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Abstract Hantavirus infections may cause severe and some-
time life-threatening lung failure. The pathogenesis is not fully
known and there is an urgent need for effective treatment. We
aimed to investigate the association between pulmonary viral
load and immune responses, and their relation to disease se-
verity. Bronchoscopy with sampling of bronchoalveolar la-
vage (BAL) fluid was performed in 17 patients with acute
Puumala hantavirus infection and 16 healthy volunteers acting
as controls. Lymphocyte subsets, granzyme concentrations,
and viral load were determined by flow cytometry, enzyme-
linked immunosorbent assay (ELISA), and quantitative re-
verse transcription polymerase chain reaction (RT-PCR), re-
spectively. Analyses of BAL fluid revealed significantly
higher numbers of activated CD8+ T cells and natural killer
(NK) cells, as well as higher concentrations of the cytotoxins
granzymes A and B in hantavirus-infected patients, compared
to controls. In patients, Puumala hantavirus RNAwas detected
in 88 % of BAL cell samples and correlated inversely to the T
cell response. The magnitude of the pulmonary cytotoxic lym-
phocyte response correlated to the severity of disease and
systemic organ dysfunction, in terms of need for supplemental

oxygen treatment, hypotension, and laboratory data indicating
renal failure, cardiac dysfunction, vascular leakage, and cell
damage. Regulatory T cell numbers were significantly lower
in patients compared to controls, and may reflect inadequate
immune regulation during hantavirus infection. Hantavirus
infection elicits a pronounced cytotoxic lymphocyte response
in the lungs. The magnitude of the immune response was
associated with disease severity. These results give insights
into the pathogenesis and possibilities for new treatments.

Introduction

Hantaviruses are rodent-borne viruses causing disease world-
wide. Infections with American hantaviruses (e.g., Andes and
Sin Nombre virus) may lead to hantavirus cardiopulmonary
syndrome, presenting with severe cardiopulmonary failure
and high mortality, while infections with Asian or European
hantaviruses are known to cause hemorrhagic fever with renal
syndrome, characterized by coagulopathy and acute renal in-
sufficiency [1–4]. The dichotomy of hantavirus syndromes is
not clear cut, as patients infected with European Puumala
virus (PUUV) commonly present with lung involvement, in-
dicated by lower respiratory tract symptoms and impaired
pulmonary gas diffusion capacity [5–7]. There is currently
no effective treatment or vaccine.

The pathogenesis is poorly understood, but vascular dys-
function and intense cytotoxic lymphocyte responses are be-
lieved to be, at least partly, responsible for the development of
disease manifestations [8–11]. Previous studies of hantavirus-
infected patients have revealed expansions of cytotoxic Tcells
(CTLs) and natural killer (NK) cells in the lungs [5, 12, 13].
The presence of virus in the lungs during hantavirus infection
has only been evaluated in post-mortem samples from patients
infected with American hantaviruses or in small case series of
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patients with PUUV infection [12–16]. The relationship be-
tween viral load and immune response in the lungs has never
been established. We aimed to investigate the pulmonary im-
mune response and viral load in acute hantavirus disease. We
hypothesized that a cytotoxic lymphocyte response in the
lungs, along with detectable viral RNA, would be associated
with disease severity.

Materials and methods

Patients and bronchoscopy

We included all hospitalized hantavirus-infected patients at
the Department of Infectious Diseases (University Hospital,
Umeå, Sweden) during the period from January 2008 to
March 2011. A total of 47 patients were admitted, but 30 did
not participate due to lack of consent (n=19), short hospital-
ization (<2 days, n=7), or logistical reasons (n=4). Seventeen
patients (11 females; median age 54 years, range 31–69) with
acute PUUV infection agreed to bronchoscopy. All but one of
the included patients were also part of a study evaluating heart
and lung manifestations [6]. One patient had allergic asthma,
while the rest were previously lung-healthy. Seven patients
were smokers, defined as current smoking (n=4) or smoking
cessation within the last two years (n=3). Sixteen healthy
gender-, age-, and smoking habit-matched volunteers acted
as controls. The study was approved by the regional ethical
review board at Umeå University (number 07-162 M).
Participants were treated according to the declaration of
Helsinki and all gave written informed consent.

