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Abstract The identification of markers for virulent group
B streptococci (GBS) could guide prenatal prevention and
intervention strategies. We compared the distribution of
serotypes and potential pathogenicity islands (PPIs) be-
tween invasive and colonizing GBS. Colonizing and
invasive strains from The Netherlands and Taiwan were
serotyped. We used polymerase chain reaction (PCR) for
the amplification of several new PPI markers. Several
combinations of PPI-specific markers and serotypes were
associated with invasiveness. For Dutch neonatal strains, a
receiver operating characteristic (ROC) curve with serotype
and five PPI markers showed an area under the curve
(AUC) of 0.963 (95% confidence interval [CI] 0.935-0.99).
For Taiwanese neonatal strains, serotype and four different
PPI markers resulted in an ROC curve with an AUC of
0.894 (95% CI 0.826-0.963). PPI-specific and serological
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markers can distinguish local neonatal invasive GBS strains
from colonizing ones. Apparently, there are clear regional
differences in the GBS epidemiology and infection poten-
tial of clones.

Introduction

Group B streptococcus (GBS) is an important pathogen
with the potential to cause disease in adults with underlying
chronic medical conditions, pregnant women, but, above
all, in newborns. Early onset neonatal disease (EOD) is
acquired by vertical GBS transmission during birth and is
characterized by pneumonia and septicemia in the first
week of life. Late onset disease (LOD) occurs in infants up
to seven months of age and usually involves meningitis.
GBS colonization rates up to 35% in healthy pregnant
women have been reported, but only 0.5-1% of neonates
born from these mothers will finally develop GBS disease
[1, 2]. The identification of highly virulent GBS could
contribute to our understanding of the pathogenesis of GBS
disease and target prevention and intervention strategies.
GBS virulence factors, including the polysaccharide
capsule and several gene regulation mechanisms, have been
identified, and may all contribute to the complex patho-
genesis of GBS disease [3, 4]. Based on the nature of the
immunogenic polysaccharide capsule, GBS can be grouped
into nine serotypes: la, Ib, and II-VIII. Serotype III is
recovered significantly more often from cases of meningitis
and LOD. At the same time, it is the most prevalent
serotype in asymptomatic carriers [5—7]. Previous epidemi-
ological studies have identified virulent clonal types of
serotype III by multilocus enzyme electrophoresis (MLEE),
restriction digestion pattern (RDP) typing, and multilocus
sequence typing (MLST) [8-13]. In vitro studies have
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demonstrated that these clones have a different level of
enzyme activity known to play a role in virulence [14, 15].
The clones also contain genetic material next to known or
putative virulence genes that is not present in less virulent
serotype III GBS [16]. So, virulence might well be
associated with specific GBS subtypes, but based on
current microbiological knowledge, unequivocal markers
of invasiveness have not been identified [17, 18]. Most
known and putative GBS virulence genes are clustered into
14 genetic islands and are considered to be potential GBS-
specific potential pathogenicity islands (PPIs) [19, 20]. We
studied the epidemiological prevalence of PPI-specific
molecular markers and serotypes in invasive neonatal
versus colonizing strains. We analyzed well-characterized
GBS strains from The Netherlands (Europe) and from a
geographically and racially distinct population (Taiwan, Asia).

Materials and methods
Bacterial strains

A total of 136 isolates of GBS from The Netherlands and 202
isolates from Taiwan was included. From The Netherlands, 92
strains were isolated from ante-partum recto-vaginal cultures
performed between 1995 and 2004 by the Laboratory of
Microbiology at the Medical Center Haaglanden, The Hague,
The Netherlands. Forty-four invasive strains were supplied
by the Netherlands Reference Laboratory for Bacterial
Meningitis at the Academic Medical Center, Amsterdam,
The Netherlands. Strains from the same geographical
region and episode (1999-2004) as those of the colonizing
strains were selected: eight were isolated from blood, 14
from cerebrospinal fluid (CSF), and 22 from both blood and
CSF. In Taiwan, 58 strains were isolated from ante-partum
recto-vaginal cultures and 43 invasive neonatal strains were
collected between 2000 and 2005: 24 from blood and 19
from blood and CSF. In Taiwan, 101 invasive strains were
collected from infections in adults: 50 were isolated from
blood only and 51 from blood and another focus (bone,
joint, CSF, urine, etc.).

