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Abstract The emergence of carbapenem-resistant enterobac-
terial species poses a serious threat to public health world-
wide. OXA-48-type carbapenem-hydrolyzing class D
β - l a c t am a s e s a r e w i d e l y d i s t r i b u t e d amon g
Enterobacteriaceae, with significant geographical differ-
ences. To date, 11 OXA-48-like variants have been identified,
with classical OXA-48 being the most widespread. These en-
zymes show high-level hydrolytic activity against penicillins
and low-level hydrolysis towards carbapenems. Since the first
description of the OXA-48 carbapenemase in Turkey, bacte-
rial strains producing the enzyme have been extensively re-
ported in nosocomial and community outbreaks in many parts
of the word, particularly in the Mediterranean area and
European countries. The rapid spread of Enterobacteriaceae
producing OXA-48-like enzymes in different ecosystems has
become a serious issue recently. The number of reservoirs for
such organisms is increasing, not only in hospitals, but also in
the community, among animals (e.g., livestock, companion
animals, and wildlife) and in the environment. This review
aims to summarize the main characteristics of the OXA-48-

type carbapenemases, covering genetic and enzymatic traits,
their epidemiology, clonality and associated genes, correlation
with extended-spectrum β-lactamases (ESBLs) or plasmidic
AmpC (pAmpC) in different bacterial species worldwide.
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β-lactam resistance and enterobacteria

Enterobacteriaceae are opportunistic pathogens that are found
as commensals in the intestinal tract of humans and animals,
and are frequently associated with a variety of community and
hospital-acquired infections [1]. β-lactams including penicil-
lins, cephalosporins, aztreonam, and carbapenems are the
principal therapeutic choices for the treatment of
Enterobacteriaceae infections, and constitute approximately
60% of all clinically used antibiotics in human and veterinary
medicine [2]. Consumption of antibiotics has risen over recent
years in many countries [3], both in humans and animals, and
has contributed to an increase of antibiotic residues in the
environment. The presence of antibiotic residues in the envi-
ronment and many if not all reservoirs of life exerts selective
pressure leading to the emergence and dissemination of bac-
terial resistance [4].

Gram-negative bacteria, including Enterobacteriaceae,
have developed multiple strategies to overcome antibiotic ef-
fects by employing several resistance mechanisms (alteration
of the antibiotics by production of enzymes, modification of
the bacterial envelope by decreasing the porin production or
increasing the expression of efflux pump systems, changes in
cellular permeability of antibiotics, and reduction of the anti-
biotic affinity by the modification of drug targets) [5]. These
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phenomena are encountered in various clinical isolates show-
ing a multidrug-resistant (MDR) phenotype [6].

Production of β-lactamases constitutes the principal
mechanism of bacterial resistance to β-lactam antibiotics
among enterobacteria [7]. The first described β-lactamase
i n G r am - n e g a t i v e b a c t e r i a w a s TEM- 1 ( f o r
TEMONEIRA) isolated from Escherichia coli in 1963 in
Greece [8]. In turn, the pharmaceutical industry developed
novel β-lactam compounds resistant to hydrolysis by
large spectrum β-lactamases (TEM-1/2 and SHV-1) that
were popularly known as third-generation cephalosporins
(3GCs). The further selection of resistant mutants by
overproduction of chromosomal AmpC through acquisi-
tion of either extended-spectrum β-lactamases (ESBLs)
or plasmidic AmpC (pAmpC) has compromised the use
of 3GCs for the treatment of serious infections caused by
Gram-negative bacteria [9]. Among the ESBLs genes de-
scribed, blaTEM genes, blaSHV genes, and particularly
blaCTX-M genes are the most frequently reported [10]. In
parallel, pAmpC, including blaCMY and blaDHA, have
increased over the last decade [11], but are less frequently
reported compared to ESBLs genes [12].

To counter this situation, carbapenems were developed and
introduced into the therapeutic arsenal through the 1990s [8].
These molecules are extremely stable to degradation by
ESBLs and pAmpC, and are used to treat severe infections
caused by ESBLs and pAmpC producers [13]. In 1988, the
first plasmidic carbapenemase, IMI-1, was reported in
Japanese Pseudomonas aeruginosa isolate [14]. However,
the first carbapenemase producer in Enterobacteriaceae
(NmcA) was not identified until 1993 in a clinical isolate of
Enterobacter cloacae [15]. This class A carbapenemase was
chromosomally encoded, but has rarely been reported since.
Subsequently, numerous carbapenemase-producing
Enterobacteriaceae (CPE) have been identified [16].
Nowadays, carbapenemases described in Enterobacteriaceae
are divided into three classes according to the Ambler classi-
fication: (i) class A β-lactamases (Klebsiella pneumoniae
carbapenemase (KPC), NmcA, IMI, Sme, and GES-type
which are inhibited by clavulanic acid or boronic acid, (ii)
class B metallo-β-lactamases [New Delhi metallo-β-
lactamase (NDM), imipenemase (IMP), and Verona
integron-encoded metallo-β-lactamase (VIM)] hydrolyzing
all β-lactams except aztreonam and inhibited by chelating
agents such as EDTA and dipicolinic acid, and (iii) class D
β-lactamases (oxacillinases), including OXA-48-like en-
zymes hydrolyzing carbapenems but only weakly (or not)
hydrolyzing cephalosporins and not inhibited by classical in-
h ib i to rs [17 , 18] . The carbapenemase genes in
Enterobacteriaceae have been shown to be associated with
mobile genetic elements such as plasmids or transposons,
thereby facilitating their dissemination into the community
and the environment [19].