Bronchoscopy with sampling of bronchoalveolar lavage
(BAL) fluid from the right middle lobe was performed in
controls and in patients 6–14 days (median 9 days) post symp-
tom onset, as previously described [5]. To avoid bleeding
complications, bronchoscopy was undertaken as soon as
platelet numbers were improving and deemed sufficient
(>100×109/L).

Analyses of BAL fluid

BAL cell differential counts were performed as previously
described [17]. Subsets of bronchoalveolar lymphocytes
were de te rmined by f low cytomet ry us ing the
FACSCalibur system (Becton Dickinson, San Jose, CA).
Cells were prepared as previously described [5] and
stained with fluorochrome-conjugated monoclonal anti-
bodies, as detailed in Table 1. CD25, CD69, HLA-DR,
and NKG2D were used as markers for lymphocyte acti-
vation. Up to 80,000 total events were collected per
sample.

Cytotoxic lymphocyte activity and mediators of inflamma-
tion were determined in BAL fluid supernatants using

commercial enzyme-linked immunosorbent assay (ELISA)
kits; for granzyme A (GzmA) (BioVendor, Brno,
Czech Republic), granzyme B (GzmB) (Abcam, Cambridge,
MA), and tumor necrosis factor-α and interleukin 6 (R&D
Systems, Abingdon, UK).

PUUV RNA was analyzed separately in bronchoalveolar
cells and supernatant. Viral RNAwas extracted as previously
described [18], and cDNAwas generated by using 5 μL RNA
and the GoScript™ Reverse Transcription System (Promega
Biotech, CA), according to the manufacturer’s instructions.
Before the polymerase chain reaction (PCR) assay, cDNA
was pretreated with HK™ UNG (Epicentre Technologies,
Madison, WI) to ensure that any contaminating PCR products
did not affect subsequent PCR. The quantitative PCR was
performed in triplicate, and including negative controls [18].

Indicators of disease severity

Clinical data indicating severe disease were need for ox-
ygen treatment, lowest recorded systolic blood pressure,
and number of days in hospital. Laboratory investigations
in serum or plasma included C-reactive protein, N-
terminal pro-B-type natriuretic peptide (NT-proBNP), tro-
ponin T, albumin, lactate dehydrogenase (LDH), and cre-
atinine, along with leukocyte and platelet counts, analyzed
at the hospital’s accredited laboratory. Samples were taken
on the day of study inclusion and then every second day
throughout hospitalization, including the day of
bronchoscopy.

Statistical analysis

Statistical analyseswere performed using IBMSPSS Statistics
(version 22) byMann–Whitney U tests for group comparisons
and Spearman’s ranked correlations test for correlation analy-
sis. All tests were two-tailed and a p-value<0.05 was consid-
ered statistically significant.

Results

Clinical and laboratory findings

The clinical characteristics and laboratory results are summa-
rized in Table 2. Briefly, all patients displayed typical clinical
presentation for PUUV infection and almost two-thirds of the
patients experienced respiratory symptoms, such as dyspnea
or dry cough. One-third required supplemental oxygen treat-
ment, due to low oxygen saturation (≤92%) and/or significant
dyspnea and one-third showed transient hypotension (systolic
blood pressure ≤90 mmHg). A majority of the patients
displayed thrombocytopenia, acute renal impairment (elevat-
ed creatinine), systemic inflammation (elevated C-reactive
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protein and leukocytosis), and increased LDH indicating cell
damage (Table 2). Albumin concentrations were low, suggest-
ing vascular leakage (Table 2), and were correlated with pa-
tients’ lowest recorded systolic blood pressure (r = 0.61,
p=0.009). Patients requiring oxygen treatment had signifi-
cantly lower albumin and trends towards higher creatinine

and leukocyte counts (Table 3) compared to those not needing
oxygen. No patient required dialysis and all survived.