Species confirmation and serotyping

Species confirmation of GBS was performed by Latex
agglutination according to the manufacturer’s instructions
(Streptex®, Remel Inc., USA). Briefly, five colonies from a
24-h culture at 37°C on 5% sheep blood agar (SBA) were
suspended in 400 pl of extraction reagent. After 10 min of
incubation at 37°C, 40 ul of the extract was added to a drop
of group-specific latex suspension (A, B, C, D, F, and G).
Agglutination was read after 1 min. GBS serotyping was
performed using the Strep-B-Latex kit (Statens Serum
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Institut, Denmark). Strains were cultured for 24 h in Todd
Hewitt broth. Ten microliters from this culture was mixed
with serotypes Ia, Ib, and II-VIII specific latex bead
suspension. Agglutination was read after 5 to 10 s.

Polymerase chain reaction

DNA was prepared with the MagNA Pure system (Roche,
Lelystad, The Netherlands) using the MagNA Pure LC DNA
isolation kit III. For polymerase chain reaction (PCR), primer
pairs directed to regions corresponding to 26 genes from 14
putative PPIs were used (Table 1) [20]. Reaction vials were
filled with a final volume of 50 ul containing 5 pul 2 mM
deoxynucleotide triphosphate bases, 1.0 pl primer pairs,
0.08 ul Taq polymerase (Sigma, Germany), 50 ng/5 ul
DNA, and 38.4 ul of distilled water. PCR assays were
performed in an ABI thermal cycler (Applied Biosystems,
Gouda, The Netherlands) under the following conditions: 25
identical cycles of denaturation at 94°C for 1 min, hybrid-
ization at 52°C for 1 min, and extension at 72°C for 1 min.
Fifteen microliters of the PCR products was subjected to
electrophoresis for 50 min at 100 mA on a 1% agarose gel
(Hispanagar, Sphaero Q, Leiden, The Netherlands) in 1x
Tris-borate-EDTA (TBE) buffer (89 mM Tris, 89 mM boric
acid, 2 mM EDTA). Gels were stained with ethidium
bromide and photographed during UV illumination. PCR
amplicon sizes were estimated by comparison to a 100 bp
DNA ladder (Sigma, Germany).

For the selection of PPI-specific invasion markers, all 26
PCRs were initially performed on five colonizing and five
invasive strains, randomly selected from the Dutch collec-
tion. If a PCR assay generated a similar result in the two
groups of five strains (uniformly positive or negative), we
concluded that the contribution of this PCR to discrimina-
tion between invasive and non-invasive strains would
probably be small; these PCRs were excluded from further
evaluation. After this preliminary screening, 14 PCRs were
selected and performed for the entire collection, establish-
ing the presence or absence of genetic markers
corresponding to the genes of nine PPIs and one transposon
for each strain (Table 3).

Data analysis

Isolates were divided into five groups: Dutch neonatal
invasive GBS (DNI), Dutch colonizing GBS (DC), Taiwa-
nese neonatal invasive GBS (TNI), Taiwanese adult
invasive (TAI), and Taiwanese colonizing GBS (TC). The
selective PCR results were analyzed using the SPSS 15.0
software package (SPSS Inc, Chicago, IL, USA). Two by
two tables were created for virulent and colonizing strains
with each serotype and genetic marker. We examined the
differences in the prevalence of serotypes and markers in



Eur J Clin Microbiol Infect Dis (2009) 28:921-928 923

Table 1 Gene assignment of putative pathogenicity islands (PPIs) and their characteristics [20]