In recent years, an increasing number of studies that in-
c l ud e OXA-48 - l i k e c a r b apenemas e - p r oduc i ng
Enterobacteriaceae have been published including humans
and veterinary practices, animal production, food chain, com-
panion animals, wild animals, agriculture, and environments
across different countries.

Biochemical and genetic properties of OXA-48-like

The OXA-48 carbapenemase was first reported in a Klebsiella
pneumoniae isolate from a 54-year-old man with a urinary
tract infection and skin burns from Istanbul (Turkey) in 2001
[20]. Since then, it has been identified as a source of nosoco-
mial outbreaks in this country [21].

Analysis of the enzyme kinetics of OXA-48 showed that it
has high-level hydrolytic activity against penicillins and low-
level hydrolysis towards carbapenems [22]. Among carbapen-
ems, OXA-48 has a low level of hydrolytic activity for both
imipenem and meropenem compared to ertapenem, which
represents the best substrate for this enzyme [23].

Since the discovery of OXA-48, several variants have
emerged including OXA-162 (single substitution at
Thr213Ala), identified from K. pneumoniae isolates in
Turkey [24], OXA-163 (single substitution at Ser212Asp
and four deletions at Arg214, Ile215, Glu216, and Pro217),
identified inK. pneumoniae and Enterobacter cloacae isolates
in Argentina [25], OXA-181 (four substitutions at Thr104Ala,
Asn110Asp, Glu168Gln, and Ser171Ala), identified from a
K. pneumoniae isolate in India [26], OXA-204 (two substitu-
tions at Gln98His Thr99Arg), identified in K. pneumoniae
isolates in patients having a link with North Africa [27],
OXA-232 (single substitution at Arg214Ser), identified in
France from a K. pneumoniae isolate recovered from a patient
who had been transferred from India to Mauritius [28], OXA-
244 (single substitution at Arg214Gly) and OXA-245 (single
substitution at Glu125Tyr), collected fromK. pneumoniae iso-
lates in Spain [29], OXA-247 (two substitutions at Tyr211Ser
and Asp212Asn), identified from a K. pneumoniae isolate
recovered in Argentina [30], OXA-370 (single substitution
at Gly220Glu), reported from an Enterobacter hormaechei
isolate in Brazil [31], and OXA-405 (four deletions at
Thr213 to Glu216), identified from Serratia marcescens iso-
lates in France [32]. These variants differ from OXA-48 by
one to five amino acid substitutions and/or by a four-amino-
acid deletion, which results in a modified β-lactam hydrolysis
spectrum (Table 1, Fig. S1) [18].

While OXA-163 appears to be a very poor hydrolyser of
the carbapenems, OXA-181 and OXA-232 are broadly similar
to OXA-48 in their activity; OXA-232 has a reduced ability to
hydrolyze carbapenems but possesses higher hydrolysis activ-
ity against penicillins [25, 28]. Interestingly, OXA-163 and
OXA-405 have marginal carbapenem hydrolytic activity, but
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showed capacity to hydrolyze ceftazidime and aztreonam, and
they share an increased ability to hydrolyze cefotaxime and
cefepime over OXA-48, making these enzymes more similar
to ESBL enzymes than to carbapenemase [25, 33].

It has been proposed that the progenitor gene of OXA-
48 is a property of Shewanella spp., a waterborne bacte-
rium. Shewanella oneidensis strain MR-1 has been found
to naturally harbor the blaOXA-54 gene, which is closely
related to the blaOXA-48 gene [34]. Shewanella
xiamenensis is a recently validated species that has been
reported in different parts of the world [35]. The blaOXA-
181 gene seems likely to have originated from
S. xiamenensis [36]. In addition, several other variants
o f b laOXA-48 genes have been iden t i f i ed in
S. xiamenensis strains including blaOXA-48, blaOXA-
199 [37], and blaOXA-204 [38]. Mobile genetic elements
might have been involved in the mobilization of
Shewanella chromosomal carbapenemases to plasmids,
which have then spread to other bacterial species [39].

