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Abstract Vibrio cholerae belonging to the non-O1, non-
O139 serogroups are present in the coastal waters of
Germany and in some German and Austrian lakes. These
bacteria can cause gastroenteritis and extraintestinal infec-
tions, and are transmitted through contaminated food and
water. However, non-O1, non-O139 V. cholerae infections
are rare in Germany. We studied 18 strains from German
and Austrian patients with diarrhea or local infections for their
virulence-associated genotype and phenotype to assess their
potential for infectivity in anticipation of possible climatic
changes that could enhance the transmission of these patho-
gens. The strains were examined for the presence of genes
encoding cholera toxin and toxin-coregulated pilus (TCP), as
well as other virulence-associated factors or markers, includ-
ing hemolysins, repeats-in-toxin (RTX) toxins, Vibrio seventh
pandemic islands VSP-1 and VSP-2, and the type III secretion
system (TTSS). Phenotypic assays for hemolysin activity,
serum resistance, and biofilm formation were also performed.
A dendrogram generated by incorporating the results of these
analyses revealed genetic differences of the strains correlating
with their clinical origin. Non-O1, non-O139 strains from

diarrheal patients possessed the TTSS and/or the multifunc-
tional autoprocessing repeats-in-toxin (MARTX) toxin, which
were not found in the strains from ear or wound infections.
Routine matrix-assisted laser desorption/ionization (MALDI-
TOF) mass spectrometry (MS) analysis of all strains provided
reliable identification of the species but failed to differentiate
between strains or clusters. The results of this study indicate
the need for continued surveillance of V. cholerae non-O1,
non-O139 in Germany, in view of the predicted increase in the
prevalence of Vibrio spp. due to the rise in surface water
temperatures.

Introduction

The Gram-negative bacterium Vibrio cholerae , as a species, is
part of the normal flora of the aquatic ecosystems worldwide,
but many strains of the species can cause severe disease in
humans. Strains of V. cholerae belonging to the serogroups
O1 and O139 are the causative agent of cholera, an epidemic
diarrheal disease, which still affects millions of people in most
developing countries of Asia, Africa, and Latin America [1].
In Europe, cholera infections are found only rarely, and these
patients have a history of traveling from countries where the
disease is endemic. In Germany, a total of 17 travel-associated
cases were notified and confirmed since 2001 (Robert Koch
Institute, http://www3.rki.de/SurvStat/).

However, besides the toxigenic O1 and O139 serogroups,
V. cholerae strains belonging to more than 200 serogroups are
widespread in aquatic environments [2, 3]. A number of
reports have demonstrated that some strains of these
serogroups can cause diarrheal diseases or local infections,
but do not have the ability to cause epidemic outbreaks [3, 4].
Whereas the major virulence factors of toxigenic V. cholerae
O1 and O139 are known to be the cholera toxin (CT) and the
toxin-coregulated pilus (TCP), a number of accessory
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virulence factors have been identified which play a synergistic
role in the infection process [5, 6]. These factors include the
mannose-sensitive hemagglutinin pilus (MSHA) [7], the
repeats-in-toxin (RTX) toxin cluster [8, 9], outer membrane
proteins (OmpU) [10, 11], and hemolysins [2, 5, 7]. Genes for
some of these accessory virulence factors are present in non-
O1, non-O139 strains as well and are assumed to play a role in
their survival in the natural environment [7].

In central Europe, V. cholerae belonging to the non-O1,
non-O139 serogroups occur in the coastal waters of the North
Sea and Baltic Sea [12, 13], but have also been found in some
alkaline lakes [14, 15]. Global warming and climate change is
expected to increase the water surface temperatures of seas
and lakes of central Europe and has stimulated forecasts that
non-cholera Vibrio infections will increase, especially in hot
summer periods [16]. Epidemiological information on Vibrio
diseases are, up to now, limited, as no systematic monitoring
programs for Vibrio species and no surveillance of Vibrio
infections in clinical settings have been undertaken.

So far, only sporadic cases with V. cholerae non-O1,
non-O139 infections have been reported in Germany
and Austria [15, 17, 18]. These included a few cases
of diarrhea in travelers returning from foreign countries
and had been suspected to be cholera, and some cases
of local infections, including otitis or wound infection.
The latter cases were caused by contact with contami-
nated seawater after recreational activities like bathing.
V. cholerae isolates from these cases probably belong to
the autochthonous flora of the water.

The aim of this study was to elucidate the phenotypic and
genotypic characteristics of clinical isolates from German and
Austrian patients with a special focus on strains originating
from sea and lake waters. To characterize the pathogenic
potential of V. cholerae non-O1, non-O139 strains, a number
of virulence genes were investigated, including those
encoding CT and TCP normally carried by O1 and O139
strains, but also occasionally found in non-O1, non-O139
strains. In addition, pathogenicity-related phenotypic traits
including hemolytic activity, serum resistance, and biofilm
formation were assessed. Strains were further characterized
using rpoB sequencing and whole-cell matrix-assisted laser
desorption/ionization time-of-flight (MALDI-TOF) mass
spectrometry (MS) analysis, and the discriminative potential
of these techniques at the strains level was evaluated.

Materials and methods

Bacterial strains

A total of 18V. cholerae non-O1, non-O139 isolates from
German and Austrian patients and five V. cholerae O1 or
O139 control strains were used in this study (Table 1).