Cytotoxic responses in the lungs

Higher lymphocyte numbers were found in patients compared
to controls (Table 4). The flow cytometry results revealed an
inversed bronchoalveolar CD4/CD8 T cell ratio in patients,
due to expansions of the CD8+ cytotoxic subset, also showing
strong activation mainly in terms of frequent HLA-DR and
NKG2D expression (Fig. 1). The lymphocyte expansion was,
considering absolute numbers, further explained by signifi-
cantly higher numbers of CTLs and NK cells in patients com-
pared to controls, while the numbers of CD4+ T helper (Th)
cells were similar (Table 4). The numbers of CTLs expressing
activation markers CD25, CD69, HLA-DR, or NKG2D were
significantly higher in patients, while no such activation was
seen in the Th subset in either relative or absolute numbers
(Table 4 and data not shown). Regulatory T (Treg) cells were
significantly fewer in patients (Table 4). Although Tregs were
few, their number in patients (but not in controls) were signif-
icantly correlated to the number of Tcells, Th cells, CTLs, and
activated CTLs (data not shown), suggesting that stronger T
cell responses proportionally also included Tregs. SerumLDH
concentration on the day of bronchoscopy correlated to the
magnitude of the immune response detected in BAL fluid,
expressed as numbers of lymphocytes (r=0.66, p=0.004), T
cells (r= 0.73, p= 0.001), CTLs (r= 0.82, p< 0.001), and
HLA-DR+ CTLs (r=0.67, p=0.007).

Compared to controls, hantavirus-infected patients had sig-
nificantly higher BAL fluid concentrations of GzmA and

Table 2 Clinical characteristics and laboratory results in patients with
Puumala hantavirus infection

Days of hospitalization 5 (2–9)

Clinical findings

Hypotension (≤90 mmHg) 6 (35 %)

Respiratory symptoms 10 (59 %)

Dyspnea 8 (47 %)

Dry cough 5 (29 %)

Oxygen treated 5 (29 %)

Laboratory results

Leukocyte count (3.5–8.8 × 109/L), max 9.0 (5.3–27.0)

C-reactive protein (<3 mg/L), max 78 (35–249)

Platelet count (145–387 × 109/L), min 63 (18–305)

Creatinine (<105 μmol/L), max 173 (59–1072)

Lactate dehydrogenase (<3.4 μkat/L), max 4.8 (3.8–12.3)

Albumin (36–45 g/L), min 28 (14–34)

NT-proBNP (<150 ng/L), max 1768 (121–8878)

Troponin T (<15 ng/L), max 8 (0–22)

NT-proBNP N-terminal pro-B-type natriuretic peptide

Clinical findings are presented as number of patients (%) with the respec-
tive finding, while blood laboratory results (reference values) and num-
bers of days of hospitalization are expressed as median (range)

Table 1 Antibodies used for
flow cytometry determination of
bronchoalveolar lymphocyte
subsets

Lymphocyte subset Antibody ligand (fluorochrome)

T cells (CD3+) CD3 (PerCP)

T helper cells (CD3+CD4+) CD3 (PerCP), CD4 (FITC)

Cytotoxic T cells (CD3+CD8+) CD3 (PerCP), CD8 (PE)

Natural killer cells (CD3−CD16+CD56+) CD3 (FITC), CD16 (PE), CD56 (PE)

Regulatory T cells
(CD3+CD4+CD25brightCD127low/-)

CD3 (APC), CD4 (FITC), CD25 (PE-Cy5),
CD127 (PE)

Activated T helper cells (CD3+CD4+CD25+) CD3 (APC), CD4 (FITC), CD25 (PE)

Activated T helper cells (CD3+CD4+CD69+) CD3 (APC), CD4 (FITC), CD69 (PE)

Activated T helper cells (CD3+CD4+HLA-DR+) CD3 (APC), CD4 (FITC), HLA-DR (PE)

Activated cytotoxic T cells (CD3+CD8+CD25+) CD3 (APC), CD8 (PerCP), CD25 (PE)

Activated cytotoxic T cells (CD3+CD8+CD69+) CD3 (APC), CD8 (PerCP), CD69 (PE)

Activated cytotoxic T cells (CD3+CD8+HLA-DR+) CD3 (APC), CD8 (PerCP), HLA-DR (PE)

Activated cytotoxic T cells (CD3+CD8+NKG2D+) CD3 (PerCP), CD8 (FITC), NKG2D (PE)

APC allophycocyanin; FITC fluorescein isothiocyanate; PE phycoerythrin; PE-Cy5 phycoerythrin-Cy5; PerCP
peridinin chlorophyll protein

