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Abstract
High rates of antimicrobial resistance (AMR) among Gram-negative pathogens (GNP) have been reported in Egypt. Antimicrobial
surveillance and identifying the genetic basis of AMR provide important information to optimize patient care. In this study, we aimed to
identify the beta-lactam resistance phenotypes and genotypes of multidrug-resistant (MDR) non-repetitive GNP from 3 tertiary hospitals
in Egypt.WZe studied 495 non-repetitiveMDRGram-negative isolates frompatientswith complicated intra-abdominal infections (cIAI),
complicated urinary tract infection (cUTI), and lower respiratory tract infection (LRTI), collected as part of the “Study for Monitoring
Antimicrobial Resistance Trends” (SMART) conducted in 3 tertiary hospitals in Cairo, Egypt, from 2015 to 2016. Identification and
susceptibility testing of GNP to antimicrobials were tested in each hospital laboratory and confirmed in a reference laboratory
(International Health Management Associates (IHMA), Inc., Schaumburg, IL, USA). Molecular identification of extended-spectrum
beta-lactamases (ESΒLs), AmpC, and carbapenem resistance genes was conducted in IHMA. Among the 495MDR isolates, Klebsiella
pneumoniae (K. pneumoniae) and Escherichia coli (E. coli) were the most common (52.7% and 44.2%). K. pneumoniae was most
susceptible to colistin, amikacin, ertapenem, and imipenem (92.7%, 72.7%, 69.3%, and 64%, respectively). E. coliwas most susceptible
to colistin (100%), amikacin (94.1%), imipenem (90.4%), and ertapenem (83.6%). ESBL was detected in 96.2% and ESBL genotypes
included blaCTX-M-15 (70.1%), blaTEM-OSBL (48.5%), blaSHV-OSBL (27.9%), and blaCTX-M-14 (10.7%). AmpC resistance genes were
identified in 9.7% of the isolates, dominated by blaCMY-2 (5.7%). Carbapenem resistance genes were detected in 45.3% of the isolates.
In K. pneumoniae, blaOXA-48 dominated (40.6%), followed by blaNDM-1 (23.7%) and blaOXA-232 (4.5%). In E. coli, the most frequent
genes were blaNDM-5 (9.6%), blaOXA-181 (5.5%), blaOXA-244 (3.7%), and blaNDM-1 (3.7%). blaKPC-2 was identified in 0.4% of isolates.
Notably, 32.3% of isolates carried more than one resistance gene. Our findings emphasize the continued need for molecular surveillance
of MDR pathogens, implementation of strict infection control measures, and antimicrobial stewardship policies in our hospitals.

Introduction

Antimicrobial resistance (AMR) among Gram-negative path-
ogens (GNP) increased worldwide. A high rate of AMR has
been reported in Egypt since more than 20 years, among GNP

causing nosocomial infections and outbreaks [1–3]. AMR
rates have increased especially among nosocomial GNP, prob-
ably due to widespread abuse of antimicrobials including car-
bapenems in Egyptian hospitals and poor compliance with
infection control practices [4, 5]. In small-scale studies,
blaOXA, blaNDM, blaVIM, blaIMP, and blaKPC carbapenemase
genes were detected in Egypt [6–8]. As the genetic basis of
beta-lactam resistance was not yet studied at a large scale in
Egypt, we aimed to molecularly characterize multidrug-
resistant (MDR) GNP.