Recent strains were obtained from the Robert Koch Institute,
Berlin, or were collected by the Landesamt für Gesundheit und
Soziales (LAGuS), Rostock, Germany, and Österreichische
Agentur für Gesundheit und Ernährungssicherheit (AGES),
Vienna, Austria. Two strains (VN-0168, VN-0169) were
isolated from a patient with V. vulnificus coinfection.
V. cholerae O1 and O139 reference strains were used
as controls to validate the tests. One strain, VN-0309
(veterinary isolate from a doctor fish, Garra rufa ),
showed a strong and robust biofilm formation, and was used
in the biofilm assay as a reference strain.

Species identities of all strains were confirmed by standard
biochemical assays, species-specific polymerase chain reac-
tion (PCR) targeting the toxR gene [19], sequencing of a
fragment of the rpoB gene [20], and MALDI-TOF MS
analysis.

Strain cultivation

Strains were routinely cultivated in Luria-Bertani (LB) medi-
um (Merck, Darmstadt, Germany) at 37 °C. Mannose fermen-
tation was carried out by pregrowing strains on LB agar for
24 h at 37 °C. Five milliliters of mannose fermentation broth
(1 % mannose, 0.0075 % bromothymol blue, 1 % peptone,
0.5 % NaCl, pH 7.4) were inoculated using an inoculating
needle, incubated at 37 °C, and examined for mannose fer-
mentation at 24 h and after 5 days. Sucrose fermentation was
investigated in the same medium by replacing mannose with
sucrose. The blood agar base (Mast Diagnostics, Rheinfeld,
Germany) used for the qualitative hemolysis test contained
5 % defibrinated sheep blood.

MALDI-TOF MS analysis

Bacteria were cultivated on LB agar plates overnight at 37 °C.
Two different sample preparation procedures were employed.
For direct transfer, a single colony of fresh overnight cultures
was transferred onto a stainless steel target using a sterile
toothpick and overlaid with matrix solution containing
10 mg/ml α-cyano-4-hydroxycinnamic acid in acetonitrile,
water, and trifluoroacetic acid (50:47.5:2.5, v/v). In the second
procedure, bacterial proteins were extracted from cells using
ethanol and formic acid according to the manufacturer’s pro-
tocol (Bruker Daltonik, Bremen, Germany). All samples were
spotted in triplicate.

MALDI-TOF MS analysis was performed using a
Microflex LT system (Bruker Daltonik) mass spectrometer
following the manufacturer’s settings. Captured spectra were
analyzed using automated control and the Bruker Biotyper 3.0
software and library. Bacterial test standard (BTS; part no.
255343, Bruker Daltonik) was used for calibration and vali-
dation. Criteria used for analysis were as recommended by the
manufacturer for species identification.
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PCR genotyping

Genomic DNA was extracted using the RTP Bacteria
DNA Kit from STRATEC Molecular, Berlin, Germany.
PCR reactions were performed using a Mastercycler EP
Gradient (Eppendorf, Hamburg, Germany) in a volume
of 25 μl with 1× PCR buffer (2 mM MgCl2), 0.2 mM
of each dNTP, 0.2 μM of each primer, and 1.5 U of
Dream Taq DNA Polymerase (Fermentas, St. Leon-Rot,
Germany). The PCR primers, target genes, and amplicon
sizes are shown in Table 2.

PCR-based amplification of the rpoB gene and anal-
ysis of the products were conducted as described pre-
viously [21]. Sequences of 871 bp encoding a part of
the rpoB gene [20] of all strains were aligned using the
Accelrys Gene version 2.5 software (Accelrys Ltd.,
Cambridge, UK) and a dendrogram was calculated
using the unweighted pair group method analysis
(UPGMA) algorithm with absolute differences.
Sequencing reactions were performed commercially at
Eurofins MWG Operon, Ebersberg, Germany. Primers
were synthesized by Metabion International AG, Planegg/
Martinsried, Germany.

Hemolytic activity of bacterial cells and culture supernatants
on human erythrocytes

Quantitative hemolysis assay was carried out as described by
Bier et al. [22], and each strain was tested three times.
Hemolytic activities of cells and supernatant were tested sep-
arately, and an observed hemolysis of below 20%was rated as
negative.

Serum resistance

The serum resistance test was carried out as described previ-
ously [22, 23]. Isolates that showed growth in the presence of
60–80 % human serum were classified as serum resistant.
Isolates that grew in the presence of 20–40 % and 0–10 %
human serum were classified as intermediate and sensitive,
respectively. For Fig. 2 (binary data), only strains that grew in
60–80 % serum were rated resistant.

Biofilm formation

The ability of the bacteria to form a biofilm was assessed
according to Mahoney et al. [24], with minor modifications.