Antibody clones used were: SK7 (anti-CD3); SK3 (anti-CD4); SK1 (anti-CD8); B73 (anti-CD16); MY31 (anti-
CD56); 2A3 (anti-CD25 PE); L78 (anti-CD69); L243 (anti-HLA-DR); 1D11 (anti-NKG2D); BC96 (anti-CD25
PE-Cy5); hIL-7R-M21 (anti-CD127). All antibodies were purchased from Becton Dickinson (San Jose, CA),
except anti-CD25 PE-Cy5 (BioLegend, San Diego, CA)
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GzmB (Table 4), and the two cytotoxins’ levels were correlat-
ed (r=0.49, p=0.044). The GzmA and GzmB concentrations
in BAL fluid from patients correlated to the numbers of bron-
choalveolar lymphocytes (r= 0.49, p= 0.048 and r= 0.57,
p = 0.016, respectively), T cells (r = 0.53, p = 0.035 and
r=0.62, p=0.011, respectively), CTLs (r=0.58, p=0.018
and r=0.52, p=0.041, respectively), and HLA-DR+ CTLs
(r= 0.62, p= 0.013 and r= 0.61, p = 0.016, respectively).
Additionally, GzmB concentrations correlated to the numbers
of NKG2D+ CTLs (r = 0.68, p = 0.004). The GzmA

concentration in BAL fluid correlated to bronchoscopy-day
serum LDH (r=0.54, p=0.025). Interleukin 6 and tumor ne-
crosis factor-α levels in BAL fluid did not differ between
patients and controls (Table 4).

Pulmonary viral load

PUUV RNA could be demonstrated in bronchoalveolar
cells in 15 out of 17 (88 %) patients. Four patients also
had detectable PUUV RNA in BAL supernatant. When

Table 3 Differences in
parameters comparing patients
with or without need for
supplemental oxygen treatment

Oxygen
treatment (n= 5)

No oxygen
treatment (n= 12)

p-
Value

Laboratory results

Leukocyte count (109/L), max 15.1 (9.1–15.8) 8.6 (7.0–9.5) 0.058

C-reactive protein (mg/L), max 187 (65–203) 73 (37–128) 0.11

Platelet count (109/L), min 63 (42–85) 63 (42–90) 1.00

Creatinine (μmol/L), max 276 (186–327) 130 (83–219) 0.058

Lactate dehydrogenase (μkat/L),
max

4.9 (4.6–6.2) 4.5 (4.2–5.1) 0.21

Albumin (g/L), min 22 (17–27) 29 (24–31) 0.034

NT-proBNP (ng/L), max 2342 (1419–6862) 728 (523–4393) 0.17

Troponin T (ng/L), max 10 (7–19) 8 (0–11) 0.22

Differential cell counts

Macrophages 22.0 (17.1–44.3) 15.0 (11.4–30.2) 0.21

Eosinophils 0.1 (0–0.2) 0 (0–0.8) 0.21

Neutrophils 0.6 (0.5–0.7) 0.4 (0.2–0.6) 0.14

Lymphocytes 9.9 (6.2–15.7) 3.2 (2.0–7.7) 0.015

Flow cytometry

T cells 9.5 (5.6–14.9) 2.6 (1.5–7.5) 0.020

T helper cells 1.9 (1.7–5.2) 0.6 (0.3–2.7) 0.079

Cytotoxic T cells 7.3 (3.5–9.3) 1.4 (1.1–4.8) 0.036

Natural killer cells 0.5 (0.4–0.6) 0.2 (0.1–0.5) 0.10

Regulatory T cells 0.6 (0.4–1.5) 0.4 (0.2–0.7) 0.19

T helper cells, CD25+ 0.1 (0.1–0.2) 0 (0–0.1) 0.047

T helper cells, CD69+ 0 (0–0) 0 (0–0.3) 0.82

T helper cells, HLA-DR+ 0.5 (0.3–1.3) 0.1 (0.1–0.4) 0.066

Cytotoxic T cells, CD25+ 0.1 (0–0.5) 0.1 (0–0.1) 0.40

Cytotoxic T cells, CD69+ 0 (0–0.2) 0.1 (0–0.2) 0.96

Cytotoxic T cells, HLA-DR+ 3.6 (1.5–4.1) 0.9 (0.4–2.9) 0.11

Cytotoxic T cells, NKG2D+ 2.6 (1.0–4.3) 0.6 (0–1.0) 0.020

Granzymes and cytokines

Granzyme A 326 (104–643) 255 (116–509) 0.83

Granzyme B 33 (6–84) 5 (0–23) 0.070

Interleukin 6 0.8 (0.7–1.8) 0.9 (0.6–1.5) 0.83

Tumor necrosis factor-α 0 (0–0) 0 (0–0.6) 0.24

Viral load 1.4 × 101 (0.2 × 101 to
6.2 × 105)