Methods

Study sites and strains

This study was conducted in 3 major tertiary care Egyptian
hospitals participating in the “Study for Monitoring
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Antimicrobial Resistance Trends” (SMART) from 2015 to
2016. The hospitals were Ain Shams University Hospital, Ain
Shams Specialized University Hospital, and Dar Al-Fouad
Hospital. Isolates were collected according to SMART protocol
as previously reported [9–11]. Briefly, the participating hospi-
tals collected 1070 non-repetitive consecutive GNP isolates
from lower respiratory tract specimens, urine and pus or ab-
dominal fluid of hospitalized patients with lower respiratory
tract infections (LRTI), complicated urinary tract infections
(cUTI), and complicated intra-abdominal infections (cIAI) dur-
ing the study period. Of these, we studied 495 isolates that
showed phenotypic resistance to third-generation cephalospo-
rins or carbapenems. The identification of GNP, susceptibility
testing, and detection of resistance phenotypes were conducted
in hospital laboratories according to the methods of the Clinical
and Laboratory Standards Institute [12] and confirmed in a
reference laboratory (International Health Management
Associates (IHMA), Inc., Schaumburg, IL, USA), where sus-
ceptibility and extended-spectrum β-lactamase (ESBL) pheno-
typewere determined using the CLSI brothmicrodilutionmeth-
od with custom dehydrated panels manufactured by Trek
Diagnostic Systems (Thermo Scientific, Independence, OH)
in 2015–2016. MIC interpretive criteria followed the 2017
M100-S27 guidelines of the CLSI [13]. EUCAST breakpoints
were used only for colistin against Enterobacteriaceae, because
no CLSI breakpoints exist [14].The susceptibility of all Gram-
negative isolates combined was calculated using breakpoints
appropriate for each species.

Genotypic identification of antimicrobial resistance
genes

The molecular characterization of ESBL and carbapenemases
was done using the Check-Points MDR CT103 (Check-Points

Health B.V., Wageningen, The Netherlands) microarray kit,
which detects most carbapenemase, ESBL, and AmpC genes:
ESΒLs (class A)—blaTEM, blaSHV, blaCTX-M, blaVEB, blaPER,
and blaGES; blaAmpC β-lactamase genes (class C)—blaACC,
blaACT, blaCMY, blaDHA, blaFOX, blaMIR, and blaMOX; and
carbapenemases (class A)—blaKPC and blaGES; (class B)—
blaNDM, blaIMP, blaVIM, blaGIM, and blaSPM; and (class D)—
blaOXA-48-like. Then the genes encoding ESΒL, carbapenemases,
and AmpC were sequenced in their entirety in IHMA [11].

Results

Strains and phenotypic antibiotic susceptibility

The 495 MDR isolates were derived from cIAI (181, 36%),
LRTI (128, 26%), and cUTI (186, 38%). Overall Klebsiella
pneumoniae and Escherichia coli were the most common
(52.7% and 44.2%) and were also the predominant organisms
in cIAI (52.2% and 45.9%, respectively), cUTI (43% and
54.8%, respectively), and LRTI (71.1% and 26.6%, respec-
tively) (Table 1). K. pneumoniae was most susceptible to co-
listin, amikacin, ertapenem, and imipenem (92.7%, 72.7%,
69.3%, and 64%, respectively). E. coli remained most suscep-
tible to colistin (100%), amikacin (94.1%), imipenem
(90.4%), and ertapenem (83.6%).

Identification of blaESBL genes of the TEM, SHV,
and CTX-M types

ESBL production was detected in 96.2% of the MDR isolates
(Table 2). ESBL genotypes included blaCTX-M-15 (70.1%),
blaTEM-OSBL (48.5%), blaSHV-OSBL (27.9%), and blaCTX-M-14

(10.7%). The predominant ESBL gene in both E. coli and K.
pneumoniae was blaCTX-M-15 (Table 3).

Identification of carbapenemase genes

Carbapenem resistance genes were detected in 45.3% of the
MDR isolates. In K. pneumoniae, blaOXA-48 dominated
(40.6%), followed by blaNDM-1 (23.7%) and blaOXA-232 (4.5%).
InE. coli, themost frequent genes were blaNDM-5 (9.6%), blaOXA-
181 (5.5%), blaOXA-244 (3.7%), and blaNDM-1 (3.7%). blaKPC-2
and blaVIM-2 were less frequently identified (Table 4).

