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Abstract
A new iterative method for solving large scale symmetric nonlinear eigenvalue prob-
lems is presented. We firstly derive an infinite dimensional symmetric linearization
of the nonlinear eigenvalue problem, then we apply the indefinite Lanczos method to
this specific linearization, resulting in a short-term recurrence. We show how, under
specific assumption on the starting vector, this method can be carried out in finite
arithmetic and how the exploitation of the problem structure leads to improvements
in terms of computation time. The eigenpair approximations are extracted with the
nonlinear Rayleigh-Ritz procedure combined with a specific choice of the projection
space. We illustrate how this extraction technique resolves the instability issues that
may occur due to the loss of orthogonality in many standard Lanczos-type methods.
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1 Introduction

We consider the nonlinear eigenvalue problem (NEP) which consists of computing
(λ, v) ∈ D × C

n\ {0} such that

M(λ)x = 0, (1)
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where

M(λ) =
p∑

m=1

fm(λ)Am, (2)

with D ⊂ C open disk, fm : D → C analytic functions, and Am ∈ C
n×n for

m = 1, . . . , p. In this work we focus on the symmetric NEP, namely we assume that

M(λ)T = M(λ) ∀λ ∈ D. (3)

Equivalently, M(λ) can be expressed as (2) with symmetric matrices AT
m = Am for

m = 1, . . . , p. Notice that the complex matrices Am and M(λ) are assumed to be
symmetric but not necessarily Hermitian. The NEP arises in many areas such as: sta-
bility analysis, control theory, wave propagation, etc, and it has been studied in various
settings. See the review papers [21, 39], the PhD theses [15, 52], and the problem col-
lection [6]. Specialized software for NEPs has been recently produced: the package
NEP-PACK [26], the library SLEPc [23], and even more open-source software. An
approach for solving the NEP consists of constructing a linear eigenvalue problem
(linearization) whose eigenvalues approximate, or correspond to, the eigenvalues of
the original NEP [2, 3, 14, 20, 32, 35, 47]. When the NEP has specific structures
such as being: symmetric, Hermitian, Hamiltonian, palindromic, etc, it is preferable
to construct a linearization that preserves these structures. Theoretical and algorithmic
aspects of structured linearizations have been extensively analyzed [10, 12, 18, 36, 37,
41, 51]. In particular, it has been shown that methods based on structure preserving
linearizations, in certain applications, are more efficient than other methods that do
not take into account the structure [38, 40]. For the polynomial eigenvalue problem
(PEP), i.e., the special case where fm(λ) in (1) are polynomials, symmetric lineariza-
tions are extensively characterized in [11, 24]. A well established class of methods for
solving symmetric eigenvalue problems are Lanczos-likemethods.More precisely, the
Lanczos method, and its variants, can be applied for solving symmetric generalized
eigenvalue problems Ax = λBx where A, B ∈ C

n×n are symmetric matrices. The
original approach [31] was developed for the case B = I , a generalization for B posi-
tive definite is presented in [44, Ch.15, Sect.11]. A further extension of this approach,
known as indefinite Lanczosmethod, for the casewhere A and B areHermitian or sym-
metric matrices is discussed in [45] and [4, Section 8.6.1]. Lanczos methods belong
to the class of Krylov methods. They exploit the fact that, during the construction of
the orthogonal basis of the Krylov space, due to the symmetry of the problem, the
orthogonalization can be performed in a more efficient way with a three-term recur-
rence.In exact arithmetic, this approach reduces drastically the complexity. However,
in floating-point arithmetic and without further specializations, the basis vectors are
often affected by loss of orthogonality, resulting in slow convergence of the Ritz pairs
and numerical instability [1, 46, 48, 55]. Even if Lanczos methods are in certain cases
unstable and in general less efficient, in terms of number of iterations, with respect
to Arnoldi methods, they can be efficiently implemented in a distributed computing
framework. On the other hand, Arnoldi methods are more difficult to parallelize due
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to the full orthogonalization procedure. Moreover, there are various ways to resolve
the instability and improve the efficiency of Lanczos methods such as: selective and
partial re-orthogonalization, deflation, structured restart techniques, etc. See [1, 46,
48, 55] and references therein.

