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Abstract A novel olfactory method for bacterial species
identification using an electronic nose device called the
MonoNose was developed. Differential speciation of micro-
organisms present in primary cultures of clinical samples
could be performed by real-time identification of volatile
organic compounds (VOCs) produced during microbial
replication. Kinetic measurements show that the dynamic
changes in headspace gas composition are orders of
magnitude larger than the static differences at the end of
fermentation. Eleven different, clinically relevant bacterial
species were included in this study. For each of the species,
two to eight different strains were used to take intra-species
biodiversity into account. A total of 52 different strains
were measured in an incubator at 37°C. The results show
that the diagnostic specificities varied from 100% for
Clostridium difficile to 67% for Enterobacter cloacae with
an overall average of 87%. Pathogen identification with a
MonoNose can be achieved within 6–8 h of inoculation of
the culture broths. The diagnostic specificity can be
improved by broth modification to improve the VOC
production of the pathogens involved.

Introduction

Bacterial identification in the medical microbiology
laboratory is still firmly based on old-fashioned bio-
chemical reactions. From the ages of Pasteur and Koch
onwards, medical microbiologists have relied on classical
culture-based methods in order to confirm bacterial
infections and identify the pathogens involved. Most
infectious agents are still primarily detected using
classical methods that involve liquid or solid semi-
synthetic growth media [1]. Serological methods for the
detection of such pathogens are often lacking in
sensitivity and specificity and data generated by the
novel generation of expensive molecular tests need to be
interpreted with equal caution [2]. Even so, given the
clinical impact of bacterial infections in general, methods
that reliably speed up the diagnostic process and limit
costs are still eagerly awaited. Culture has the major
advantage that living organisms are obtained for down-
stream characterisation, including antimicrobial suscepti-
bility testing and epidemiological typing of the organism.
This is an argument in favour of new methods that
combine classical culture with procedures that enhance
the speed of bacterial species identification. Currently,
microbiology laboratories employ classical, growth-
based, fermentative species-identification schemes that
can be performed either manually or in an automated
fashion using instruments such as the bioMérieux
VITEK© or the Beckon-Dickinson Phoenix©. Molecular
nucleic acid amplification tests and biophysical proce-
dures, including mass spectrometry, could encompass
novel, more real-time methods of bacterial species
identification, although this would require additional
handling of positive cultures [3]. In conclusion, real-time
species identification during primary cultivation of
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clinical samples would be of added value for controlling
costs and optimising patient care in clinical institutions.
Odour-based assays could potentially fill this diagnostic
niche. General interest in the classification of micro-
organisms on the basis of odour production has recently
increased because of the introduction of so-called
electronic nose devices.

Differential speciation of micro-organisms present in
primary cultures of clinical samples could be performed by
real-time identification of volatile organic compounds
(VOCs) produced during microbial replication. Classical
culture has been combined with such olfactory measure-
ments in the past [4]. It needs to be emphasised that these
experiments always involved cultivation endpoint measure-
ments. However, by continuous sampling of a culture’s
headspace, the kinetics of the synthesis of VOCs can be
monitored in real time. The complex bacteriological VOC
signals can be defined by a gas measurement technique
involving metal-oxide (MO) sensors as used in the present
study.

We have developed a broadly applicable, inexpensive and
highly responsive sensor system, called the MonoNose,
which uses real-time VOC pattern recognition and the
matching of the measured dynamic olfactory pattern with
previously identified reference patterns. This system
is analogous to the kinetics of human odour recognition
[5]. The MonoNose technology facilitates the timely
identification of bacterial species and, thereby, the clinical
differentiation of medically relevant pathogens. In this
article, we show that several bacterial species can be
distinguished on the basis of MonoNose-mediated identifi-
cation of growth stage-specific VOC production.