Strain NEM 316" Strain 2603VR® Putative island Characteristics
gbs0217 sag0224 1 Phage integrase family site-specific recombinase, Cro/CI transcriptional regulator
gbs0227 sag0234 Other mobilization genes
A homolog of a virulence regulator in S. pyogenes
gbs0367 - pNEM316-1 Near identical copies of a chromosomally integrated plasmid, designated pNEM316-1
gbs0388 - (island III, VII, and VIII)
gbs0628 sag0645 VI The ¢yl locus, encoding a virulence factor
gbs0660 sag0685 Transposon genes (Tn5252)

A permease gene in NEM316
Protease, endopeptidase and permease genes in 2603VR
Core metabolic enzymes

gbs1073 sagl038 X A homolog to a two-component regulatory system
gbs1120 - X A transferase

gbs1125 - A relaxase

gbs1135 - Homologs with those in Tn5252

3 LPXTG genes
A DNA methyltransferase.

gbs1306 sagl233 XII The /mb gene, encoding laminin binding protein
gbs1313 sag1246 The scpB, encoding C5a peptidase
Transposon genes (ISSdyl, Tn5252).
Phage and plasmid replication genes in NEM316
The lac operon in Nem316
Heavy metal transporter genes in 2603VR

gbs1987 5ag2029 X1 Genes with unknown functions in NEM316/2603VR
Genes encoding CAMP factor
Two proteases
Core metabolic enzymes
Two transporters
A two component regulator

sag0915 Tn916 Mobile element in 2603VR

Serotype I11
b Serotype V

Table 2 Prevalence of serotypes

Serotype DN % D C° % TNI % TAI% TC % P-value! P-value! P-value! P-value'
(n=44) (n=92) (n=43) (n=101) (n=58) DNIvs.DC TNIvs.TC TAlvs. TC DCvs.TC

la 13.6 26.1 11.6 18 24 0.101 0.161 0.482 0.611

Ib 0 6.5 4.7 14 8.6 0.177 0.696 0.327 0.750

il 0 13.0 0 6 3.4 0.0098 0.506 0.711 0.049"

1 75.0 21.7 79.1 23 32.8 <0.0001° <0.00017 0.169 0.134

v 0 7.6 0 1 0 0.096 1.000 0.043"

\% 9.1 152 4.7 26 259 0.324 0.005* 0.987 0.108

VI 0 7.6 0 3 3.4 0.096 0.506 1.000 0.483

#Dutch neonatal invasive strains

" Dutch colonizing strains

¢ Taiwanese neonatal invasive strains
9 Taiwanese adult invasive strains

¢ Taiwanese colonizing strains

fP-values are calculated for the differences in serotypes between groups. If the P-value is <0.05, the difference is considered to be significant.
Invasive strains are compared with colonizing strains from the same region

€Less prevalent in Dutch neonatal invasive strains
"More prevalent in Dutch colonizing strains

{More prevalent in Dutch neonatal invasive strains

I More prevalent in Taiwanese neonatal invasive strains

Kk . . . . .
Less prevalent in Taiwanese neonatal invasive strains
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invasive and non-invasive strains by comparing Dutch
neonatal invasive with Dutch colonizing GBS, Taiwanese
neonatal invasive with Taiwanese colonizing GBS, and
Taiwanese adult invasive with Taiwanese colonizing GBS.
Chi-quare tests and Fisher’s exact tests were used to assess
differences between groups. To limit the number of
variables, PCR results for markers with just a few positive
results in all groups (<5) were excluded from further
statistical analysis. Logistic regression was performed to
assess any dependency of one variable to another and to
establish the distribution of serotypes and genetic markers
combined in colonizing and virulent GBS. Serotype was
included as a categorical variable. The Hosmer and
Lemeshow test was used to establish the statistical
significance of the outcome of the regression analysis.
To assess the practical value, a receiver operating
characteristic (ROC) curve was calculated with the
significant variables to establish the sensitivity and
specificity of the model.