Identification of AmpC β-lactamases resistance genes

AmpC resistance genes were identified in 9.7% of the isolates;
blaCMY-2 was the most predominant one (Table 5). In 153
isolates (32.3%), coexistence of 2 or more resistance genes
was detected (Table 4). The commonest combination of 2
genes was blaCTX-M-15 with blaNDM-5 (2.6%); the commonest
combination of 3 genes was blaSHV-OSBL, blaCTX-M-15, and

Table 1 Distribution of microorganism among clinical isolates

Organisms IAI UTI LRT

No. % No. % No. %

Escherichia coli (219) 83 45.9 102 54.8 34 26.6

Klebsiella pneumoniae (266) 95 52.5 80 43.0 91 71.1

Others (10) 3 1.7 4 2.2 3 2.3

Total (495) 181 186 128

Table 2 Percentage of ESΒL, AmpCβ-lactamases, and carbapenemase
genes among 495 MDR isolates

Resistance genes Number Percentage

ESΒL 474 96.2

AmpC 48 9.7

Carbapenemase 224 45.3
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blaNDM-1 (9.2%); the commonest combination of 4 genes was
blaSHV-OSBL, blaTEM-OSBL, blaCTX-M-15, and blaNDM-1 (12.4%);
and the commonest combination of more than 4 genes was
blaSHV-OSBL, blaTEM-OSBL, blaCTX-M-15, blaCTX-M-14, blaNDM-1,
and blaOXA-48 (5.9%) (Table 6). Tables 7 and 8 show K.
pneumoniae and E.coli susceptibility (%) against MDR-
GNP per type of infection.

Discussion

Surveillance for AMR is essential to monitor trends, identify
emerging resistance mechanisms, and support the antimicro-
bial stewardship programs. To our knowledge, this is the most
extensive molecular study of AMR in Egypt including 495

MDR Gram-negative isolates. In all hospitals, more than half
of infections were present on admission (community acquired
or transferred from other hospitals; data not shown). We iden-
tified 43 resistance phenotypes distributed among isolates
from the 3 hospitals. Typing of nosocomial GNP in each hos-
pital based on the phenotypic resistance patterns showed no
clonal spread except for few isolates in each hospital (data not
shown).

K. pneumoniae was a common pathogen in all 3 types of
infection, and most isolates were MDR. Due to its large ac-
cessory genome including plasmids and chromosomal loci,K.
pneumoniae isolates may act as opportunistic pathogens. Such
strains infect critically ill and immunocompromised patients
mostly, whereas other strains of K. pneumoniae (hyper-
virulent) may even infect healthy people in community

Table 3 ESΒL predominant genotypes among E. coli and K. pneumoniae

SHV no. (%) TEM no. (%) CTX-M-1 no. (%) CTX-9 no. (%)

SHV-OSBL SHV-12 TEM-OSBL TEM-ESΒL CTX-M-55 CTX-M-15 CTX-M-27 CTX-M-14

E. coli (219) 1 7 104 2 2 150 2 1

(0.5) (3.2) (47.5) (4.2) (4.2) (68.5) (0.9) (0.5)

K. pneumoniae (266) 136 34 129 1 0 190 12 52

(51.1) (12.8) (48.5) (0.4) 0.0 (71.4) (4.5) (19.5)

Others (10) 1 1 7 0 0 7 0 9

(10) (10) (70) (0) (0) (70) (0) (90)

Total (495) 138 42 240 3 2 347 14 53

(27.9) (8.5) (48.5) (0.6) 0.4 (70.1) (2.8) (10.7)

Table 4 Carbapenemase
genotypes among E. coli and K.
pneumoniae

Carbapenemase
genes

KPC
no. (%)

OXA no. (%) MBL no. (%) VIM
no. (%)

KPC-2 OXA-
48

OXA-
244

OXA-
232

OXA-
181

NDM-
1

NDM-
4

NDM-
5

E. coli (219) 0 5 8 0 12 8 1 21 1

(0) (2.3) (3.7) (0) (5.5) (3.7) (0.5) (9.6) (0.5)