Materials and methods

Electronic nose (MonoNose)

A set of 30 custom-designed electronic nose devices
were manufactured by C-it (Zutphen, The Netherlands).
These MonoNoses employ a single metal oxide-type
semiconductor gas sensor. A scheme of a MonoNose and
the 30 hand-manufactured devices in operation in an
incubator are depicted in Fig. 1. The sensor system itself
and the accompanying real-time pattern recognition
algorithms are described in more detail elsewhere (man-
uscript submitted).

For each experiment a MonoNose device was fitted
with a disposable sterile syringe needle and a sterile
HEPA filter with 45-μm pore size to prevent cross-
contamination. Humidity influences the semiconductor
response values [6]. All devices were operated in an
incubator at a constant ambient temperature of 37°C in
order to keep the relative humidity in the headspace
constant during all experiments.

Bacterial species

Eleven different, clinically relevant bacterial species were
included in this study. For each of the species two to eight
individual, genotypically distinct strains were used to take
intra-species biodiversity into account. The 52 strains used
are listed in Table 1. The strains were obtained from both
commercial sources (American Type Culture Collection;
ATCC) and Erasmus MC reference collections. For all
strains, the nature of the species was reconfirmed by

Fig. 1 a Schematic representa-
tion of a MonoNose device for
measuring bacterial volatile
organic compound (VOC)
production in the broth’
headspace over prolonged
periods of time. The sensor
is a commercially available
metal oxide-based micro-device.
b Experimental set-up with 30
MonoNose devices in operation
in an incubator. The sensors are
serially connected and all data
are assembled on a simple
portable computer. The vials
in the photo are standard BD-
BACTEC™–Plus-Anaerobic/F
disposable bottles
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VITEK© analysis before inclusion in the present study.
Culture broths (50 ml) were inoculated with 100 μl of a
physiological salt solution with a bacterial density of ±1.5
McFarland and linked to the MonoNose.

Culture broths and chemicals

A broad range of commercially available culture broths
were tested to identify those with maximum bacterial
VOC production. These explorative tests were conducted
with a single strain per species. The broths were also
spiked with additional chemicals. These additions
consisted of 1 ml of a solution with a concentration of
0.1, 1.0 or 5.0 mM of, for instance, metal salts
(ammonium nickel [II] sulphate, chromium [III] potassi-
um sulphate, cobalt [II] sulphate, copper [II] chloride,
copper [II] sulphate, iron [III] chloride, lithium acetate,
manganese [II] sulphate, molybdenum [IV] sulphide,
silver nitrate and zinc sulphate), fatty acids (butanoic
acid, caproic acid, lactic acid, propionic acid and valeric
acid) and alcohols (butanol, ethanol, methanol and 2-
propanol). All separate chemicals were purchased from
Sigma (Dordrecht, The Netherlands). As Escherichia coli
and Klebsiella oxytoca strains produce VOCs that are
efficiently detected by the MonoNose and, hence, produce
“strong” signals, these two bacterial species were used to
examine the influence of amino acid and NaCl concen-

trations by varying the concentrations between 2.5 and
7.5 g.l-1 and 1 and 9 g.l-1 respectively.

Data processing

During each experiment a set of 2,200–2,500 data points
was collected (corresponding with an incubation of 12–
14 h), starting within 15 min of the moment of
inoculation of the medium. To test the device and time
independency all strains were measured three times on
different days and with different devices. The measured
data were pre-processed and the resulting times–series
data were analysed using a Sliding Window-Minimum
Variance Matching adaptation of the Dynamic Time
Warping algorithm [7, 8].

Results

Culture broths

The results of the exploratory tests with various broths
revealed that the composition and dynamics of the
headspace were co-determined by both the broth
composition and the bacterial species in question.
Although the different chemical additives caused
changes in the VOCs produced, only one of the
chemicals tested gave a significantly better result than
was obtained in the standard broth. All other additions
either generated no improvement at all or only improved
the signal obtained for one species while deteriorating
others, which invariably resulted in a worse overall
result. These tests do, however, clearly reveal that the
production of VOCs can be influenced by changes in
the media, as the observed features change with the
different additives. The BD-BACTEC™–Plus-Anaerobic/F
Medium with the addition of 0.1 mM FeCl3 was selected
to perform the high-throughput measurements, as this
medium gave the best discriminating abilities of the broths
tested.