Table 3 Prevalence of genetic markers

Results
Epidemiology of serotype and gene distribution

The distribution of serotypes and PPI markers varied
widely between the five groups (Tables 2 and 3). In Dutch
and Taiwanese strains, serotype III isolates were more
prevalent in neonatal invasive GBS (P<0.0001). In Dutch
strains, serotype II (P=0.009) and in Taiwanese strains
serotype V (P=0.005) were more prevalent in colonizing
GBS. In adult invasive GBS from Taiwan, no serotype was
associated with invasiveness or colonization (Table 2). We
found two PPI markers to be associated with invasiveness:
gbs1073/sagl038, corresponding to PPI IX in Dutch
neonatal strains (P<0.0001), and sag915, corresponding to
a transposon (Tn916) in both neonatal (P=0.028) and adult
invasive Taiwanese strains (P=0.048). Furthermore, marker
gbs0227/sag0234 (PPI I) was less prevalent in Dutch (P=
0.001) and Taiwanese invasive neonatal strains (£<0.001),

PPI Gene/ DNIF% DC°% TNI'% TAI'% TC'% P-value' P-value® P-value'  P-value’
marker (n=44) (n=92)  (n=43) (n=101) (n=58) DNIvs DC TNIvs TC TAI DCvs.TC
I gbs0217/5ag0224 38,6 413 32,6 33 27.6 0.767 0.589 0.504 0.088
gbs 0227/sag0234  43.2 72.8 32.6 82 75.9 0.001¢ <0.001" 0.339 0.680
10, VIL, VLI gbs0367 23 33 0 2 6.9 1.000 0.134 0.192 nd
(PNEM316)  o,50388 0 33 4.7 1 1.7 0.551 0.573 1.000 nd
VI gbs628/sag0645 56.8 68.5 65.1 67 56.9 0.183 0.404 0.188 0.150
gbs0660/5ag0685  81.8 92.4 79.1 82 84.5 0.082 0.482 0.709 0.126
X gbs1073/sag1038  38.6 4.3 69.8 78 79.3 <0.0001" 0.272 0.872 <0.00014
X gbs1120 23 22 47 1 1.7 1.00 0.573 1.000 nd
gbs1125 45 152 9.3 4 8.6 0.071 1.000 0.288 0.237
gbs1135 11.4 152 47 5 17.2 0.544 0.053 0.013  0.742
X1 gbs1306/sag1233  93.2 95.7 74.4 71 84.5 0.681 0.209 0.06 0.018'
gbs1313/sagl246 182 772 86.0 78 82.5 <0.00018 0.655 0.492 20411
XIII gbs1987/5ag2029  77.3 92.4 7.4 84 84.5 0.013¢ 0.209 0.957 0.126
Tn916 sag915 38.6 55.4 65.1 59 43.1 0.067 0.028™ 0.047"  0.141

#Dutch neonatal invasive strains
°Dutch colonizing strains

¢ Taiwanese neonatal invasive strains
4 Taiwanese adult invasive strains

¢ Taiwanese colonizing strains

fP-values are calculated for the differences in the prevalence of genetic markers between groups. If the P-value is <0.05, the difference is
considered to be significant. Groups of invasive strains are compared with colonizing strains from the same region

€Less prevalent in Dutch neonatal invasive strains

" Less prevalent in Taiwanese neonatal invasive strains
"More prevalent in Dutch neonatal invasive strains

¥ More prevalent in Taiwanese colonizing strains

KLess prevalent in Taiwanese adult invasive strains
"More prevalent in Dutch colonizing strains

"™ More prevalent in Taiwanese neonatal invasive strains

"More prevalent in adult invasive strains
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but not in Taiwanese adult invasive strains. The presence of
markers gbs1313/sag1246 (PPI XII) and gbs1987/sag2029
(PPI XIII) was associated with colonization (P<0.0001 and
P=0.013) only in the Dutch collection of strains (Table 3).
Finally, gbs1135 (PPI X) was more prevalent in Taiwanese
colonizing strains. The absence of this gene was associated
with virulence in Taiwanese adult invasive strains (P=
0.013). When Dutch and Taiwanese colonizing GBS were
compared, serotype II, serotype IV, and marker 1306/
sagl1233 (PPI XII P=0.049, P=0.043, P=0.0001, respec-
tively) were more prevalent among Dutch GBS and marker
1073/sag1038 (PPI IX) among Taiwanese GBS (P<0.0001)
(Tables 2 and 3). Apparently, there are clear regional
differences in the GBS epidemiology and infection poten-
tial of clones.