In this work, we present a new symmetric linearization for the symmetric NEP,
resulting in a symmetric, linear, and infinite dimensional eigenvalue problem. Sym-
metric generalized eigenvalue problems can be solved with the indefinite Lanczos
method [4, Section 8.6.1]. We present a new method that corresponds to adapting, in
an efficient and robust way, the indefinite Lanczos method to the derived lineariza-
tion. In order to cure the slow convergence, that is due to the loss of orthogonality,
we extract the eigenpair approximations by using the nonlinear Rayleigh–Ritz pro-
cedure combined with a proper choice of the projection space, which is derived by
the structure of the linearization. We also present numerical experiments that show
that the proposed method is competitive, in terms of robustness and complexity, with
Arnoldi-like methods for NEPs that perform the full orthogonalization.

The paper is organized as follows: in Sect. 2 we prove that the symmetric NEP
is equivalent to a symmetric, linear, and infinite dimensional eigenvalue problem.
In Sect. 3 we derive a method, in finite arithmetic, which consists of applying the
indefinite Lanczos method to the derived linearization. In Sect. 4 we show how the
computation time of the resulting method can be considerably reduced by exploiting
additionalNEP structures. In Sect. 5we illustrate the performance of this new approach
with numerical simulations by solving large and sparse NEPs. The simulations were
carried out in the Julia programming language [9] with NEP-PACK [26], which is an
open source Julia package for NEPs.

The method we derive can been seen as an Arnoldi-like method applied to an
iteratively expanding linearization, or equivalently to a infinite dimensional linear
operator. Other methods that are based on these ideas are: infinite Arnoldi [29] and
its tensor variant [28], NLEIGS [22], and CORK [53]. There are also methods based
on the bi-orthogonalization procedure, which also lead to a three-term recurrence,
presented in [19, 33]. However, these methods and their variations, in the way they
are presented and without further research, are not capable of taking advantage of the
symmetry of the NEP.

In the rest of this work, vectors and matrices are denoted as v = [vi ]ni=1 and
A = [ai, j ]n,m

i, j=1 respectively, whereas bold letters represent block-vectors and block-
matrices with infinite size, namely v = [vi ]∞i=1 with vi ∈ C

n and A = [Ai, j ]∞i, j=1

with Ai, j ∈ C
n×n . The matrix [A]k = [Ai, j ]ki, j=1 ∈ C

nk×nk consists of the main
sub-matrix obtained by extracting the first k-blocks. The Kronecker product and the
Hadamard (element-wise) product are denoted by ⊗ and ◦ respectively. The vectors
e j and e j have zeros as elements except one in the j-th position whereas e and e
are the vectors with all ones. Without loss of generality, after a change of variables
in (2), we assume that the region of interest D ⊂ C is a disk centered in the origin.
Unless differently specified, the matrices Mi will denote the derivatives M (i)(0). We
will denote by AT the transpose (not conjugate transpose) of the matrix A ∈ C

n×n .
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2 Indefinite Lanczos method in infinite dimensional settings

In order to derive a symmetric linearization for NEPs, we first review a specific lin-
earization technique for PEPs. This technique consists of symmetrizing the companion
linearization and it is presented in [41, Theorem2.1] thatwe recall below.The approach
is previously reported in [30, Ch.4 Sect. 2] for the scalar case.

Theorem 1 (Mehrmann and Watkins [41], Lancaster [30]) Consider the polynomial
eigenvalue problem M(λ)v = 0 where M(λ) = ∑k

j=0 Mjλ
j and Mk nonsingular.

Then, the pencil A − λB ∈ C
nk×nk , where

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−M0 0 0 0 . . . 0
0 M2 M3 M4 . . . Mk

0 M3 M4 0
0 M4 0
...

...
...

0 Mk 0 0 . . . 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

M1 M2 M3 . . . Mk−1 Mk

M2 M3 M4 Mk 0
M3 M4 0
M4 0
...

...

Mk 0 0 0 . . . 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(4)

has the same eigenvalues as M(λ). If M j are symmetric, i.e., M(λ) is symmetric, then
A and B are symmetric. If M(λ)v = 0, then [vT , λvT , . . . , λk−1vT ]T is an eigenvector
of A − λB.

The proof is based on the following argument. A pair (λ, x) that fulfill M(λ)x = 0
defines an eigenpair of the companion linearization [20], namely

⎛

⎜⎜⎜⎜⎜⎝

−M0
I
I

. . .

I

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

x
λx
λ2x
...