The emergence of the OXA-48 enzyme is mediated by the
rapid spread of a broad host-range conjugative plasmid har-
boring the blaOXA-48 gene located within a composite trans-
poson, namely Tn1999, that flanks the carbapenemase gene
and cooperates in mobilizing an intervening DNA segment
[40, 41]. Sequence analysis of plasmid pOXA-48 demonstrat-
ed that the blaOXA-48 gene is flanked by two copies of
IS1999 [40]. In addition, the blaOXA-48 gene could be
inserted into the second variant Tn1999.2 which was identi-
fied in clinical K. pneumoniae isolates from Turkey. The
Tn1999.2 differs to Tn1999 by the insertion of IS1R within
the IS1999 located upstream of blaOXA-48. The Tn1999.3
has been identified in an E. coli isolate from Italy, with a

second copy of IS1R located downstream of blaOXA-48
[21, 42]. Recently, the blaOXA-48 gene was identified as a
part of a novel transposon variant, named Tn1999.4. This
transposon has been recovered in E. coli and E. cloacae, com-
posed of Tn1999.2 truncated by another transposon, Tn2015
(Fig. 1). This latter is comprised of ISEcp1, blaCTX-M-15,
and a truncated Tn2-type transposase gene [43]. Finally, the
blaOXA-48 gene was found in Tn1999.5, a novel variant of
the Tn1999.2 transposon in which the lysR gene encoding a
transcriptional regulator was truncated by the ISKpn19 ele-
ment [44].

IS1999 was initially reported in clinical Pseudomonas
aeruginosa isolates from Thailand [45]. In these strains,
IS1999 was inserted into an integron-specific recombination
site, attI1, upstream of the integron-borne blaVEB-1 gene that
encodes an ESBL [40].

The blaOXA-48-like genes are most frequently observed
in the IncL/M plasmids which carry no additional resistance
genes and are 60–70 Kb [46]. The IncL/M plasmids are cur-
rently one of the six major resistance plasmid families identi-
fied in clinically relevant Enterobacteriaceae, and are now
commonly identified among environmental and clinical iso-
lates, together with several IncF variants, IncA/C, IncI,
IncHI2, and IncX3 and ColE-like replicons [47]. The high
transfer efficiency of the epidemic IncL/M plasmid to any
enterobacterial species is the reason proposed for the success-
ful spread of blaOXA-48 [48].

A chromosomal location of blaOXA-48 was recently re-
ported by Turton et al. [49]. Two E. coli isolates carrying a
chromosomally integrated blaOXA-48 shared a similar ar-
rangement, with a plasmid fragment containing blaOXA-48
flanked by IS1R elements integrated into the chromosome,

Table 1 Variants of OXA-48-like enzyme and degree of homology (%)

OXA-48-like
variants

OXA-
48

OXA-
162

OXA-
163

OXA-
181

OXA-
199

OXA-
204

OXA-
232a

OXA-
244

OXA-
245

OXA-
247b

OXA-
370

OXA-
405

OXA-48 100 99 98 98 99 99 98 99 99 98 99 98

OXA-162 99 100 98 98 98 99 98 99 99 97 99 98

OXA-163 98 98 100 98 98 98 98 98 98 99 98 99

OXA-181 98 98 98 100 98 98 99 98 98 98 98 98

OXA-199 99 98 98 98 100 99 99 99 99 99 99 99

OXA-204 99 99 98 98 99 100 99 99 99 99 99 99

OXA-232a 98 98 98 99 99 99 100 98 98 98 98 98

OXA-244 99 99 98 98 99 99 98 100 99 99 99 99

OXA-245 99 99 98 98 99 99 98 99 100 99 99 99

OXA-247b 98 97 99 98 99 99 98 99 99 100 98 99

OXA-370 99 99 98 98 99 99 98 99 99 98 100 98

OXA-405 98 98 99 98 99 99 98 98 98 98 98 100

OXA-48-like variants deposited and compared percentages of identity in NCBI website (http://www.ncbi.nlm.nih.gov/pubmed/)
a OXA-232: A mutant derivative of OXA-181, not derived from OXA-48
bOXA-247: Two amino acid derivatives of OXA-163, not originating from OXA-48
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although the length of the plasmid fragment and the insertion
site differed between the two isolates. Beyrouthy et al. showed
that the insertion of the blaOXA-48 gene into the E. coli chro-
mosome is not a rare event and may occur at different sites,
and that the DNA fragments harboring the blaOXA-48 gene
originated in a pOXA-48a-type plasmid [41]. In another study,
Beyrouthy et al. indicated that plasticity of the OXA-48 ge-
netic environment was mediated by IS1R insertion sequences.
The insertion sequences can induce the transfer of the OXA-
48 encoding gene into E. coli chromosomes and thereby pro-
mote its persistence and expression at low levels [50]. The
same was also described for the blaOXA-181 gene in
K. pneumoniae [51].