K. pneumoniae
(266)

2 108 0 12 3 63 1 8 3

(0.8) (40.6) (0) (4.5) (1.1) (23.7) (0.4) (3.0) (1.1)

Others (10) 0 2 0 0 0 3 0 1 1

(0) (20) (0) (0) (0) (30) (0) (10) (10)

Total (495) 2 115 8 12 15 74 2 30 5

(0.4) (23.2) (1.6) (2.4) (3.0) (14.9) (0.4) (6.1) (1.0)

Table 5 Total AmpC β-
lactamases genotype among
Enterobacteriaceae isolates

CMY II no. (%) DHA-
1

ACT-
TYPE

CMY-
2

CMY CMY-
TYPE

CMY-
4

CMY-
42

CMY-
59

28 2 3 1 3 2 6 3

(5.7) (0.4) (0.6) (0.2) (0.6) (0.4) (1.2) (0.6)
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settings. Many of the virulent strains encode carbapenemases
[15]. E. coli was a frequently identified pathogen from cIAI
and cUTI, which is consistent with previous reports, and was
also a frequent pathogen in LRTI. E. coli pneumonia is un-
common and may result from micro-aspiration of colonized
upper airway secretions in severely ill patients; hence, it is a
well-known cause of nosocomial pneumonia [16]. However,
E. coli pneumonia may also be community-acquired in pa-
tients who have underlying diseases such as diabetes mellitus,
alcoholism, chronic obstructive pulmonary disease, and E.
coli UTI [17]. Our results confirm the results of previous

studies in Egypt [3, 18] that showed high rates of ESΒL and
carbapenem resistance among ICU pathogens. For example,
in the study of Talaat et al. [18], ESBL and carbapenem resis-
tance were identified in 54% and 13.8% of E. coli isolates
compared with 42.5% and 48.1% in K. pneumoniae isolates,
respectively.

Among the many types of ESΒLs reported, blaCTX-M-15 and
blaCTX-M-14 are the most commonly identified worldwide as
the genes encoding CTX-M enzymes (blaCTX-M) can be hor-
izontally mobilized by various genetic elements [19]. This
reflects the situation in Egypt as well. AmpC genes were less

