Skip to main content
Log in

Activity of the novel siderophore cephalosporin cefiderocol against multidrug-resistant Gram-negative pathogens

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The novel siderophore cephalosporin cefiderocol (S-649266) with potent activity against Gram-negative pathogens was recently developed (Shionogi & Co., Ltd.). Here, we evaluated the activity of this new molecule and comparators against a collection of previously characterized Gram-negative isolates using broth microdilution panels. A total of 753 clinical multidrug-resistant Gram-negative isolates collected from hospitals worldwide were tested against cefiderocol and antibiotic comparators (ceftolozane–tazobactam [CT], meropenem [MEM], ceftazidime [CAZ], ceftazidime–avibactam [CZA], colistin [CST], aztreonam [ATM], amikacin [AMK], ciprofloxacin [CIP], cefepime [FEP], and tigecycline [TGC]) for their susceptibility. The collection included Escherichia coli (n = 164), Klebsiella pneumoniae (n = 298), Enterobacter sp. (n = 159), Pseudomonas aeruginosa (n = 45), and Acinetobacter baumannii (n = 87). Resistance mechanisms included producers of carbapenemases and extended-spectrum β-lactamases (ESBLs). In addition, a series of colistin-resistant enterobacterial isolates (n = 74), including 15 MCR-1 producers, were tested. The MIC90 of cefiderocol was 2 mg/L, while those of comparative drugs were >64 mg/L for CT, MEM, CAZ, CZA, and AMK, >32 mg/L for ATM, >16 mg/L for FEP, 8 mg/L for CST, and 2 mg/L for TGC. The MIC50 of cefiderocol was 0.5 mg/L, while those of other drugs were >64 mg/L for CAZ, 64 mg/L for CT, >32 mg/L for ATM, >16 mg/L for FEP, 8 mg/L for MEM and AMK, >4 mg/L for CIP, 1 mg/L for CZA, 0.5 mg/L for TGC, and <0.5 mg/L for CST. Only 20 out of 753 strains showed MIC values of cefiderocol ≥8 μg/mL. Compared to the other drugs tested, cefiderocol was more active, with the exception of colistin and tigecycline showing equivalent activity against certain subgroups of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pitout JDD, Laupland KB (2008) Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 8(3):159–166

    Article  CAS  PubMed  Google Scholar 

  2. Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S (1983) Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 11(6):315–317

    Article  CAS  PubMed  Google Scholar 

  3. Philippon A, Labia R, Jacoby G (1989) Extended-spectrum β-lactamases. Antimicrob Agents Chemother 33(8):1131–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Livermore DM (2003) Bacterial resistance: origins, epidemiology, and impact. Clin Infect Dis 36:S11–S23

    Article  CAS  PubMed  Google Scholar 

  5. Gupta N, Limbago BM, Patel JB, Kallen AJ (2011) Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis 53(1):60–67

    Article  PubMed  Google Scholar 

  6. Kanj SS, Kanafani ZA (2011) Current concepts in antimicrobial therapy against resistant gram-negative organisms: extended-spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and multidrug-resistant Pseudomonas aeruginosa. Mayo Clin Proc 86(3):250–259

    Article  PubMed  PubMed Central  Google Scholar 

  7. Poirel L, Kieffer N, Liassine N, Thanh D, Nordmann P (2016) Plasmid-mediated carbapenem and colistin resistance in a clinical isolate of Escherichia coli. Lancet Infect Dis 16(3):281

    Article  CAS  Google Scholar 

  8. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16(2):161–168

    Article  PubMed  Google Scholar 

  9. Haenni M, Poirel L, Kieffer N, Châtre P, Saras E, Métayer V, Dumoulin R, Nordmann P, Madec JY (2016) Co-occurrence of extended spectrum β lactamase and MCR-1 encoding genes on plasmids. Lancet Infect Dis 16(3):281–282

    Article  CAS  PubMed  Google Scholar 

  10. Hasman H, Hammerum AM, Hansen F, Hendriksen RS, Olesen B, Agersø Y, Zankari E, Leekitcharoenphon P, Stegger M, Kaas RS, Cavaco LM, Hansen DS, Aarestrup FM, Skov RL (2015) Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Euro Surveill 20(49)

  11. Kohira N, West J, Ito A, Ito-Horiyama T, Nakamura R, Sato T, Rittenhouse S, Tsuji M, Yamano Y (2015) In vitro antimicrobial activity of a siderophore cephalosporin, S-649266, against Enterobacteriaceae clinical isolates, including carbapenem-resistant strains. Antimicrob Agents Chemother 60(2):729–734

    Article  PubMed  Google Scholar 

  12. Ito A, Nishikawa T, Matsumoto S, Yoshizawa H, Sato T, Nakamura R, Tsuji M, Yamano Y (2016) Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against Pseudomonas aeruginosa. Antimicrob Agents Chemother 60(12):7396–7401

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tillotson GS (2016) Trojan horse antibiotics—a novel way to circumvent gram-negative bacterial resistance? Infect Dis (Auckl) 9:45–52

    Article  Google Scholar 

  14. Ito-Horiyama T, Ishii Y, Ito A, Sato T, Nakamura R, Fukuhara N, Tsuji M, Yamano Y, Yamaguchi K, Tateda K (2016) Stability of novel siderophore cephalosporin S-649266 against clinically relevant carbapenemases. Antimicrob Agents Chemother 60(7):4384–4386

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ito A, Kohira N, Bouchillon SK, West J, Rittenhouse S, Sader HS, Rhomberg PR, Jones RN, Yoshizawa H, Nakamura R, Tsuji M, Yamano Y (2016) In vitro antimicrobial activity of S-649266, a catechol-substituted siderophore cephalosporin, when tested against non-fermenting gram-negative bacteria. J Antimicrob Chemother 71(3):670–677

    Article  CAS  PubMed  Google Scholar 

  16. Clinical and Laboratory Standards Institute (CLSI) (2015) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standards—tenth edition. CLSI document M07-A10. CLSI, Wayne, PA

  17. Huband MD, Ito A, Tsuji M, Sader HS, Fedler KA, Flamm RK (2017) Cefiderocol MIC quality control ranges in iron-depleted cation-adjusted Mueller–Hinton broth using a CLSI M23-A4 multi-laboratory study design. Diagn Microbiol Infect Dis 88(2):198–200

    Article  CAS  PubMed  Google Scholar 

  18. Clinical and Laboratory Standards Institute (CLSI) (2015) Performance standards for antimicrobial susceptibility testing; Twenty-fifth informational supplement. CLSI document M100-S25. CLSI, Wayne, PA

  19. Katsube T, Wajima T, Ishibashi T, Camilo Arjona Ferreira J, Echols R (2017) Pharmacokinetic/pharmacodynamic modeling and simulation of cefiderocol, a parenteral siderophore cephalosporin, for dose adjustment based on renal function. Antimicrob Agents Chemother 61(1). pii: e01381-16

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Nordmann.

Ethics declarations

Funding

This work was funded by grants from the University of Fribourg and from Shionogi & Co., Ltd.

Conflict of interest

None to declare.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobias, J., Dénervaud-Tendon, V., Poirel, L. et al. Activity of the novel siderophore cephalosporin cefiderocol against multidrug-resistant Gram-negative pathogens. Eur J Clin Microbiol Infect Dis 36, 2319–2327 (2017). https://doi.org/10.1007/s10096-017-3063-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-017-3063-z

Keywords

Navigation