OXA-48-like and associated genes

ESBL and pAmpC

A significant proportion of OXA-48-like producers have been
found to co-express ESBLs and pAmpC genes on additional
plasmids (Fig. 2). Several studies describing ESBLs in asso-
ciation with OXA-48 in Enterobacteriaceae have been report-
ed, including blaTEM, blaSHV, and blaCTX-M-like genes.
The association with blaCTX-M-like gene was the most fre-
quently detected, including CTX-M-1 [52], CTX-M-8 [53],

CTX-M-9 [52], CTX-M-14 [54], CTX-M-15 [55], CTX-M-
24 [56], CTX-M-27 [57], and CTX-M-123 variants [58].

Among SHVenzymes, different variants have been identi-
fied: SHV-11 and SHV-12 have been reported in E. coli and
K. pneumoniae in many European countries and in the
Mediterranean area; SHV-27 was detected in one
K. pneumoniae isolate in Morocco [59]; SHV-28 was identi-
fied in K. pneumoniae from Germany, India, Kuwait,
Morocco, and Tunisia [60–64]; SHV-85 and SHV-133 were
found in one isolate of K. pneumoniae in Algeria [65]; and
SHV-134 was described in Spain [66].

The TEM-type ESBL determinants were also reported in
OXA-48-producing isolates: TEM-5 in E. coli from USA
[58]; TEM-31 in K. pneumoniae from Taiwan; and TEM-
198 in E. cloacae from Algeria [67, 68].

Furthermore, some studies reported co-production both of
OXA-48-like and pAmpC genes. CMY-2 has been recovered
in K. pneumoniae and E. coli from Algeria, Denmark,
Germany, India, Tunisia, and the USA [58, 64, 69–72];
CMY-4 in K. pneumoniae isolates from Singapore, Thailand
and Tunisia [54, 73–76]; CMY-6 in a single K. pneumoniae
isolate from India [77]; and DHA-1 in K. pneumoniae from
Greece, Morocco, Sri Lanka, Thailand, and Tunisia [33, 59,
62, 71, 78].

In addit ion, VEB-8 was identif ied in a single
K. pneumoniae isolate from Tunisia that co-produced the
CMY-2 and CTX-M-15 enzymes [79].

Fig. 1 Genetic environments of the blaOXA-48-bearing Tn1999-like transposon structures in Enterobacteriaceae isolates
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Association with other carbapenemase-encoding genes

Several studies have reported the association between
OXA-48-like and NDM-1 in enterobacterial species from
different count r ies [60, 78, 80–92]: NDM-5 in
K. pneumoniae from South Korea and the USA [51, 93];
NDM-7 in K. pneumoniae from India, Iran, and Spain
[77, 92, 94]; KPC-2 in K. pneumoniae from Belgium
and Malaysia [83, 95]; VIM-1 in different enterobacteria
from Egypt and France [84, 87, 96]; VIM-5 in

K. pneumoniae from Turkey [82]; and IMP-1 in E. coli
from India [88].

Additional co-located resistance genes

Other plasmidic resistance genes were also associated with
OXA-48-like-production in enterobacteria.

The plasmid-mediated resistance markers to quinolones
(PMQR) qnrA, qnrB, qnrS and aac (6′)-Ib-cr have usually
been associated with OXA-48-producers in clinical

Fig. 2 Distribution of OXA-48-like-producers co-producing ESBLs and pAmpC genes. (A) Global distribution outside of Europe; (B) European
distribution
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isolates. These genes have been described from Germany
in E. cloacae [97], from Morocco in K. pneumoniae and
E. coli [61], from North America in K. pneumoniae [98],
from Saudi Arabia in K. pneumoniae and E. coli [99], from
Senegal in E. coli, E. cloacae , E. sakazakii , and
K. pneumoniae [100], from Tunisia in Providencia rettgeri
[101], and from Turkey in C. freundii [102]. The associa-
tions between OXA-48-producers and PMQR markers
were not exclusively found in humans, with Stolle et al.
reporting qnrB and aac(6′)-Ib-cr associated with blaCTX-
M-1, blaSHV-12, blaTEM-1, blaOXA-2, blaCMY-2
genes, recovered in E. coli, and K. pneumoniae in
German dogs [64].

An OXA-232-producing K. pneumoniae was reported in a
clinical strain from India, including β-lactamases (CTX-M-
15, SHV-28 and OXA-1-like), aminoglycoside resistance
genes (armA and aacC), and fluoroquinolone resistance deter-
minants (qnrB and aac(6′)-Ib-cr) [60]. Additionally, OXA-
181-producing K. pneumoniae and E. coli were associated
with qnrS or qnrB and aac(6′)-Ib-cr in Australia, Canada,
and Thailand [71, 76, 103].