Invasion markers and serotype analysis

For the Dutch strains, serotype, absence of markers
gbs1987/sag2029, gbs227/sag0234, gbsl1125, and
gbs1313/sagl1246, and the presence of marker gbs1073/
sagl038 were clearly associated with invasiveness
(Tables 2 and 3). The ROC curve showed a large area
under the curve (AUC) of 0.963, representing a sensitiv-
ity of 97.7% and a specificity of 85.9% in indicating
virulence (Fig. la). If the algorithm deduced from the
ROC curve was used to identify Taiwanese strains, this
model correctly identified 79% of the neonatal invasive
strains and only 25% of adult invasive strains and 57% of
colonizing strains. Therefore, to optimize the selection of
markers for the Taiwanese collection of strains, a new

a1,0- b 1,0 1 c1,0-
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Fig. 1 Receiver operating characteristic (ROC) curves including both
sensitivity and specificity estimates. Each curve is the regression line
that summarizes the overall diagnostic accuracy. AUC = area under the
curve, SE = standard error of AUC. a, b Dutch neonatal invasive
strains. ¢, d Taiwanese neonatal invasive strains. e Taiwanese adult
invasive strains. In a and ¢, the included variables are molecular markers
and serotype. To establish the influence of markers alone, serotype was
left out as a variable in b and d. For adult invasive strains, only one
curve was constructed (e) because the serotype was not a relevant
variable. a AUC: 0.963, SE: 0.014, 95% CI: 0.935-0.99, cutoff: 0.2055,
sensitivity: 97.7%, specificity: 85.9%. Included variables are serotype,

gbs1987/sag2029, gbs227/sag0234, gbs1073/sagl038, gbs1125, and
gbs1313/sagl246. b AUC: 0.898, SE: 0.028, 95% CI: 0.844-0.952,
cutoff: 0.351, sensitivity: 90.9%, specificity: 79.3%. Included variables
as in a, except serotype. ¢ AUC: 0.894, SE: 0.035, 95% CI: 0.826—
0.963, cutoff: 0.3525, sensitivity: 93%, specificity: 75.9%. Included
variables are serotype, gbs1987/sag2029, gbs227/sag0234, gbsl135,
and sag915. d AUC: 0.823, SE: 0.044, 95% CI:0.738-0.909, cutoff:
0.388, sensitivity: 72.1%, specificity: 82.8%. Variables as in ¢, except
serotype. ¢ AUC: 0.657, SE: 0.046, 95% CI: 0.567-0.747, cutoff:
0.5495, sensitivity: 71.4%, specificity: 53.4%. Included variables are
sag915, gbs1306/sagl1233, and gbs1135
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Table 4 Overview of known markers to potentially identify the invasive subgroup, comparing the results of our study with those of previous