3.0 × 103 (1.2 × 101 to
1.5 × 104)

0.40

Results are expressed as median (25th–75th percentiles). Laboratory results were obtained by analyses on blood,
serum, or plasma. Bronchoalveolar lavage fluid results represent: cells per mL ×104 (×102 for regulatory Tcells),
pg of granzymes and cytokines per mL, and copy numbers of Puumala virus RNA per 104 bronchoalveolar cells.
p-Values were determined by the Mann–Whitney U test
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considering positive samples, the median (25th–75th per-
centiles) viral load was 3.9 × 102 (1.4 × 101 to 1.8 × 104)
PUUV RNA copies per 104 bronchoalveolar cells and
4.4 × 103 (1.8 × 103 to 2.6 × 105) copies per mL of super-
natant. The viral load in bronchoalveolar cells was in-
versely correlated to the magnitude of the local immune
response, in terms of the numbers of total lymphocytes
(r = −0.68, p = 0.003), T cells (r = −0.70, p = 0.003), Th
cells (r= −0.71, p = 0.002), CTLs (r = −0.71, p = 0.002),
and HLA-DR expressing CTLs (r=−0.58, p= 0.023). In
addition, the levels of granzymes correlated inversely to
viral load, but reaching significance only for GzmA
(r=−0.69, p= 0.002).

Correlations to disease severity

Pronounced lymphocyte responses in the lungs were
found to correlate to several indicators of more severe
disease, suggestively reflecting the systemic nature of
hantavirus infection. Firstly, significantly higher numbers

of bronchoalveolar lymphocytes, T cells, CTLs, and
NKG2D+ CTLs were found in patients requiring oxygen
treatment compared to those without a need for supple-
mental oxygen (Table 3). Secondly, low systolic blood
pressure was associated with an intense bronchoalveolar
immune response, in terms of total lymphocytes
(r = −0.61, p = 0.009), T cells (r = −0.64, p = 0.008), Th
cells (r= −0.50, p = 0.047), CTLs (r = −0.57, p = 0.022),
and NK cells (r=−0.58, p= 0.019). Thirdly, high numbers
of bronchoalveolar CTLs were correlated to laboratory
surrogate markers of impaired renal function (maximum
creatinine, r= 0.54, p= 0.030), cardiac dysfunction (max-
imum NT-proBNP, r= 0.67, p= 0.004 and maximum tro-
ponin T, r = 0.41, p = 0.023), cell damage (maximum
LDH, r= 0.56, p= 0.025), and vascular leakage (minimum
albumin, r=−0.50, p= 0.049). There were no significant
correlations between any indicator of more severe disease
and viral load, concentrations of granzymes, Treg cell
numbers, or proportions of lymphocyte subsets in BAL
fluid (Table 3 and data not shown).