Finally, plasmid-mediated 16S rRNAmethylase aminogly-
coside resistance determinants armA, rmtB, rmtC, and rmtF
were also combined with OXA-48-like producers. They were
observed in Australia, Greece, India, Morocco, North
America, and Thailand [60, 76, 80, 98, 103, 104]. In addition,
aac(3)-II determinant were recovered in K. pneumoniae in
Morocco [61].

Epidemiology of OXA-48-like from human sources

Different studies have been published reporting the emer-
gence and dispersal of OXA-48 genes and the bacterial
strains harboring such genes in a worldwide fashion. A
search in PubMed using OXA-48 in humans as a keyword
showed an increasing number of reports of OXA-48 pro-
ducers for the period 2004 to 2017 (from two between
2004 and 2007 to 73 between 2016 and 2017). Although
blaOXA-48-like genes have been most often found in
K. pneumoniae, the plasmids harboring this resistance
are now widespread in multiple species such as E. coli,
Klebsiella oxytoca, E. cloacae, Enterobacter aerogenes,
Enterobacter sakasakii, Citrobacter freundii, Citrobacter
koseri, Citrobacter braakii, Providencia rettgeri, Serratia
marcescens, Salmonella enterica, Morganella morganii,
and Raoultella planticola [21, 41, 61, 84, 97, 100,
105–108]. Figure S2 shows the distribution of OXA-48-
producing Enterobacteriaceae species over the period
2004–2017. The clonal dis t r ibut ion of OXA-48
carbapenemase-producing Enterobacteriaceae isolates is
reported in Fig. 3.

Worldwide dissemination of OXA-48-like enzymes

Since the first description of the OXA-48 carbapenemase in
Turkey, the enzyme has been extensively reported as a source
of nosocomial and community outbreaks in many parts of the
world, particularly in the Mediterranean area [109] (Fig. 4). It
has been described in Algeria [65, 110–114], Argentina [98],
Belgium [83, 85, 115–117], Bulgaria [118], China [119],
Columbia [120], Croatia [121], the Czech Republic [44],
Denmark [69, 122, 123], Egypt [87, 96], Finland [120],
France [56, 84, 124–129], Germany [130, 131], Greece
[104, 132], Hungary [133], India [88, 134], Iran [92,
135–137], Ireland [138, 139], Israel [140, 141], Italy [42,
142, 143], Jordan [144], Kuwait [63], Lebanon [41,
145–149], Libya [150, 151], Morocco [59, 61, 152, 153],
the Netherlands [9, 154–157], Romania [158], Russia [159],
Saudi Arabia [89, 160], Senegal [100], Singapore [161],
South Africa [162], Spain [94, 100, 106, 163–169],
Sultanate Oman [170], Sweden [171], Switzerland [172,
173], Taiwan [68], Thailand [71], Tunisia [62, 79, 81, 101,
174–178], Turkey [20, 55, 102, 179–183], Brazil [184],
Poland [185], Malaysia [95], the UK [52, 186], and the USA
[187].

The OXA-48 producers were reported from hospitalized
patients with diverse infections including UTIs, wound infec-
tions, and bloodstream infections. Furthermore, fecal carriage
represents an important problem and a high risk factor for
infection [61].

OXA-48-like isolates and multilocus sequence typing (ST)

Among K. pneumoniae, blaOXA-48-like genes are found
in multiple STs. However, some dominant clones, includ-
ing ST101, ST395, ST405, ST11, ST14, and ST15, have
successfully emerged. OXA-48-positive K. pneumoniae
belonging to ST101 was the most commonly observed
ST in the Mediterranean area [126, 188]. It has been im-
plicated in different outbreaks in Morocco, Spain, and
Tunisia [177, 189]. This clone has now spread widely
and has been recovered from many countries including
European countries (the Czech Republic, Denmark,
France, Germany, Ireland, Italy, Romania, Sweden, the
UK), Afr ica (Egypt , Alger ia) , South East Asia
(Malaysia), and the Middle East (Israel, Kuwait) [42, 52,
95, 96, 113, 115, 123, 130, 138, 158, 171, 190, 191].
ST395 and ST405 have been widely described in
European outbreaks (e.g., Belgium, France, and Spain)
involving strains from North Africa [66, 117, 157, 188,
192]. ST11 has been reported in outbreaks in Spain and
Tunisia [81, 168]. This ST is now found throughout
Europe and also in South Africa [66, 117, 132]. ST14
was recently characterized as the most prevalent clone in
the UK [193]. Finally, OXA-48 enzymes were found in
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ST15 which corresponds to a disseminated worldwide
clone carrying ESBL and carbapenemases, notably in
Europe [106, 126, 169, 194, 195].

This relatively high number of global clones illustrates
the wide spread of OXA-48-producing K. pneumoniae in
the Mediterranean area (Turkey, North Africa, and the
Middle East) and in Europe. Interestingly, plasmids har-
boring the new variants such as blaOXA-181 were found
in ST11, ST61, ST25, ST307, and ST709, or blaOXA-
232 in ST14, ST15, ST16, ST147, ST231, ST307, and
ST395 [193]. Some differences in the repartition of the
STs could be explained by their different geographical
associations, with the new variants often arising on the
Indian subcontinent.

