive sample
study is needed to confirm the relationship between OipA
and IL-8. OipA also plays a vital role in the activation of focal
adhesion kinase (FAK). FAK is a cytoplasmic nonreceptor
tyrosine kinase that can regulate the shape of cells, mediate
cell movement, and play an essential role in the occurrence
and invasive growth of tumors [47–49].

Many studies have suggested that the expression of OipA
was positively correlated with PU, GC, and MALT in both
Asian and Western strains [50–52]. Mahboubi et al. inoculat-
ed mice with OipA vaccine and the amount of H. pylori col-
onized in the stomach was significantly reduced, as well as the
inflammation after some time. Therefore, immunogenic OipA
could be used as an H. pylori vaccine to make up for the
increasing antibiotic resistance of H. pylori [53].

HopQ

HopQ is encoded by the hopQ (omp27) gene and also belongs
to the pore protein Hop family. Studies have reported that hopQ
has two alleles of I and II [12]. A study reported that, among
H. pylori strains, hopQ I type was the most common (72.5%),
followed by hop Q II type (15.4%), and chimeric I type and II
type were the rarest [54]. Further studies on Asian and Western
strains showed that the Asian strains were dominated by the
hopQ I type, while the hopQ II strains were sporadic [55].

We mentioned above that BabA mediates the activation of
T4SS and facilitates the translocation of virulence factor
CagA. Studies have found that HopQ also plays an essential
role in this process [13, 56]. HopQ can exploit the
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carcinoembryonic antigen–related cell adhesion molecule
family (CEACAMs) as host cell receptors, mainly
CEACAM1, CEACAM3, CEACAM5, and CEACAM6 [56,
57]. HopQ I type or II type targets theβ-strands G, F, and C in
the N-terminal domain (C1ND) of CEACAM. It has also been
reported that HopQ binds to the IgV-like domain at the N-
terminal of CEACAMs to facilitate the transfer of crucial
pathogenic factor CagA to host cells [57]. In vitro animal
experiments have also confirmed that HopQ-CEACAM inter-
actions provide a pathway for H. pylori to adhere to the host
and trigger signal transduction, and then, it produces long-
term effects on humans [58, 59].

At present, although there are no additional reports on the
relationship between HopQ and disease, in both Western and
Asian strains, the hopQ I type genotype was significantly
linked with vacA s1 and m1 genotypes and cagA-positive
status, suggesting that HopQ may be an essential virulence
factor related to gastroduodenal diseases [55].

HopZ

Among the Hop family, the hopZ gene has also been well
characterized. HopZ has two allelic variants, HopZ-I and
HopZ-II. The apparent difference between HopZ-I and
HopZ-II is a conserved sequence of only 20 amino acids in
HopZ-I. Furthermore, the conservatism of HopZ-II is higher
than that of HopZ-I, and the change frequency of the amino
acid sequence is lower [60].

The host receptors of HopZ have not been well character-
ized yet. Nonetheless, HopZ may play a vital role in adhesion
[61]. By analyzing the hopZ gene sequences of 15 strains of
H. pylori, Peck found that the slipped-strand mispairingmech-
anism of the CT dinucleotide repeats in the signal peptide
coding region of the HopZ was correlated with the expression
of hopZ [62]. After analyzing the bacteria extracted from the
stomach of infected patients, Kennemann et al. found that the
expression of the gene hopZ also depended on the on/off
switch mediated by phase variation during the early coloniza-
tion of H. pylori, which indicated that the gene hopZ had a
strong selectivity in vivo [13]. The HopZ gene can be
expressed stably in the stomach without mixed infection
[63]. At present, there is not enough evidence to prove that
HopZ has a relationship with other virulence factors [64].
Moreover, after analysis of 63 patients with chronic infection,
it was found that there was no significant correlation between
HopZ and chronic atrophic gastritis, and the relationship be-
tween HopZ and other clinical diseases is not clear [13].