Table 4 Bronchoalveolar
immune responses in patients
versus healthy controls

Patients (n= 17) Controls (n = 16) p-Value

Return volume 95.0 (81.0–119.0) 108.0 (67.5–123.0) 0.86

Differential cell counts

Macrophages 16.8 (11.7–33.5) 20.5 (13.4–32.1) 0.67

Neutrophils 0.5 (0.2–0.6) 0.2 (0.0–0.4) 0.088

Eosinophils 0.00 (0.00–0.11) 0.05 (0.00–0.28) 0.40

Lymphocytes 4.2 (2.1–9.3) 1.8 (1.2–2.5) 0.001

Flow cytometry

T cells 4.3 (1.9–9.1) 1.5 (1.1–1.8) 0.002

T helper cells 1.3 (0.4–2.5) 1.0 (0.6–1.5) 0.71

Cytotoxic T cells 2.6 (1.1–6.4) 0.3 (0.1–0.6) <0.001

Natural killer cells 0.08 (0.05–0.11) 0.04 (0.02–0.07) 0.034

Regulatory T cells 0.42 (0.22–0.80) 1.38 (0.77–3.14) 0.004

T helper cells, CD69+ 0.02 (0.00–0.04) 0.01 (0.00–0.07) 0.62

T helper cells, HLA-DR+ 0.23 (0.06–0.59) 0.20 (0.12–0.32) 0.46

T helper cells, CD25+ 0.06 (0.02–0.14) 0.06 (0.02–0.14) 0.80

Cytotoxic T cells, CD25+ 0.06 (0.02–0.19) 0.00 (0.00–0.01) <0.001

Cytotoxic T cells, CD69+ 0.05 (0.01–0.16) 0.01 (0.00–0.03) 0.046

Cytotoxic T cells, HLA-DR+ 1.14 (0.46–3.12) 0.03 (0.01–0.06) <0.001

Cytotoxic T cells, NKG2D+ 0.80 (0.06–2.11) 0.04 (0.01–0.05) 0.001

Granzymes and cytokinesa

Granzyme A 287.5 (126.3–484.5) 19.7 (13.7–59.4) <0.001

Granzyme B 6.3 (0–30.4) 0 (0–0) <0.001

Interleukin 6 0.8 (0.7–1.5) 1.6 (0.9–2.1) 0.08

Tumor necrosis factor-α 0 (0–0) 0 (0–0) 0.61

Results are presented as median (25th–75th percentiles) and represent the number of cells per mL×104 (×102 for
regulatory T cells) or pg of granzymes and cytokines per mL of bronchoalveolar lavage fluid. p-Values were
determined by the Mann–Whitney U test
a Number of subjects with detectable levels; granzyme A (all subjects), granzyme B (12 patients and one control),
interleukin 6 (all subjects), tumor necrosis factor-α (three patients and two controls)
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Discussion

We have demonstrated that hantavirus infection induces
an activated cytotoxic effector immune response in the
lungs. The magnitude of the immune response was asso-
ciated with need for oxygen treatment, indicating poor

gas exchange, as well as several systemic markers for
disease severity.

Hantaviruses cause infections with varying severity of
pulmonary involvement, characterized by reduced gas ex-
change due to interstitial or alveolar edema [3, 6]. The
immune response, including cytotoxic lymphocytes

Fig. 1 Proportions of bronchoalveolar T cell subsets in patients with
acute Puumala hantavirus infection compared to the uninfected healthy
controls. Patients displayed an inverse CD4/CD8 T cell ratio due to
expansion of the CD8+ T cell population. Large proportions of CD8+ T
cells showed evidence of an active state in hantavirus infection, indicated

by significantly higher expression of activationmarkers CD69, HLA-DR,
and NKG2D on CD8+ T cells in patients compared to the healthy con-
trols. *p< 0.05, ***p< 0.001 for comparisons by the Mann–Whitney U
test, ns = not significant
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(CTLs and NK cells), has been considered to be at least
partly responsible for the development of hantavirus dis-
ease manifestations [8–11]. Here, expansions of CTLs and
NK cells were detected in the lungs of hantavirus-infected
patients, as previously reported [5, 12, 13, 19]. The high
expression of activation markers on CTLs in hantavirus
infection corroborates with previous studies [5, 10] and
indicates an activated effector state in these cells [20].
Interestingly, CTLs were not required to cause severe dis-
ease in a hamster model for lethal Andes hantavirus in-
fection [21], which could question the role of CTLs in
human hantavirus pathogenesis. However, in a recently
described macaque model for Sin Nombre hantavirus dis-
ease that may better mimic hantavirus infection in
humans, expansion of activated CTLs in blood was re-
ported, with the highest CTL proportions occurring during
the most severe disease stage [22]. In contrast to previous
studies comparing proportions of CTLs in BAL [5] or in
blood [23] to disease severity, we report here high abso-
lute CTL numbers in the lungs being associated with sev-
eral indicators of more severe disease, in accordance with
a previous report [9]. Moreover, our finding of higher
levels of cardiac dysfunction markers in patients with in-
tense lung immune responses may represent a further in-
dication of secondary heart manifestations in hantavirus
disease [6, 24].