The dissemination of OXA-48-producing E. coli is
polyclonal, with multiple STs reported. In many studies,
OXA-48-producing E. coli isolates have been described
from patients after initial isolation of epidemic clone of
K. pneumoniae, suggesting horizontal transfer of pOXA-
48a from K. pneumoniae to commensal E. coli in the
intestine of the patient [52, 126, 156, 191, 196]. Of con-
cern is the fact that the acquisition of OXA-48 by suc-
cessful E. coli clones has already occurred. Indeed, the

most prevalent OXA-48-producing E. coli in Spain be-
longs to ST131 (Warwick scheme) [197], which is known
for its role in the global dissemination of ESBLs, espe-
cially CTX-M-15, including in community settings [198].
We could note that multiple ST schemes exist for this
species (e.g., Warwick scheme, Pasteur scheme…).
Similarly, ST38, another emerging global epidemic clone,
is dominant in North Lebanon, in the UK, in Finland [41,
193, 194], and in France [56]. ST410 and ST88 were also
identified [52, 193].

More recently, a chromosomal location of blaOXA-48
was reported from isolates in Egypt, France, Lebanon,
Switzerland, and the UK [41, 52, 188]. Interestingly,
chromosomal location of blaOXA-48 was mostly associ-
ated with E. coli ST38 co-harboring blaCTX-M-24 and
blaTEM-1. This resistance and the ST are not only found
among humans but also in fowl [199].

Since the development of the Enterobacter cloacae
MLST scheme is recent, very few data are available for
this species. The most prevalent OXA-48-positive clones
belong to ST89 (in Poland) [185], ST108 (in the UK)
[193], ST114 (in the South of France, personal data),
and ST296 (in Algeria) [111].

Fig. 3 Clonal distribution of OXA-48-like producing Enterobacteriaceae

Eur J Clin Microbiol Infect Dis (2018) 37:587–604 593



Risk factors of OXA-48-like acquisition/carriage

There is a paucity of data with regard to risk factors predis-
posing to gut colonization with OXA-48-like. The gastroin-
testinal tract represents an important reservoir for these strains.
The main risk factors identified were intensive care unit (ICU)
stays of > 72 h, ventilator use [200], treatment with antibiotics
[201] (notably carbapenems or aminoglycosides [200]), use of
antacids [201], and foreign travel, in particular to Asia, Africa,

and Northern America [201]. Healthy travelers to countries
where CPE are endemic might be at risk, even without contact
with the local healthcare system. A CPE was identified in
three tourists returning to France from a trip to India (two
OXA-181-producing E. coli and one NDM-1-producing
E. coli), none of whom had been in contact with health-care
institutions while in India [202]. Some other risk factors have
been identified such as male gender, age, and previous use of
fluoroquinolones, identified during a large Dutch hospital

Fig. 4 Worldwide dissemination of OXA-48-like producers
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outbreak [203]. Prolonged length of stay in hospital represents
another risk factor for CRE acquisition [204]. In this case,
other colonized patients, health-care workers, and the ICU
environment could increase this risk [205].

Epidemiology of OXA-48-like CPE in non-human
sources

Some studies have reported the presence of OXA-48-like pro-
ducers from non-human sources (Fig. S3).

OXA-48-like producers in the environment

Several publications have described CPE in the hospital envi-
ronment [114, 206–208]. However, there is currently little
information available with regard to the dissemination of these
isolates into the hospital environment. One study has reported
the presence of OXA-48-producing E. cloacae and
K. pneumoniae isolates from environmental surfaces in an
Algerian hospital in 2014 [111]. In addition, these authors
reported cases of colonization by the same OXA-48-strains
in the same period. This finding may indicate that surfaces
in hospitals can play a role in the nosocomial acquisition of
these isolates. In France, the contamination of patients and the
persistence of OXA-48-producing K. pneumoniae for many
months were observed in an ICU due to presence of the bac-
teria inmattresses and sinks [128]. A similar case was reported
in Belgium where an OXA-48-producing C. freundii was iso-
lated from a contaminated sink in an ICU [83].