Table 1 List of non-O1, non-
O139 Vibrio cholerae strains and
control O1 orO139 strains used in
this study

*Isolates from the same patient

AGES: Austrian Agency for
Health and Food Safety, Vienna,
Austria

BfR: Federal Institute for Risk
Assessment, Berlin, Germany

LAGuS: State Office for Health
and Social Affairs, Rostock,
Germany

RKI: Robert Koch Institute, Ber-
lin, Germany

Strain Year of isolation Type of infection Origin Source

VN-0168 2010 wound infection* Germany LAGuS

VN-0169 2010 wound infection* Germany LAGuS

VN-0210 2011 diarrhea/travel disease Tunisia RKI

VN-0211 2011 diarrhea/travel disease Italy RKI

VN-0297 1995 otitis Germany BfR

VN-0298 1995 otitis Germany BfR

VN-0299 1996 diarrhea/travel disease Tunisia BfR

VN-0300 1999 diarrhea, peritonitis unknown BfR

VN-0301 2000 otitis Austria BfR

VN-0302 2012 diarrhea Germany RKI

VN-0303 2012 otitis Hungary RKI

VN-0304 2012 diarrhea/travel disease Egypt RKI

VN-0305 2012 otitis Germany RKI

VN-0307 2012 otitis Germany RKI

VN-0308 2012 diarrhea/travel disease Romania RKI

VN-0313 2000 otitis Austria AGES

VN-0314 2005 otitis Austria AGES

VN-0315 2011 diarrhea/travel disease Cuba AGES

Control strains

NIH35A3 (O1) 1941 diarrhea India BfR

NIH41 (O1) 1941 diarrhea India BfR

1576 (O1) 1959 diarrhea Thailand BfR, [42]

1360 (O1) 1959 diarrhea Thailand BfR, [42]

MO45 (O139) 1992 diarrhea India BfR
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Table 2 Polymerase chain reaction (PCR) primers, targets, and amplicon sizes used for genotyping

Target gene Primer Sequence Amplicon size (bp) References

rfb O139 cluster O139F AGCCTCTTTATTACGGGTGG [43, 44]

rfb O139 cluster O139R GTCAAACCCGATCGTAAAGG 449 [43, 44]

rfb O1 cluster O1F GTTTCACTGAACAGATGGG [43, 44]

rfb O1 cluster O1R GGTCATCTGTAAGTACAAC 192 [43, 44]

ctx ctxA1 CTCAGACGGGATTTGTTAGGCACG [2]

ctx ctxA2 TCTATCTCTGTAGCCCCTATTACG 301 [2]

toxR UtoxF GASTTTGTTTGGCGYGARCAAGGTT [19]

toxR VctoxR GGTTAGCAACGATGCGTAAG 640 [19]

rpoB CM32b-F CGGAACGGCCTGACGTTGCAT [20]

rpoB 1110F-R GTAGAAATCTACCGCATGATG 984 [20]

rpoB 1661F* TTYATGGAYCARAACAACCC – [20]

rpoB 1783b* GGACCTTYAGGNGTTTCGAT – [20]

hlyA class/ET hlyA-489F GGCAAACAGCGAAACAAATACC 727/738 [5, 6]

hlyA ET hlyA-744F GAGCCGGCATTCATCTGAAT 481 [5, 6]

hlyA class/ET hlyA-1184R CTCAGCGGGCTAATACGGTTTA [5, 6]

tcpA tcpA-F_Class-ET CACGATAAGAAAACCGGTCAAGAG [5, 6]

tcpA class tcpA-R_class TTACCAAATGCAACGCCGAATG 620 [5, 6]

tcpA ET tcpA-R_ET AATCATGAGTTCAGCTTCCCGC 453 [5, 6]

TTSS vcsC2 TTSS_vcsC2-A CGTTACCGATGCTATGGGT [2]

TTSS vcsC2 TTSS_vcsC2-B AGAAGTCGGTTGTTTCGGTAA 535 [2]

TTSS vcsN2 TTSS_vcsN2-A CAGTTGAGCCAATTCCATT [2]

TTSS vcsN2 TTSS_vcsN2-B GACCAAACGAGATAATG 484 [2]

TTSS vspD TTSS_vspD-A AACTCGAAGAGCAGAAAAAAGC [2, 31]

TTSS vspD TTSS_vspD-B CTTCCCGCTTTTGATGAAATG 422 [2, 31]

TTSS vcsV2 TTSS_vcsV2-A TTTGGCTCACTTGATGGG [2, 31]

TTSS vcsV2 TTSS_vcsV2-B GCCACATCATTGCTTGCT 742 [2, 31]

mshA VC0409-F ATTCTCGGTATCTTGGCCGTC [7]

mshA VC0409-R ACAAGCAGTTCCAGCAACCC 459 [7]

rstR class VC-rstR-class-F CTCATCAGCAAAGCCTCCATC [7]

rstR class VC-rstR-class-R TAGCAAATGGTATCGGCGTTG 241 [7]

rstR ET VC1455-F AGCCAACCAAAGAAAGGCAAT [7]

rstR ET VC1455-R TCATCTGTGGCCCATCTTCC 186 [7]

rstR Calc VC-rstR-calc-F CCAGCATTTCTGTTTCTTTG [7]

rstR Calc VC-rstR-calc-R GGCAACAAAGCACATTAAAG 104 [7]

dth VCA1111-F CAACCATGCACTAAATTGCCC This study

dth VCA1111-R TGGAAGTCATTACACCCACGC 526 This study

chxA VC-chxA-F TGTGTGATGATGCTTCTGG [33]

chxA VC-chxA-R TTATTTCAGTTCATCTTTTCGC 2000 [33]

rtxA VC1451-F GATTCTTCCGTTCAAGCTCCG This study

rtxA VC1451-R TGGTTCAGGCTGTTGCACAC 2571 This study

rtxC VC1450-F TGCAAATCTCACATTAGCGCA This study

rtxC VC1450-R CCACTGCACCTTTCGGATACA 430 This study

ompU ompU-F ACGCTGACGGAATCAACCAAAG [2]

ompU ompU-R GCGGAAGTTTGGCTTGAAGTAG 869 [2]

zot zot-F TCGCTTAACGATGGCGCGTTTT [2]

zot zot-R AACCCCGTTTCACTTCTACCCA 947 [2]

ace ace-F TAAGGATGTGCTTATGATGGACACCC [2]

ace ace-R CGTGATGAATAAAGATACTCATAGG 289 [2]