Table 6 Common combinations
of resistant genes among tested
isolates

Types of combination No. of isolates Percentage

2 combination 15 9.8

blaCTX-M-15; blaNDM-5 4 2.6

3 combinations 44 28.8

blaSHV-OSBL; blaCTX-M-15; blaNDM-1 14 9.2

blaSHV-OSBL; blaCTX-M-14; blaOXA-48 8 5.2

blaSHV-OSBL; blaCTX-M-15; blaOXA-48 7 4.6

4 combinations 70 45.8

blaSHV-OSBL; blaTEM-OSBL; blaCTX-M-15; blaNDM-1 19 12.4

blaSHV-OSBL; blaCTX-M-15; blaCTX-M-14; blaOXA-48 11 7.2

blaSHV-12; blaCTX-M-15; blaCTX-M-27; blaOXA-48 8 5.2

bla SHV-OSBL; bla TEM-OSBL; bl CTX-M-14; blaOXA-48 6 3.9

bla TEM-OSBL; bla CTX-M-15; bla CMY-2; bla NDM-5 6 3.9

bla SHV-OSBL; bla CTX-M-15; bla NDM-1; bla OXA-48 5 3.3

bla SHV-OSBL; bla CTX-M-14; bla NDM-1; bla OXA-48 4 2.6

> 4 combinations 22 14.4

bla SHV-OSBL; blaTEM-OSBL; blaCTX-M-15; blaCTX-M-14; blaNDM-1; blaOXA-48 9 5.9

blaSHV-OSBL; blaCTX-M-15; blaCTX-M-14; blaNDM-1; blaOXA-48 5 3.2

Table 7 K. pneumoniae
susceptibility (%) against MDR-
GNP per type of infection

Body site AK AMC FEP CTX FOX CTZ CRO CST ETP IMP LEV TZP

IAI 76.5 13.4 8.1 0 19.4 3.1 0 93.7 74.5 58.2 25.5 20.4

LRTI 57.5 0 2.3 1.2 17.2 2.3 1.2 89.7 51.7 75.8 20.7 16.1

Urine 84.2 1.9 5.7 1.4 14.3 5.7 1.4 97.1 81.4 60 18.6 18.6

Total 72.7 5.6 5.6 0.7 16.7 3.4 0.8 92.7 69.3 64.0 22 18.6

AK amikacin, AMC ampicillin/sulbactam, FEP cefipeme, CTX ceftriaxone, FOX cefoxtine, CTZ ceftazidieme,
CRO cefotaxime, CST colistin, ETP ertapenem, IMP imipenem, LEV levofloxacin, TZP piperacillin/tazobactam

Table 8 E. coli susceptibility (%) against MDR-GNP per type of infection

Body site AK AMC FEP CTX FOX CTZ CRO CIP CST ETP IMP LEV TZP

IAI 91.6 6.8 0 0 12.1 10.8 0 24.1 100 84.3 86.7 25.3 43.4

LRTI 91.2 18.2 0 0 17.7 11.8 0 17.7 100 79.4 91.2 17.7 41.2

Urine 96.8 14.3 1.1 0 16 6.4 0 11.7 100 84.1 92.6 11.7 56.4

Total 94.1 7.3 0.4 0 14.2 9.1 0 17.8 100 83.6 90.4 18.3 48.9

AK amikacin, AMC ampicillin/sulbactam, FEP cefipeme, CTX ceftriaxone, FOX cefoxtine, CTZ ceftazidieme, CRO cefotaxime, CST colistin, ETP
ertapenem, IMP imipenem, LEV levofloxacin, TZP piperacillin/tazobactam
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frequently identified (9.7%), usually in combination with oth-
er resistance genes. CMY-2-like enzymes were the most pre-
dominant. Other detected genes were blaCMY-42, blaDHA, and
blaACT-like. This is in keeping with recent reports on acquisi-
tion of plasmid-mediated cephalosporinase producing
Enterobacteriaceae after a travel to the tropics and North
Africa including Egypt [20, 21]. The high rate of ESΒL in
Egypt is essentially due to inappropriate use of antimicrobials
in human and animal health care. Of the patients treated in
public outpatient health care facilities, 49.8% received antibi-
otics, and antibiotics are still sold over the counter without
prescription [22]. Moreover, there is extensive use of antimi-
crobials for prevention and treatment of infections in veteri-
nary care, and ESΒL and AmpC resistance mechanisms were
detected in veterinary E. coli isolates in Egypt [23]. This is an
urgent public health problem especially with a growing body
of evidence supporting foodborne transmission of resistance,
especially from poultry, as poultry meat exhibits the highest
levels of contamination by MDR bacteria [24, 25].

The most important mechanism of carbapenem resistance
is the production of carbapenemases; therefore, all isolates
were investigated to identify the carbapenemase genes. We
identified them in 45.4% of tested isolates; blaOXA followed
by blaNDM genes dominated, while only 2 isolates of K.
pneumoniae harbored blaKPC-2 genes. These results confirm
previous small-scale reports that the blaNDM and blaOXA genes
are the predominant in Egypt and Middle East [26].

The present study detectedmassive coexistence of different
resistance genes among tested isolates. This coexistence could
have contributed to the observed elevated variability in resis-
tance phenotypes and genotypes among GNP in Egypt [15].

In conclusion, our study detected alarming rates of
resistance and identified many resistance mechanisms
in clinical GNP from Egyptian tertiary care hospitals.
These high resistance rates highlight the importance of
continuous monitoring of the resistance trends, adher-
ence to infection control policies, and underscore ur-
gently implementing a national antimicrobial steward-
ship plan in Egypt.
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