Both the antimicrobial agents used for treating infected
patients in hospital and multidrug-resistant bacteria may
end up in the hospital effluent or in wastewater. The pres-
ence of antibiotics in the environment exerts a selective
pressure for MDR pathogens. As a result, hospital efflu-
ents represent an important pathway for the dissemination
of both resistance genes and antibiotic resistant bacteria
into the natural environment [209]. Recently, insufficient
wastewater management by bulk drug manufacturing fa-
cilities in India has led to contamination of water re-
sources with antimicrobial agents, associated with the se-
lection and dissemination of OXA-48 producers [88].
Even after treatment of urban wastewater, a significant
number of carbapenemase-producing bacteria can still
survive and are then released into aquatic environments
such as rivers, lakes, estuaries, or oceans [210]. In this
context, OXA-48-producing S. marcescens was recovered
from water (puddles) in 2011 in Morocco [105]. Galler
e t a l . repor ted OXA-48-producing E. col i and
K. pneumoniae from Australian wastewater between
2011 and 2012 [211]. Notably, the use of sewage in agri-
culture can act as a possible route for the dissemination of
carbapenemase genes into the natural environment and

subsequently into the food chain [211]. Nasri et al. report-
ed OXA-48-producing Enterobacteriaceae from Tunisian
wastewater [212]. Recently, in Algeria, OXA-48-like-
producing Enterobacteriaceae (e.g., OXA-48- and OXA-
244-producing E. coli) were isolated from river water.
These strains belonged to a diverse ST (ST559, ST38,
ST212, ST3541, ST1972, ST2142, and ST3541), with
no ST observed in human infections [213]. However, in
Algeria, two ST296 E. cloacae strains were isolated dur-
ing the same period in the environment and in health-care
workers [111], and E. coli ST38 and K. pneumoniae ST15
were recovered from wastewater [211], showing that
transmission between environment and humans is clearly
possible.

OXA-48-like producers in companion animals

Companion animals can serve as reservoirs of zoonotic
bacteria and resistance genes [214]. Evaluation of multi-
resistance in pets is difficult because there are few sur-
veillance programs compared to data available for live-
stock, and the data available are generally from retrospec-
tive studies of clinical isolates [215].

The emergence of carbapenem-resistant organisms in
pets is a worrying trend. This situation may be due to the
increasing prescription to pets of antimicrobial substances
that are critical to human medicine, but also due to the close
contact between pets and their human co-habitants [216].
Although carbapenems are not used in animals in any major
jurisdiction, a case of use of these molecules has been re-
ported in dogs for the treatment of urinary tract infection and
postoperative infection caused by MDR E. coli when no
other class of antibiotic was available [217]. The first report
o f OXA-48 f rom compan ion an ima l s found in
K. pneumoniae and/or E. coli isolates, recovered from six
diseased dogs with several comorbidity factors, admitted to
a veterinary clinic in Germany in 2012 [64]. Shortly after
this episode, in the same region, OXA-48 enzyme was re-
ported in K. pneumoniae and/or E. cloacae from dogs, cats,
and a horse in 2009 and 2011 [218]. A study from the US
identified E. coli strains harboring blaOXA − 48 gene origi-
nating in dogs and cats between 2009 and 2013 [60]. In
Algeria, five OXA-48-producing E. coli were detected in
healthy pets (dogs and cats) and a diseased cat (submitted
for diagnostic investigation) in one veterinary office and
private owners between 2014 and 2015 [72]. Recently,
OXA-48-producing E. coli were recovered in a large set of
healthy cats and dogs in France [219]. Pets harboring
blaOXA-48 gene were associated with diverse STs: ST12,
ST131, ST372, ST405, ST648, ST1088, ST1196, ST1431,
and ST1800 were found in E. coli isolates, and ST1196 and
ST1431 in K. pneumoniae isolates [58, 64, 219].

Eur J Clin Microbiol Infect Dis (2018) 37:587–604 595



The possible transfer of bacteria from pets is an emerging
problem and constitutes a serious threat for public health.

OXA-48-like producers in livestock and production
animals

The current level of intensification of animal production sys-
tems leaves production animals vulnerable to disease out-
breaks [220]. Thus, various antimicrobial drugs have been
administered as veterinary therapeutics in farmed animals
[221]. These practices provide favorable conditions for selec-
tion, persistence, and spread ofMDR bacteria at the farm level
[220]. Currently, livestock animals are a source of MDR
enterobacteria, and represent risks for public health associated
with economic losses in livestock production [222].

The first CPE described from livestock were reported by
Fischer et al., from poultry and swine in German farms where
VIM-1-producing E. coli and Salmonella enterica were iso-
lated [223, 224]. However, there are only limited and sporadic
findings on OXA-48-producing Enterobacteriaceae in live-
stock. The first report concerned OXA-48-producing E. coli
strains isolated from fowl species Gallus domesticus in eight
livestock farms in 2013 in Lebanon [199]. Another report
from Egypt identified blaOXA-48 and blaOXA-181 in different
E. coli isolates recovered from healthy dairy cattle [222].
Recently, the worrying association of blaOXA-181, blaCMY-2,
and armAwith the colistin resistance determinant mcr-1 was
characterized in an E. coli strain from pigs in Italy [225]. This
raises the question of how the potentially contaminated feces
are disposed of. As dung is often used as a fertilizer, the
blaOXA-48 gene might enter the food chain, either directly
through consumption ofmeat, or indirectly from cattle grazing
on fertilized pasture. In addition, the use of manure in agricul-
ture can cause the spread of resistance genes in the
environment.