Among the bacterial species tested, two response
modes could be identified. Species either generated
strong signals, probably because of the production of
large amounts of detectable VOCs, or the signals
remained low during the entire measurement process.
The group of species provoking strong signals will be
further referred to as the “strong” group, and suffered
from a squashing effect because of the particulars of the
measuring electronics: signal curves relatively quickly
topped off due to saturation of the measurement signals.

Amino acid and salt concentrations showed a clear
optimum, which differed for the species tested. The
surface plots showing the results are depicted in Fig. 2.

Table 1 Overview of the bacterial species and strains used

Species Strains

Clostridium
difficile

AN59, AN63

Enterobacter
cloacae

ATCC13047, B33386, B33449

Enterococcus
faecalis

ATCC19433, ATCC29212,
ATCC51299, ATCC7080, P794805,
VanB, B33432, B33438

Escherichia coli 31972, 31995, ATCC25922,
ATCC35218, B31938, ATCC35150(ETEC)

Klebsiella oxytoca 32341, ATCC700324, B33516, B33510,
F54, loes

Klebsiella
pneumoniae

ATCC13882, ATCC13883,
ATCC35657, ATCC700603, P79789

Proteus mirabilis ATCC25933, ATCC7002, B33183,
B33505, B33546

Pseudomonas
aeruginosa

ATCC10145, ATCC27853,
ATCC9027, P798326

Salmonella
enteriditis

ATCC13076, mrcl

Salmonella
typhimurium

ATCC13311, ATCC14028, ATCC49416

Staphylococcus
aureus

857S, 863S, 865S, 920S, ATCC25923,
ATCC29213, ATCC29737, ATCC33862
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Bacterial species identification

Bacteria were cultured in the BD-BACTEC™–Plus-
Anaerobic/F Medium with the addition of 0.1 mM FeCl3
and the production of VOCs was measured continuously
with the MonoNose. Figure 3 illustrates typical experimen-
tal results. Figure 3a is an example of a strong response in
which the maximum amplitudes of the sensor reached the
upper limits of the measuring range. Figure 3b is an
example of a weak response in which the maximum
amplitudes of the sensor are found to remain near the

lower limit of the measuring range. It must be emphasised
that bacterial identification can be adequately based upon
both the strong and the weak signals with comparable
specificity. The group of strong bacterial reactors was found
to consist of the species Proteus mirabilis, Klebsiella spp.,
E. coli, Salmonella spp., E. cloacae and Clostridium difficile.
The weak group was found to consist of Staphylococcus
aureus, Enterococcus faecalis and Pseudomonas aeruginosa.
For each species, a characteristic sub-feature was derived
from a single experiment. Sub-features for the two
Salmonella and the two Klebsiella species were very similar.
Therefore, these species cannot yet be distinguished and had
to be grouped at the genus level. Examples of these sub-
features are given in Fig. 3c and d. The sub-features were
subsequently “generalised” by matching and averaging
within a species group. With the “generalised” sub-features,
the classification process was iterated. The results in Table 2
show that the test specificity varies from 100% for
C. difficile to 67% for E. cloacae with an overall average
of 87%. All characteristic sub-features were observed
between 6and 8 h after initial inoculation.