works
Ref. Origin of the strains Subgroups (n) Method Marker -* or +° P-
value®
Neonatal invasive (EOD and LOD) and NL invasive (44)NL PCR and serotyping {ST (1I-, I1I+), gbs1987-, <0.05
vaginal and rectal colonizing GBS from The  colonizing (92) gbs227-, gbs1073+,
Netherlands and Taiwan gbs1125-, gbs1313- }
TW invasive (43)TW {ST (IlI+, V-), gbs1987-, <0.05
colonizing (58) gbs227-, gbs1135-,
sag915+ }
22 Invasive strains from neonates, elderly and Invasive (269) Selection of known and putative spbl + 0.23 (ns)
pregnant women virulence genes, PCR
Anal, vaginal, throat, and urine from healthy = Colonizing (152) bac ns
individuals Rib ns
Brp ns
pag - <0.01
psp ns
239 Neonatal meningitis isolates, EOD Invasive (100) Selection of known virulence genes, bca - 0.002
Colonizing isolates from cervix, vagina, anus Colonizing (360) PCR bac ns
rib + 0.09 (ns)
ST Ia bca - 0.03
ST bca + 0.002
24° GBS from neonatal CSF (EOD and LOD), Invasive phylogenetic RAPD, followed by PCR of a tRNA 1,2 kb fragment + <0.0001
vagina pregnant women, and neonatal subgroups I, II-ET11, II- gene cluster
gastric fluid (colonizing) ET12 (MLEE) (62)
Non-invasive phylogenetic +IS1548 + <0.0001
subgroup II (MLEE) (52
25°  CSF neonates 1986—1990 Invasive phylogenetic RAPD, followed by differential DNA fragment F5 + 0.017
subgroups (MLEE) (63) display of DNA and PCR of
Vagina and gastric fluid neonates (colonizing) Non-invasive phylogenetic prophagic DNA DNA fragment F7 + 0.007
subgroups (MLEE) (46) DNA fragment F10 + <0.001
At least one fragment + 0.002
26° GBS from neonatal CSF (EOD and LOD), RAPD group A (virulent RAPD, primer A4 0.64 kbp fragment <0.001
vagina pregnant women, and neonatal clone family) (38)
gastric fluid (colonizing) Not RAPD gr.A (76) RAPD, primer AP42 1.2 kbp fragment - <0.001
RAPD, primer OPS16 2.4 kbp fragment + <0.001
27" GBS from neonatal CSF (EOD and LOD), Invasive (54) PFGE, Smal restriction 183 kb fragment + ns
vagina pregnant women, and neonatal Colonizing (59) 162 kb fragment + <0.0001
gastric fluid (colonizing)
Quadruplet + 0.009
28" Neonatal meningitis isolates, EOD and LOD, Invasive (92) PFGE, Smal digestion probes of cpsA ns
all ST III potential virulence genes, and
Ears and gastric fluid healthy neonates Colonizing (37) mobile genetic elements neud (15kb fragment) + <0.0001
scpB ns
hylB ns
1S1548 ns
GBSil + <0.0001

# Absence of the marker(s) is associated with the specific virulent subgroup. The significance level of this association is expressed by the P-value
® Presence of the marker(s) is associated with the specific virulent subgroup. The significance level of this association is expressed by the P-value
“ns means not significant (P > 0.05)

4 Distribution of virulence genes among invasive and colonizing GBS. Smith et al. examined the distribution of eight known and putative
virulence genes as a function of type of isolate on a heterogeneous collection of strains. With the exception of the pag (phage-associated) gene,
appearing more often in colonizing isolates, and the spb/ gene, appearing slightly more often in invasive isolates, no difference was found in the
distribution of the selected genes [22]. Manning et al. studied the presence of the 7ib and the bca and bac genes among colonizing and invasive
isolates and found only marginally significant differences in frequency. The calculated sensitivity and specificity of these markers to identify
virulent strains is generally low, except for some limited serotype—gene combinations [23]

¢ Distribution of RAPD fragments among virulent phylogenetically related lineages. With RAPD, Rolland et al. identified a fragment
corresponding to a tRNA gene cluster [24]. van der Mee-Marquet et al. identified several prophagic DNA fragments that were significantly more
prevalent in strains belonging to invasive MLEE-related subgroups of GBS [25]. Chatellier et al. demonstrated that, with four primers, neonatal
invasive strains can be grouped into three predominant RAPD groups, corresponding to the same virulent MLEE lineages as found by van der
Mee-Marquet et al. [26]
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"PFGE fragments and virulence gene probes, distribution among virulent vs. colonizing (ST III) GBS. Rolland et al., using PFGE, revealed that
isolates recovered from meningitis were clustered within three PFGE groups [27]. Bidet et al. found a significant association of a mobile genetic
element (GBSil) and a 15 kb fragment bearing the neuA virulence gene with meningitis isolates [28]