VSP-1 Vch-VspI-fo GCTCTCGCCAGCAAGGAGCTG [7]
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LB overnight cultures were inoculated at tenfold or hundred-
fold dilutions into 225 μl of Heart Infusion Broth (HIB) per
well of a polystyrene microtiter plate and grown for 4 h at
37 °C with shaking at 200 rpm. Each strain was tested four
times for each dilution in an experiment. The OD590 was
measured for the determination of growth. The cultures were
then expelled from the plates, which were washed twice with
250 μl of distilled water per well. Plates were dried overnight
and the biofilm was fixed at 60 °C for 60 min. Following
staining with 250 μl of 0.1 % crystal violet (w/v in distilled
water) solution for 20 min, the dye solution was removed, the
wells were washed three times with distilled water, and dried
for 2 h. The dye was redissolved in 300 μl of 33 % acetic acid
for 20 min, then 50 μl were removed and diluted twofold in
33 % acetic acid.

The OD570 was measured, and the biofilm quantified
as absorbance normalized to the cell density of the initial
culture (OD590). Biofilm formation was investigated using
V. cholerae VN-0309 as a reference, which showed a robust
biofilm formation phenotype under the test conditions.
Biofilm formation of this strain determined photometrically
at 570 nm after reextraction of crystal violet from fixed cells
was set to 100 %. The biofilm formation was defined as none
(0–10 % of biofilm activity of VN-0309), weak (11–40 %),
intermediate (41–70 %), and strong (>70 %). Strains that
showed strong or intermediate biofilm formation were rated
as positive for Fig. 2 (binary data).

Results

Species determination

All strains had been routinely typed in the reference laboratory
as V. cholerae using standard biochemical tests [25]. A mul-
tiplex PCR targeting toxR , ctxA , and the rfb sequences spe-
cific for O1 and O139 serogroups [19, 26] was used for further
subtyping of all V. cholerae isolates. While all strains were
positive in the toxR PCR specific for V. cholerae , only the
control strains were positive for ctxA . As expected, four of the
toxigenic strains were positive in the O1 serogroup PCR and
one toxigenic strain was positive in the O139 serogroup PCR,
thus confirming the validity of the PCR tests. Further species

confirmation was obtained by partial rpoB sequencing and
MALDI-TOF MS analysis.

rpoB sequencing

The nucleotide sequences of an 871 bp fragment of the rpoB
gene which has been evaluated for species identification of
Vibrio species [20, 21] were determined for all 23 isolates and
used for the construction of a dendrogram [20]. Figure 1
shows the hierarchical clustering on the basis of sequence
differences. The sequences of all toxigenic strains and three
non-O1, non-O139 strains were identical, the other strains
showed few nucleotide exchanges, with an overall similarity
of 99.4 %. Two strains (VN-0303, VN-0304) showed slightly
greater differences of up to 3.4 % compared to the sequences
derived from the other strains in the stretch of 871 bp and

Table 2 (continued)

Target gene Primer Sequence Amplicon size (bp) References

VSP-1 Vch-VspI-re CCGTCGAAGTGAACGGCGAAC 1700 [7]

VSP-2 Vch-VspII-fo TGCCCATTCCGCTAAGTGTTC [7]

VSP-2 Vch-VspII-re GCAAAAGCACTGCGTAAACTG 800 [7]

*Sequencing primers

Fig. 1 Tree based on partial rpoB sequences created by the unweighted
pair group method analysis (UPGMA) with absolute differences. Simi-
larity is shown in percent

Eur J Clin Microbiol Infect Dis (2014) 33:767–778 771



between each other. Nevertheless, alignment to databases
using BlastN (http://blast.ncbi.nlm.nih.gov/Blast.cgi) clearly
confirmed the classification of the species as V. cholerae .
Despite the sequence variations, nearly all nucleotide
exchanges were synonymous. The deduced protein
sequences were identical in 20 strains, two strains possessed
one amino acid (aa) difference in the stretch of 290 aa (VN-
0211, VN-0303), and one strain (VN-0304) had three different
aa in the protein sequence.

Bacterial identification using MALDI-TOF MS

MALDI-TOF MS using intact cells successfully identified all
V. cholerae isolates under study to the species level with high
confidence. The observed set of high-intensity species-
identifying biomarker ions were tentatively assigned and in-
cluded ribosomal proteins such as 50S ribosomal protein L36
(m/z 5,125), 50S ribosomal protein L32 (m/z 6,168), ribosom-
al protein L30 (m/z 6,455), 30S ribosomal protein S16 (m/z
9,084), DNA-binding protein HU-α (m/z 9,493) and -β (m/z
9,368), and integration host factor subunit α (m/z 10,991) and
β (m/z 10,548). To determine if the method could be used for
further differentiation of O1, O139 serogroups from non-O1,
non-O139 serogroups, all spectra from both groups that were
obtained using the direct transfer method and after the extrac-
tion of proteins from bacterial cells were compared. First, a
dendrogram was created using the Biotyper software; howev-
er, there was no overall clustering of serotypes observed in this
dendrogram with either sample preparation method (data not
shown). In addition, the panel of spectra was screened for
biomarkers that could distinguish serogroups by visual inspec-
tion using flexAnalysis software (Bruker Daltonik). Again, no
reproducible biomarker ions with specificities on the serotype
level were detectable. In addition, the influence of increasing
the number of shots used for summed spectra from 240 shots
to 2,000 shots was investigated, but without further success.