Discussion and conclusions

The majority of papers describing the classification of
bacteria with electronic nose devices appeared around the
turn of the century [9–12]. In most cases, very good
diagnostic results were achieved and the bright prospects
for the applications were hinted at. In all cases, however,
the analysis models used a single sensing device. None of
the papers addressed the crucial aspect of applicability and
reproducibility when using a larger series of independent
devices. This seriously hampers the broad applicability and
hence the commercial success of such methodologies.
Although the older approaches allowed for establishing
proof of principle, results came at the great expense of
painstakingly calibrating for each measuring device. In
order to achieve similar results with other devices, the same
amount of work needed to be performed for each unit. For
practical application, it is necessary to ascertain that the
reproducibility between a set of devices is sufficient to
allow the development of analysing algorithms that do not
depend on intensive, individual calibration of the measuring
devices. If individual calibration is required to adapt an
analysis model to a specific hardware device, the added
effort prohibits a realistic application. The current data
demonstrate that the MonoNose hardware and times–series
analysis software give good results over a representative set
of 30 independently produced hardware devices and 9
bacterial species. All measurements have been conducted
with different MonoNoses and the results show that the
features measured are interchangeable among the different

Fig. 2 The surface plot of the maximum sensor amplitude for
E. coli and K. oxytoca, as a function of the combined amino acid
and NaCl concentrations. Maxima and minima are clearly shown, as
is the difference in optimal concentrations for these two species.
Note that the major difference is reflected by a bi-modal response
curve for K. oxytoca
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MonoNoses, rendering obsolete the need for the individual
calibration of each MonoNose.

This study shows that the MonoNose can identify
pathogenic bacteria during the first few hours of growth
on the basis of prior calibration data generated by other
MonoNoses. Most identification systems in use today
follow Bayes theorem and, depending on the number of
tests used, obtain a score of <90% (e.g. the bioMerieux
API-50 test), higher only when significant numbers of
additional tests are included. When using generalised

features calculated on the basis of the VOC response
curves an average identification rate of 87% was achieved.
It is expected that this can be optimised further when the
detection limits of the MonoNose are expanded. The
availability of a more universal culture broth will further
enhance the possibilities of the MonoNose to become a fast,
reliable and inexpensive detection method for pathogenic
bacteria. The study also demonstrates that the development
of the metabolising behaviour of growing bacteria over
time gives distinct and sometimes reversible features that

Fig. 3 a, b Experimental output of the VOC sensing during bacterial
cultivation. a Typical strong result for E. coli. b Typical weak result for
S. aureus. Note the difference in amplitudes between the strong and
weak results. Species-specific signatures were derived from the VOC
detection curves on the basis of Sliding Window Minimum Variance

Matching and Dynamic Time Warping. c Selected E. coli feature
projected on a normalised E. coli experiment. d Selected S. aureus
feature projected on a normalised S. aureus experiment. Note the
reproducible difference in time frames between the two features

Table 2 MonoNose-based identification result for the bacterial species test panel

Number of measurements Unclassifiable Classified Percentage correct

Correct Error

Clostridium difficile 4 0 4 0 100
Enterobacter cloacae 6 0 4 2 67
Enterococcus faecalis 16 2 12 2 86
Escherichia coli 12 1 9 2 82
Klebsiella spp 22 0 21 1 95
Proteus mirabilis 10 0 8 2 80
Pseudomonas aeruginosa 8 3 5 0 100
Salmonella spp 10 1 7 2 78
Staphylococcus aureus 16 0 14 2 88
Overall 104 7 84 13 87
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are traceable using a single-sensor electronic nose employing
thermal cycling combined with software analysis.

With the broth used in the present experiments not all
important pathogen species can be identified. Therefore, future
work will focus on optimisation of the culture broth with a new
MonoNose that has a larger dynamic measuring range. The
amino acid and salt variations showed different optimal
mixtures for the different organisms, meaning that changing
the broths can greatly improve the result, but mostly the
increase in one species will mean a decrease in another.
Different clinical materials such as urine, blood and wound
exudates also need to be tested to determine the influence of
the sample matrix on the measurement. Ideally, the next
generation of electronic noses will not only facilitate bacterial
species identification after culture, but also the characterisation
of bacterial cells present in non-processed clinical materials.
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