model was constructed, comparing both neonatal and
adult invasive strains to colonizing strains from the same
region. For Taiwanese neonatal strains, serotype and
absence of markers gbs1987/sag2029, gbs0227/sag0234,
and gbs1135, and the presence of marker sag 915 were
independently associated with virulence (Tables 2 and 3).
With these variables, the ROC curve showed an AUC of
0.894 and the model potentially predicted invasiveness
with a sensitivity of 93% and specificity of 75.9%
(Fig. 1c). If the serotype was excluded, the AUC was
still 0.89 for the Dutch and 0.81 for the Taiwanese
neonatal strains (Fig. 1b, d). The optimal ROC curve
constructed for the adult invasive Taiwanese strains
generated an AUC of only 0.657 and a low sensitivity
(71.4%) and specificity (53.4%) for tracing potential
virulence (Fig. le). Only a few variables contributed to
this model: the presence of marker sag 915, and the
absence of markers gbs1306/sagl1233 and gbs1135. In
contrast to both groups of neonatal invasive strains,
serotype was not a relevant variable (Table 2). So, with
different sets of markers and serotypes, it was possible to
construct a reliable model for the prediction of potential
invasiveness for both groups of neonatal but not for adult
invasive strains.

Discussion

Based on a combination of conventional serotyping and
assessment of a set of PCR markers related to GBS PPIs as
defined for a collection of strains from The Netherlands and
Taiwan, we have been able to characterize the epidemiol-
ogy of virulent isolates of GBS likely to cause neonatal
disease. Previously, Herbert et al. examined the presence of
these PPIs in a limited number of invasive and non-invasive
strains of GBS, and used PCRs directed at several genes per
island as markers [20]. They found that islands I, VI, and
XII met the criteria of a true pathogenicity island, but no
association was found between the presence of markers
corresponding to these islands and invasiveness [20, 21].
Our present study is the first to examine combinations of
these markers of PPI and serotype on a large collection of
strains, and to compare strains isolated from different
groups of patients from different regions [20].

Previously, not a single major GBS virulence factor
related to neonatal disease has been identified, and solely
comparing the presence or absence of genes encoding
virulence factors can not differentiate accurately between

epidemic virulent and colonizing strains. This is con-
firmed by two independent studies that were carried out to
establish the frequency of genes coding putative and
known GBS virulence factors among invasive and
colonizing isolates [22, 23] (Table 4). Others used random
amplified polymorphic DNA (RAPD), exploring a larger
part of the genome to compare the genetic structure of
colonizing and invasive GBS isolated from neonates with
meningitis [24-26] (Table 4). Additionally, two previous
French studies using pulsed field gel electrophoresis
(PFGE) revealed that a subset of isolates recovered from
meningitis clustered within three PFGE groups [27, 28].
The authors suggested that it should be possible to
characterize the specific markers, define primers, and
construct a PCR assay to identify virulent isolates of GBS.
However, such a test has not been developed yet. The PPIs
we examined harbor known and putative GBS virulence
factors, insertion sequences, transposons, and genes of
unknown function. (Table 1). We found that in all
geographically related neonatal invasive strains, gbs1987/
sag2029, corresponding to a true PPI (I), was more
prevalent in colonizing rather than invasive GBS isolates.
Also, one marker in the Dutch neonatal strains (gbs1073/
sagl1038, PPI IX) and one marker for a mobile element,
sag915(Tn916), in the Taiwanese strains were associated
with invasiveness. This probably reflects the complex and
multi-factorial nature of GBS virulence and molecular
pathogenesis, which is likely to be attributable to multiple
genes, polymorphism, and differential expression of these
genes and regulation mechanisms [24, 25, 29-32].

Without understanding the exact link between PPI,
serotype, and virulence, our novel markers allow us to
epidemiologically differentiate between invasive and colo-
nizing GBS, more so than other methods permitted thus far.
However, it has to be emphasized that epidemiological
behavior and invasiveness might be closely intertwined.
Analysis of GBS strains from additional geographic locales
will help to resolve this issue. Optimal PPI markers for
epidemiological discrimination vary between the two
geographically distinct areas and in subsets of neonatal
GBS strains from The Netherlands and Taiwan. After
optimizing the markers, our predictive model was still less
accurate for the Taiwanese strains, most likely because our
initial selection was based on screening of the Dutch
strains. Further research exploring the distribution of
molecular markers not included in our study in different
populations and regions is necessary to give insight into the
dynamics of group B streptococci.
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