Genotyping by PCR

The presence of a number of genes usually associated with
toxigenic V. cholerae strains were investigated in the non-O1,
non-O139 strains (Table 3). None of the non-O1, non-O139
strains contained the cholera toxin gene (ctxA) and genes of
the CTX element (zot , ace ). The rstR gene, which shows
significant sequence variations and is part of the CTX fila-
mentous phage [27, 28], was not present in the non-O1, non-
O139 strains. Primer combinations for three rstR alleles
(Classical, El-Tor, Calcutta) were tested. tcpA was tested for
two alleles (Classical, El-Tor), and all non-O1, non-O139
strains were found to be negative.

V. cholerae strains of the seventh pandemic possess two
genomic islands, VSP-1 and VSP-2, which are absent from
strains of the sixth pandemic and most environmental isolates

[7]. The O1 classical strains used in this study were isolated
during the sixth pandemic and gave the expected PCR prod-
ucts, with the VSP-1 and VSP-2 primers revealing the absence
of the two islands. Most of the non-O1, non-O139 strains also
did not possess the two islands (12 out of 18, Table 3). In the
remaining six strains, only one PCR assay, either the PCR
assay for VSP-1 or VSP-2, gave the expected PCR products.
In three of these strains (VN-0168, VN-0169, VN-0300),
amplification with the VSP-1 primer yielded a PCR product
of 3 kbp instead of 1.7 kbp. However, partial sequencing of
the PCR amplicon confirmed that most of the VSP-1 island
was absent. In three other strains, no PCR product was visible
either for VSP-1 (one strain) or VSP-2 (two strains). We did
not undertake any efforts to find out if parts of the pandemic
islands were present in these strains. Other reports indicate
that the pandemic islands are rarely found in non-O1, non-
O139 strains and carry only some of the open reading frames
of these islands if present [2, 7].

We studied all non-O1, non-O139 strains for putative ac-
cessory virulence-associated factors like the MSHA [7], the
RTX toxin cluster [8, 9], outer membrane proteins (OmpU)
[10, 11], and hemolysins [2, 5, 7]. All strains were negative for
the PCR assay targeting the MSHA pilus, while all toxigenic
strains were positive, as expected (Table 3). MSHA is a type 4
pilus involved in host colonization and acts as a receptor of
phages [29]. Two RTX toxin-specific PCR assays were per-
formed. One PCR which targets the rtxA gene encoding the
multifunctional autoprocessing repeats-in-toxin (MARTX)
toxin was positive for five strains out of the 18 non-O1, non-
O139 strains. In contrast, the rtxC PCR targeting an acyltrans-
ferase gene of the rtx gene cluster was positive in all 18
strains. The toxigenic O139 strain was positive for both
PCR assays, whereas all classical O1 strains were negative
for the two PCRs, as O1 classical strains have a deletion in the
RTX gene cluster [25]. The gene of the outer membrane
protein OmpU was found in nine non-O1, non-O139 strains
and in all toxigenic control strains.

The hemolysin gene hlyA was tested according to Rivera
et al. [5]. All non-O1, non-O139 strains were positive for the
classical/El-Tor hlyA PCR. One strain (VN-0303) showed
only one PCR fragment and was tentatively classified as
negative. The same strain did not harbor the dth gene
encoding the δ-thermostable hemolysin [30], which was
found in 21 out of all 23V. cholerae strains used in this study.

Some virulence factors have been identified in non-O1,
non-O139 strains that do not seem to be present in toxigenic
strains. A type III secretion system (TTSS) system was de-
scribed that shares homology to a V. parahaemolyticus TTSS
gene cluster [2, 31]. Using a set of four primer pairs targeting
different genes of this secretion system [2, 31], we identified
six strains that harbor the system, while the remaining 12 non-
O1, non-O139 strains and the toxigenic strains were negative.
Recently, the discovery of cholix toxin was reported in