Hom

The Hom family consists of four OMPs: HomA, HomB,
HomC, and HomD.HomA and homB are highly homologous,
with 90% similarity in their nucleotide sequences, with two

identical conserved loci [12]. HomA, homB, and homC se-
quences have considerable geographic heterogeneity, but
homD is highly conserved [65]. Oleastro et al. distinguished
homA and homB at the nucleotide and amino acid levels, and
found they had six allelic variants named AI–AVI [66]. Three
allelic variants were observed for homA (AII, AIII, and AIV).
In contrast, five distinct alleles were observed for homB (AI,
AII, AIII, AV, and AVI), suggesting that homA has more
significant heterogeneity. The expressions of the homA and
homB genes are different in strains all over the world, and
there are significant differences between Western and Asian
strains [66]. Kim et al. found that homC variations in different
geographical origins were related to bab [67]. They identified
and isolated three polymorphic forms of homC: homCS,
homCL, and homCM. HomCL was found to be most closely
related to bab after the detection of different populations.

Similar to OipA, HomB can improve the adhesion of
H. pylori to the host and promote the secretion of IL-8 and other
inflammatory factors. A Portuguese study found that HomB had
a significant positive correlation with the occurrence and devel-
opment of PU in children and adolescents [68], and HomA was
associated with nonulcerative gastritis [69]. At the same time,
some studies also confirmed that there was no significant rela-
tionship between HomB and GC [70]. Therefore, whether
HomB was positive or not could be used as an important viru-
lence factor to distinguish GC from PU [71].

OMPs as treatment targets

The mechanism of drug resistance of bacteria mainly includes
three aspects: producing corresponding hydrolytic and modi-
fying enzymes to destroy drug activity; changing the structure
of the drug target so that the drug cannot be recognized;
blocking drug contact with target sites, including mechanisms
of regulating membrane permeability and the antibiotic expul-
sion system [9]. With increasing numbers of antibiotic-
resistant strains of H. pylori, people are devoting much effort
to finding other treatments besides antibiotic treatment, and
the development of an H. pylori vaccine is currently a hot
research topic [72, 73].

The whole cell of the bacterium vaccine was first investi-
gated in 1992. Chen et al. [74] used ultrasonic grinding of the
bacteria and immunized mice with these antigens and the ad-
juvant cholera toxin, which provided nearly 100% of immune
protection. Due to the complex antigen components of
H. pylori and the long cycle required for whole cell of the
bacterium vaccine production, low production of some strains,
their ease of contamination, and poor storage stability, whole
cell of the bacterium vaccines was abandoned. Then, came the
development of recombinant vaccines that combined protec-
tive antigens with immune adjuvants. Immune adjuvants can
enhance the body’s ability to respond to antigens, especially in

1824 Eur J Clin Microbiol Infect Dis (2020) 39:1821–1830



the early stages of immunity. Vaccines lacking adjuvants have
low or no protective effects [75]. The commonly used immune
adjuvants are cholera toxin [76],E. coli heat-labile enterotoxin
[76], synthetic oligodeoxynucleotides containing

unmethylated CPG motifs [77], and aluminum hydroxides
[78]. The most commonly used protective antigens include
CagA, VacA, urease, catalase, neutrophil-activating protein,
Hsp60, BabA, SabA, and OipA [79].

Table 1 Main OMPs and their receptors and functions

OMPs Gene no. Protein length
(amino acids)

Receptors identified Localization Suggested function

BabA (HopS) 26695:1243 733 Lewis B blood group antigens [19] Gastric epithelia Adhesion to host cell,
enhancing translocation
of CagA via the T4SS

Terminal fucose residues on blood
group O (H antigen), A and B
antigens salivary nonmucin
glycoprotein [89, 90]

Gastric epithelia

Salivary mucin MUC5B and
proline-rich glycoprotein [90]

Saliva

Proline-rich glycoprotein containing
Fucα1-2Galβ motif [90]

Saliva

Secretory immunoglobulin A
containing fucose-oligosaccharide
motifs [91, 92]

Saliva

Salivary agglutinin DMBT1 [93] Saliva

Mucin MUC5AC with
N-Acetylgalactosamine-β-1,
4-nacetylglucosamine [94, 95]

Gastric mucus

Mucin MUC1 [96] Gastric mucus

Mucin MUC2 [97] Gastric mucus

SabA (HopP) 26695:0725 653 Sialyl-Lewis X, sialyl-Lewis A,
Lewis X [37]

Gastric epithelia Establishment of the
T4SS to enhance
inflammatory response

Salivary mucin MUC7,
MUC5B [90, 98]