Indeed, another study reported coproduction of OXA-48
and/or KPC and/or NDM-producing K. pneumoniae in
broiler chickens collected from five different poultry farms
in Egypt. In the same study, carbapenemase genes were
described in drinking water and in the farmers themselves,
suggesting possible transmission between broilers and
humans [226]. Thus livestock represents a zoonotic risk
for people working in close contact to animals [227], al-
though this relatively limited number of reports about
CPEs from livestock may suggest that such bacteria are
currently present in livestock at only a very low prevalence.
This may reflect the lack of a direct selective pressure, as
carbapenems must never be used for livestock animals. A
change in this trend might be anticipated as predicted by
Poirel et al. who raised a concern of co-selection of these
carbapenemase genes under the selective pressure imposed
by the use of aminopenicillins or penicillin–β-lactamase
inhibitor combinations in livestock [228].

OXA-48-like producers in the food chain

The food chain has recently attracted attention because it can
serves as reservoir of resistance genes, related to the use of
antimicrobial drugs in the livestock sector [229].
Nevertheless, several studies have investigated food products
colonized with ESBL/AmpC producers [230]. Few publica-
tions have reported CPE detected in food animal products
[231–233]. Even better, no studies have reported OXA-48-
producers in food animal products. However, OXA-181 en-
zymes were recovered in Klebsiella variicola in fresh vegeta-
bles imported from Asia to Switzerland in 2015 [108]. This
suggests that vegetables may be contaminated through insuf-
ficiently treated water and fertilizers, or may be compromised
by the use of biocides during cultivation. This represents a
great concern, since these products would not necessarily be
cooked to sterilization.

Recently, OXA-48-producing K. pneumoniae was recov-
ered in fresh vegetables from Algeria [234]. Furthermore, this
indicates that the food chain could become a reservoir of
MDR bacteria and contribute to the spread of these bacteria,
but lack of reliable data makes it difficult to assess the attrib-
utable risk of different food sources.

OXA-48-like producers in wildlife

Researchers have suggested that wildlife can play an impor-
tant role in the dissemination of resistant bacteria [235]. In this
respect, the presence of MDR bacteria, including CPE, has
recently been reported in wild animals with no apparent prior
exposure to antimicrobials. Indeed, NDM-1-producing
Salmonella were isolated from wild birds in Germany [236],
VIM-1-producing E. coli from yellow-legged gulls in France,
and IMP-4 Salmonella from silver gulls in Australia [237].
Wild birds could act as important environmental bio-indica-
tors, as they do for the influenza virus [238]. They could
participate in the transmission of resistance mechanism types
and the potential intercontinental spread of these antibiotic
resistance determinants [239]. Otherwise, no published re-
ports of OXA-48 CPE have so far been isolated, although
OXA-48-producing E. coli isolates were detected in our lab-
oratory from wild boars in Algeria [240].

Insects may also act as potential vectors for the spread of
MDR bacteria to different environments [241]. One study has
described OXA-48-producing E. cloacae belonging to ST296
from cockroaches species Blattella germanica collected in
2015 from the burn unit of Batna University Hospital in
Algeria [113]. Within the same period, the same authors iden-
tified the emergence of OXA-48-producing K. pneumoniae in
the same hospital, and hypothesized that these cockroaches
can be a source of OXA-48 transmission [113]. The same
observation was reported by Davari et al. in houseflies collect-
ed in hospitals and slaughterhouses [242].
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Conclusion

The emergence and the worldwide spread of CPE is a concern.
The reservoirs of these bacteria continue to grow in size and
numbers, not only in hospitals, but also in the community, the
environment, the food chain, and in animals including pets,
livestock, and wild animals. The OXA-48-like enzymes are a
good example of how these enzymes evolve continuously.
Several publications have reported the appearance of the same
resistance genes in animals and humans and the possible trans-
fer of inter-species clonal spread. In addition, these resistant
bacteria could have a public health impact if zoonotic transfer
occurs. It is clear that the presence of resistance genes in bac-
teria is associated with the uncontrolled use of antibiotics in
human and veterinary medicine. The incidence of resistant
bacteria in some sources needs to be closely monitored.
Monitoring of antibiotic resistance in animals is mainly con-
cerned with detecting the emergence and preventing possible
spread of bacteria that can be pathogenic to humans or
animals.

Similarly, the absence of environmental barriers between
humans and animals contributes to the spread of antimicrobial
resistance in various interconnected ecological niches.
Resistance, once developed, is not confined to the limits of
the ecological niche where it primarily emerged. If such a
scenario occurs, initiatives need to be taken to limit antimicro-
bial resistance in various environments, for the preservation of
human health.
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