772 Eur J Clin Microbiol Infect Dis (2014) 33:767–778

http://blast.ncbi.nlm.nih.gov/Blast.cgi


T
ab

le
3

R
es
ul
ts
of

ge
no
ty
pi
ng

S
tr
ai
n

rf
b

O
1

rf
b

O
13
9

ct
xA

to
xR

ac
e

zo
t

tc
pA

cl
as
s

tc
pA

E
l-
To
r

rs
tR

cl
as
s

rs
tR

E
l-
To
r

rs
tR

C
al
cu
tta

V
SP

-1
V
SP

-2
hl
yA

cl
as
s

hl
yA

E
l-
To
r

m
sh
A

om
pU

rt
xA

rt
xC

ch
xA

dt
h

T
T
S
S

vc
sC

2
T
T
S
S

vc
sN

2
T
T
S
S

vs
pD

T
T
S
S

vc
sV
2

V
N
-0
16
8

−
−

−
+

−
−

−
−

−
−

−
−a

−
+

+
−

+
−

+
−

+
−

−
−

−
V
N
-0
16
9

−
−

−
+

−
−

−
−

−
−

−
−a

−
+

+
−

+
−

+
−

+
−

−
−

−
V
N
-0
21
0

−
−

−
+

−
−

−
−

−
−

−
−

−
+

+
−

+
+

+
+

+
−

−
−

−
V
N
-0
21
1

−
−

−
+

−
−

−
−

−
−

−
+
b

−
+

+
−

−
+

+
−

+
+

+
+

+

V
N
-0
29
7

−
−

−
+

−
−

−
−

−
−

−
−

−
+

+
−

+
−

+
−

+
−

−
−

−
V
N
-0
29
8

−
−

−
+

−
−

−
−

−
−

−
−

−
+

+
−

+
−

+
−

+
−

−
−

−
V
N
-0
29
9

−
−

−
+

−
−

−
−

−
−

−
−

−
+

+
−

−
−

+
−

+
+

+
+

+

V
N
-0
30
0

−
−

−
+

−
−

−
−

−
−

−
−a

−
+

+
−

+
−

+
+

+
+

+
+

+

V
N
-0
30
1

−
−

−
+

−
−

−
−

−
−

−
−

−
+

+
−

−
−

+
+

−
−

−
−

−
V
N
-0
30
2

−
−

−
+

−
−

−
−

−
−

−
−

−
+

+
−

−
−

+
−

+
+

+
+

+

V
N
-0
30
3

−
−

−
+

−
−

−
−

−
−

−
−

−
−

−c
−

−
−

+
−

−
−

−
−

−
V
N
-0
30
4

−
−

−
+

−
−

−
−

−
−

−
−

+
b

+
+

−
−

+
+

−
+

−
−

−
−

V
N
-0
30
5

−
−

−
+

−
−

−
−

−
−

−
−

−
+

+
−

+
−

+
−

+
−

−
−

−
V
N
-0
30
7

−
−

−
+

−
−

−
−

−
−

−
−

−
+

+
−

+
−

+
−

+
−

−
−

−
V
N
-0
30
8

−
−

−
+

−
−

−
−

−
−

−
−

−
+

+
−

−
+

+
−

+
+

+
+

+

V
N
-0
31
3

−
−

−
+

−
−

−
−

−
−

−
−

−
+

+
−

−
−

+
−

+
−

−
−

−
V
N
-0
31
4

−
−

−
+

−
−

−
−

−
−

−
−

−
+

+
−

−
−

+
−

+
−

−
−

−
V
N
-0
31
5

−
−

−
+

−
−

−
−

−
−

−
−

+
b

+
+

−
+

+
+

−
+

+
+

+
+

N
IH

35
A
3

+
−

+
+

+
+

+
+

+
−

−
−

−
+

−
+

+
−

−
−

+
−

−
−

−
N
IH

41
+

−
+

+
+

+
+

+
+

−
−

−
−

+
−

+
+

−
−

−
+

−
−

−
−

15
76

+
−

+
+

+
+

+
+

+
−

−
−

−
+

−
+

+
−

−
−

+
−

−
−

−
13
60

+
−

+
+

+
+

+
+

+
−

−
−

−
+

−
+

+
−

−
−

+
−

−
−

−
M
O
45

−
+

+
+

+
+

−
+

−
+

−
+
b

+
b

−
+

+
+

+
+

−
+

−
−

−
−

A
bs
en
ce

of
V
SP

-1
an
d
V
SP

-2
is
de
m
on
st
ra
te
d
by

ge
ne
ra
tin

g
PC

R
pr
od
uc
ts
of

1,
70
0
bp

an
d
80
0
bp
,r
es
pe
ct
iv
el
y,
as

pr
im

er
s
bi
nd

to
ge
no
m
ic
si
te
s
fl
an
ki
ng

th
e
is
la
nd
s

a
PC

R
pr
od
uc
to

f
ca
.3

kb
p

b
N
o
vi
si
bl
e
P
C
R
pr
od
uc
t

c
O
nl
y
48
1-
bp

PC
R
pr
od
uc
tv

is
ib
le

Eur J Clin Microbiol Infect Dis (2014) 33:767–778 773



V. cholerae strains [32], which could not be found in O1,
O139 strains according to Awasthi et al. [33]. Using the PCR
assay described in the latter publication, we could identify the
chxA gene in three non-O1, non-O139 strains.

Phenotypical assays

Some biochemical properties can be variable between strains
of the same species. Very rarely, V. cholerae strains are found
that are sucrose negative, while the ability to utilize mannose
is much more variable [25]. All strains of this study were
sucrose positive, while mannose fermentation was variable
in the group of non-O1, non-O139 strains. Five of eighteen
non-O1, non-O139 strains and all five toxigenic strains were
able to ferment mannose (Table 4).

Biofilm formation was investigated at 37 °C using
V. cholerae VN-0309 as the reference, which showed a robust
biofilm formation under the test conditions. The biofilm for-
mation activities of all strains were rated against this reference
strain. Only one strain (VN-0301) showed strong biofilm
activity and six strains, including one O1 strain (NIH41),
showed intermediate activity (Supplemental Fig. S1).