Granzymes are effector molecules released from cytotoxic
lymphocytes and may be used to measure cytotoxic activity
[25]. GzmA and GzmB both induce apoptosis but by different
mechanisms [25]. To the best of our knowledge, soluble
granzymes have not been evaluated in BAL fluid in respira-
tory viral infections. Intracellular GzmB has been shown to be
expressed in activated CTLs or NK cells in lungs in severe
infant respiratory syncytial virus infection and lungs of fatal
PUUV cases [12, 26], as well as in blood in human hantavirus
infection [10, 27] and in a macaque model [22]. Furthermore,
serum LDH has been shown to correlate to markers for apo-
ptosis during hantavirus disease [28]. The high concentrations
of BAL fluid GzmA and GzmB found in patients in the cur-
rent study indicate cytotoxic lymphocyte degranulation within
the airways, likely reflecting the killing of hantavirus-infected
cells within the airways (immune cells or bronchial epithelial
cells). In support of this scenario, we report that bronchoalve-
olar CTLs, granzymes, viral load, and serum LDH were all
significantly correlated. However, a demonstrated hantavirus-
conferred resistance to apoptosis of infected cells, with an
inability at least for NK cells to clear virus-infected cells,
could lead to uninfected bystander cell death, protracted cyto-
toxic immune responses, and excessive immunopathology
[27, 29].

Regulatory T cells are important regulators of the immune
system and function to achieve balanced effector responses
tha t c lear pathogens wi thout caus ing excess ive

immunopathology [30]. High numbers of Treg cells have been
shown to maintain persistence and avoid immunopathology in
various chronic viral infections, including hantavirus infection
in the natural rodent host [31], but little is yet known when it
comes to Treg responses in acute human viral infections [30].
Low Treg levels have been proposed to be responsible for the
development of West Nile fever [32], severe dengue [33, 34],
as well as hantavirus disease in humans [35]. Accordingly, we
report bronchoalveolar Tregs being significantly fewer in
hantavirus-infected patients compared to controls, suggesting
an inadequate Treg cell response, as previously shown in
blood in human hantavirus infection [10, 36], as well as in
the lungs in the lethal hamster model [37]. A recent study of
human hantavirus infection showed that high blood leukocyte
count, as well as the level of Treg cell activity, was associated
with some markers for disease severity [23]. Similarly, we
show that the Treg cells response was proportional to the
effector T cell response, even if the Tregs numbers were low
and possibly inadequate to maintain balance, leading to overly
strong effector T cell responses [35]. Taken together, the im-
portance and function of Treg cells in human hantavirus in-
fections are still poorly understood and warrant further
studies.

Puumala hantavirus RNAwas detected in bronchoalveolar
cells in almost all patients, implying that infection of airway
lumen cells is highly frequent. As expected, viral RNA was
predominately found within the BAL cells. We did not deter-
mine which bronchoalveolar cells contained viral RNA.
However, previous studies have shown macrophages and
lymphocytes (the two major airway cell populations) to be
infected by hantaviruses [12, 13, 15]. The results from the
current study showed an inverse relationship between the
numbers of CTLs and Th cells and viral load, suggesting a
beneficial role for T cells in hantavirus clearance. Based on
our data, we could not show any relation between pulmonary
viral load and disease severity. Nevertheless, such a relation
cannot be excluded and an earlier BAL sampling could, spec-
ulatively, have revealed different results.

The study design with bronchoscopy at one single time
point is a limitation of the current study. Serial, and earlier,
BAL samplingwould have given additional information about
the time kinetics of the relation between the viral and immu-
nological responses in the lungs. However, this was not feasi-
ble, as earlier bronchoscopy was deemed an unacceptable risk
due to thrombocytopenia and risk for pulmonary bleeding.

The major strength of the current study is that lymphocyte
subsets, viral load, and markers for cytotoxic activity have
been investigated simultaneously in the lungs of patients with
acute hantavirus infection, resulting in the unique possibility
to evaluate the associations between these aspects.

In conclusion, the magnitude of the cytotoxic effector re-
sponse may determine disease severity in patients with hanta-
virus infection. Whilst immunomodulatory treatment has not
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yet been proven to be successful [38], the present results may
give valuable insights into the pathogenesis of hantavirus in-
fections and, thereby, open up possibilities to develop new
treatments.
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