Saliva

Salivary glycoproteins
(carbonic anhydrase VI, secretory
component, heavy chain of
secretory IgA1, parotid secretory
protein, zinc α2 glycoprotein) [90]

Saliva

Sialylated moieties on the
extracellular matrix protein
laminin [98]

Gastric epithelia

Sialylated structures on the surface
of erythrocytes [99]

Erythrocytes

Sialylated carbohydrates on
neutrophils [100]

Neutrophils

HopQ 26695:1177 641 CEACAMs family [58, 101] Leukocytes,
granulocytes,
endothelial and
epithelial cells.

Adhesion to host cell,
translocation of CagA
via the T4SS

OipA (HopH) 26695:0638 305 Not clear Not clear Adhesion, induction of
inflammatory cytokine
production [44]

HopZ 26695:0009 672 Not clear Not clear Involved in adhesion

HomB J99:0870 669 Not clear Not clear HomB promotes the secretion
of proinflammatory
cytokine IL-8 and increases
the adhesion to host cells

OMPs, outer membrane proteins; T4SS, type IV secretion system;MUC, mucin; CEACAM, carcinoembryonic antigen–related cell adhesion molecule;
IL-8, interleukin-8
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Proteomic studies on E. coli , Leptospira , and
P. aeruginosa have proven that OMPs are related to bacterial
resistance to antibiotics [80–82]. The adhesion of OMPs can
stimulate the immune response of the host cell and promote
the intracellular signal transduction of the proinflammatory
cells, so OMPs can be used as an immunizing antigen [83].
It is also thought that mucosal immunity, rather than systemic
immunity with the production of IgG, plays a greater role in
adhesin-based vaccines [84]. There are also many studies
using proteomics to evaluate suitable OMPs as possible can-
didates for vaccines [85]. BabA can be recognized as a candi-
date vaccine, and the recombinant BabA stimulated the hu-
moral and cellular immunity against H. pylori infection [75].
OipA also plays a crucial role in the first step of H. pylori
colonization-adhesion, so it may be considered as a suitable
candidate for vaccine development [53, 86]. Other OMPs,
HopB, HopC, and HopZ, are being studied further.

However, the ability of H. pylori to vary its OMPs limits the
effectiveness of vaccines or therapeutics that target any single
one of these components [87]. Peck et al. [88] found four mem-
bers of OMPs, namely, HopV, HopW, HopX, and HopY. They
are highly conserved in the strains analyzed, which suggests
they have the potential for vaccine development. No indications
of phase variation such as homopolymeric dinucleotide repeats
or monomeric G or C tracts were found in the gene promoter
regions corresponding to these four proteins, which means that
H. pylori can continuously express these proteins during all
stages of chronic infection, and they are stable as immune anti-
gens. Therefore, the research direction of OMPs as immune
antigens is to look for OMPs that are not prone to phase varia-
tion or to recombine OMPs with antigens such as CagA, VacA,
urease, and catalase to achieve a higher immune protection rate.
For asymptomatic infected patients, analyzing the strains isolat-
ed from them to determine their expression of OMPs is vital.

This will achieve individualized treatment and reduce the drug
resistance rate.

Conclusion

OMPs play a vital role in the colonization of H. pylori. The
adhesion of H. pylori to gastric epithelial cells is a complex
process, involving a variety of adhesins and target receptors
(Table 1). Diverse OMPs can also rapidly regulate themselves
in response to changes in gastric inflammation and pH, to
adapt to changes in their environment. OMPs not only medi-
ate the adhesion between the bacteria and the gastric epithelial
cells but also cooperate with other virulence factors such as
CagA and VacA to increase the release of inflammatory fac-
tors, leading to different clinical outcomes (Fig. 1). Therefore,
OMPs at least partially determine the virulence of H. pylori
infection. Understanding the receptor interaction and mecha-
nisms of pathogenesis of OMPs is essential for the prevention
and treatment of H. pylori infections. Moreover, the potential
of OMPs as vaccines should be further explored as an alter-
native therapeutic option. We expect that further investiga-
tions in this direction would help against H. pylori–mediated
resistance and improve the clinical outcomes of H. pylori
infections.
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