The hemolytic properties of all strains were tested qualitative-
ly on agar plates and quantitatively in a photometric assay. On

sheep blood agar, the four classical O1 strains and only one non-
O1, non-O139 (VN-0301) strain were not hemolytic, while all
other strains were hemolysis positive. Additionally, we studied
hemolysis of human erythrocytes in a quantitative approach
using logarithmic growing cells and their culture supernatants
separately (Supplemental Fig. S2). In this approach, the direct
contact of bacterial cells with the erythrocytes led to a complete
lysis of the cells within 2 h for most of the non-O1, non-O139
strains; the hemolytic activity of one toxigenic O1 strain
(NIH35A3) was low (below 20 %) and was scored as non-
hemolytic. The remaining four toxigenic strains and two non-
O1, non-O139 strains (VN-0211, VN-0313) were judged as
positive, since they displayed hemolytic activity between 30 to
60 %. Culture supernatants of four non-O1, non-O139 strains
(VN-0298, VN-0303, VN-0304, VN-0307) were scored as neg-
ative (hemolysis below 20 %), whereas that of the other strains
were positive for hemolysis.

Resistance to human serum was tested by growing cells in
a medium containing different concentrations of serum. Four
strains, including one O1 strain, were resistant to serum, five
strains showed intermediate resistance, and the remaining
strains were sensitive (Supplemental Table S1).

All phenotyping and genotyping results were merged in a
binary figure (Fig. 2), in which the clinical origin of the strains

Table 4 Phenotypic characteris-
tics of Vibrio cholerae strains Strain Sucrose Mannose Serum

resistance
Biofilm
formation

Sheep
blood
agar

Hemolysis
(cells)

Hemolysis
(supernatant)

VN-0168 + − sensitive intermediate + + +

VN-0169 + − sensitive intermediate + + +

VN-0210 + + sensitive intermediate + + +

VN-0211 + − resistant weak + + +

VN-0297 + − intermediate none + + +

VN-0298 + − sensitive weak + + −
VN-0299 + − intermediate weak + + +

VN-0300 + + sensitive weak + + +

VN-0301 + − intermediate strong − + +

VN-0302 + − sensitive intermediate + + +

VN-0303 + − sensitive weak + + −
VN-0304 + − intermediate none + + −
VN-0305 + − sensitive intermediate + + +

VN-0307 + − sensitive weak + + −
VN-0308 + − resistant weak + + +

VN-0313 + + resistant weak + + +

VN-0314 + + sensitive weak + + +

VN-0315 + + sensitive weak + + +

NIH35A3 + + sensitive none − − +

NIH41 + + resistant intermediate − + +

1576 + + sensitive none − + +

1360 + + sensitive none − + +

MO45 + + intermediate none + + +
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is indicated. Ten non-O1, non-O139 strains were associated
with local infections like otitis and wound infection (two
strains), and eight strains caused organic infections leading
to diarrhea. In the binary table, the O1, O139 control strains
are included as well. The cluster analysis of all genotypic and
phenotypic results clearly revealed that the toxigenic O1 and
O139 strains form a cluster separated from the non-O1, non-
O139 strains. This is due to the fact that all genotypic assays
targeting the main cholera virulence factors and accessory
virulence factors (ctx , zot , ace , tcpA , rstR , serogroups O1
and O139) were absent in the non-O1, non-O139 strains in our
study. The binary data set, however, revealed an interesting
result. When the nature of the clinical infection is indicated,
the analysis shows that all diarrheagenic strains possess either
the TTSS (three strains) or the MARTX toxin (two strains) or
both virulence factors together (three strains), while the ten
strains causing localized infections are negative for the respec-
tive genes. The TTSS has been shown to induce diarrhea in an
animal model [31] and is absent from toxigenic strains. The
rtxA gene encoding MARTX is present in toxigenic O1, El-
Tor biotype, and O139 strains, and can be found in environ-
mental strains with high frequency [8]. The negative results of
the rtxA PCR in some non-O1, non-O139 strains means that
the rtxA gene is (partially) absent, or that a different rtxA gene
variant occurs. The role of the gene product of the rtxC gene
which is present in all non-O1, non-O139 strains is, so far,
unclear; it may be necessary for posttranslational activation of

MARTX by acetylation [9]. However, rtxC-negative mutants
seem to produce a functional MARTX protein [34].

All other phenotypic and genotypic traits studied occur
with varying frequencies in the two groups.

Discussion

Vibrio infections are rare in Germany. However, very little
epidemiological information is available for these strains, as
no monitoring programs or surveillance of Vibrio infections
are carried out. In the coastal waters of Germany and in some
lakes in Germany and Austria, pathogenic non-O1, non-O139
V. cholerae are present and were found to occasionally cause
human infections [12, 15]. Climate warming could lead to
increased Vibrio concentrations, especially during hot periods
in summer months, thus, predictions are that Vibrio infections
will increase in the Baltic Sea area [16]. A correlation between
increased Vibrio infections and elevated water temperatures in
the Baltic has already been observed [18]. In this study, 18
non-O1, non-O139 V. cholerae isolates were analyzed for
phenotypic and genotypic traits in comparison to five toxi-
genic V. cholerae O1 or O139 strains. Some of the non-O1,
non-O139 strains are from foreign countries, as they were
isolated from returned travelers with diarrheal symptoms
which were suspected to be caused by V. cholerae infections.
Other strains were obtained from patients who contracted

Fig. 2 Grouping of isolates based
on phenotypic and genotypic
traits. Similarity patterns were
determined by complete linkage
using simple matching of binary
data (BioNumerics version 6.6.4,
Applied Maths, Sint-Martens-
Latem, Belgium). For the
simplification of interpretation,
the results of tcpA (two alleles)
and rstR (three alleles) are
summarized in one column. О =
diarrheagenic strains, Δ = strains
from local infections
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infections through recreational activities in sea and lake
waters.

Species confirmation using rpoB sequencing and MALDI-
TOF MS were undertaken and the methods were evaluated
for their discriminative value below the species level. In
case of rpoB sequencing, this can clearly be denied, as four
rpoB sequences of non-O1, non-O139 strains were identi-
cal to the sequences of the toxigenic strains, and the
remaining strains possessed a varying degree of sequence
differences, although the deduced protein sequences were
highly similar.

MALDI-TOF MS analyses were undertaken on a mass
spectrometer developed for routine diagnostics (Bruker
MALDI Biotyper). This methodology was originally devel-
oped to provide bacterial identification on the species level
[21, 35, 36]. Spectra are typically composed of highly con-
served housekeeping proteins like ribosomal proteins.
Therefore, it could be expected that this technique has limita-
tions regarding the discrimination of bacteria below the spe-
cies level. Nevertheless, different studies reported on the
usefulness of the method for the differentiation of
Salmonella subspecies, a limited number of Salmonella sero-
types, Shiga-toxin-producing Escherichia coli serotypes, and
E. coli pathotypes [37–39]. However, in this study, MALDI-
TOF MS using the MALDI Biotyper system based on a
Microflex LT machine with the evaluation criteria developed
for species identification was ineffective for differentiating
O1, O139 from non-O1, non-O139 isolates.

The phenotyping and genotyping of putative pathogenicity
associated traits were combined in a binary table to character-
ize the clinical non-O1, non-O139 strains isolated from pa-
tients in our region (Fig. 2). The cluster analysis clearly
separated the toxigenic strains from the non-O1, non-O139
strains, but also revealed genetic differences of the latter
strains correlating with the nature of the clinical infection.
The analysis showed that TTSS and rtxA genes were present
only in non-O1, non-O139 strains of V. cholerae which were
from diarrhea cases.

Other virulence factors like the cholix toxin gene chxA
could be detected in strains of both clinical groups, but only
with low frequency (3 out of 18 strains positive for the chxA
gene). This toxin seems to be associated with non-O1, non-
O139 strains [33], though its occurrence in O1, O139 strains
was described [32]. The cholix toxin is an eukaryotic elonga-
tion factor-2-specific ADP-ribosyltransferase, whose function
in infections is unclear. It was suggested that it may be more
associated with extraintestinal infections than enterotoxicity
[33]. The ompU gene encoding an outer membrane protein,
which contributes to the survival of pathogens in host organ-
isms and is involved in resistance to antimicrobial peptides
[10, 11], was found in both clinical groups.

Hemolysis zones are often observed on blood agar plates
when non-O1, non-O139 strains are investigated [2].With one

exception, all non-O1, non-O139 strains showed hemolytic
activity on sheep blood agar, andmost of themwere hemolytic
for human erythrocytes. The genotypic analysis revealed that
all strains except for one possessed the El-Tor hemolysin
gene hlyA , which is frequently observed in non-O1,
non-O139 strains [2, 5–7]. Another hemolysin gene, dth ,
which encodes the δ-thermostable hemolysin, similar to the
V. parahaemolyticus hemolysin (Tdh), was present in 16 of
the 18 strains. The role of this hemolysin in disease is unclear;
in toxigenic O1 strains, it does not directly contribute to viru-
lence [30]. The phenotypic and genotypic results concerning
the hemolytic traits of the non-O1, non-O139 strains do not
indicate a difference between the two clinical groups.

Further phenotypic properties like mannose fermentation,
serum resistance, or biofilm formation were found in few
strains of the two clinical groups; however, the majority of
strains was negative. Human serum resistance is a specific
characteristic of pathogenic V. vulnificus strains [22, 40];
however, in the non-O1, non-O139 strains, that does not seem
to be the case. Biofilm formation has been studied before in
V. cholerae strains, but no clear correlation with specific
virulence factors was found [2, 41], although biofilm forma-
tion in non-O1, non-O139 seems to be higher than in toxigen-
ic strains.

Conclusion

This study was carried out to characterize virulence-related
phenotypic and genotypic traits of Vibrio cholerae non-O1,
non-O139 clinical strains isolated in central Europe in compar-
ison to classical O1 and O139 toxigenic strains. While cases of
diarrhea were mostly travel associated, ear and wound infec-
tions caused by V. cholerae strains may occur after direct
contact to sea or lake waters in Europe. Interestingly, the study
revealed that virulence factors like the type III secretion system
(TTSS) and the multifunctional autoprocessing repeats-in-toxin
(MARTX) toxin are not present in the latter strains, which
indicates that these factors may be relevant only for intestinal
infections. Non-O1, non-O139 strains are frequently found
nowadays in the aquatic environment of central Europe and
may increase in the future due to global warming. Because of
the growing relevance to human health, fast diagnostic tools are
required in order to discern environmental strains from poten-
tially pathogenic strains. In further studies, we will analyze the
prevalence of the potential marker genes analyzed in this study
in environmental strains from German coastal waters collected
in recent years to find out if they are of diagnostic value in this
respect. Another source of possible Vibrio infections in
Germany is seafood. While seafood consumption is increas-
ing in Germany, most fish and fishery products are imported
(http://faostat.fao.org/site/345/default.aspx). V. cholerae non-
O1, non-O139 strains isolated from seafood are, so far, only
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tested for the ctx gene and the serogroups O1 and O139.
Additional testing for genes encoding TTSS and MARTX
should be considered.
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