λk−1x

⎞

⎟⎟⎟⎟⎟⎠
= λ

⎛

⎜⎜⎜⎜⎜⎝

M1 M2 . . . Mk−1 Mk

I 0
I 0

. . .
...

I 0

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

x
λx
λ2x
...

λk−1x

⎞

⎟⎟⎟⎟⎟⎠
. (5)

Let us define the symmetrizer matrix S, which is nonsingular [41], as

S :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

I 0 0 0 . . . 0
0 M2 M3 M4 . . . Mk

0 M3 M4 0
0 M4 0
...

...
...

0 Mk 0 0 . . . 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

To obtain (4) we multiply (5) on the left by the matrix (6).
The main disadvantage of using this linearization in practice is that the blocks

forming the eigenvectors of the pencil, defined by (4), grow or decay exponentially,
depending on the value of |λ|.More precisely, the normof the j-th block is |λ| j‖x‖ and,
if the PEP has high degree, this leads to overflow or underflow when the eigenpairs
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of (4) are computed numerically. In order to resolve this issue, in this section we
consider the scaled companion linearization presented [29, Section 5.1].We extend the
ideas used in Theorem1 to symmetrize the scaled companion linearization. Moreover,
we consider the NEP in its general form (1), therefore we derive a linearization that
involves vectors and matrices with infinite size.

2.1 An infinite dimensional symmetric linearization

The NEP (1) is equivalent to a linear and infinite dimensional eigenvalue problem, see
[29, Section 5.1]. More precisely, if (λ, x) is an eigenpair of (1), the following relation
between vectors and matrices of infinite size is fulfilled

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−M0

I

I

I
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

λ0

0! x
λ1

1! x
λ2

2! x
λ3

3! x
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= λ

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

M1
1
2M2

1
3M3

1
4M4 . . .

1
1 I

1
2 I

1
3 I

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

λ0

0! x
λ1

1! x
λ2

2! x
λ3

3! x
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

The equation (7) defines a linear and infinite dimensional eigenvalue problem

Ax = λBx, (8)

where A, B, x are matrices and vector of infinite size defined accordingly. Clearly,
the linearization (7) is never symmetric. However, if the NEP is symmetric, i.e., it
holds (3), then it is possible to symmetrize (7)with a similar technique as in Theorem1.
More precisely, since we consider a scaled and infinite companion linearization, in
the following theorem we derive a scaled and infinite version of the matrix (6) that
symmetrizes (7).

Theorem 2 (Symmetric linearization) Assume that the NEP (2) is symmetric, i.e., it
holds (3), then there exists a unique matrix C such that

S :=
[(

1

C

)
⊗ eeT

]
◦

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I

M2 M3 M4 M5 . . .

M3 M4 M5

M4 M5

M5
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

is a symmetrizer for (7), namely

SAx = λSBx (10)

123



19 Page 6 of 24 G. Mele

is a symmetric eigenvalue problem. The vector e has infinite length with ones in all
the entries. The coefficients of the matrix C fulfill the following relations

ci,1 = 1

i + 1
i ≥ 1, (11a)

ci−1, j = j

i
ci, j−1 i, j > 1. (11b)

Proof We start by observing that Mj , for j ≥ 0, are symmetric matrices as conse-
quence of (3). The relations (11) uniquely define a matrix C since the first column is
fixed in (11a) and the j-th column is computed by the ( j − 1)-th column in (11b).
We start by showing that the matrix C is symmetric. Let us consider i > j , namely
i = j+k for some positive integer k. By iteratively using (11b) we obtain the relations

( j + 1)c j+k, j = ( j + k)c j+k−1, j+1

( j + 2)c j+k−1, j+1 = ( j + k − 1)c j+k−2, j+2

· · · = · · ·
( j + s)c j+k−s+1, j+s−1 = ( j + k − s + 1)c j+k−s, j+s

· · · = · · ·
( j + k)c j+1, j+k−1 = ( j + 1)c j, j+k,

that combined together give

c j+k, j = ( j + k)( j + k − 1) . . . ( j + 1)

( j + 1)( j + 2) . . . ( j + k)
c j, j+k,

that is, ci, j = c j,i . The case i < j is analogous and we conclude that the matrix C is
symmetric.

By multiplying (8) on the left by the matrix (9) we get

SA =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−M0

c1,1M2 c1,2M3 c1,3M4 c1,4M5 . . .

c2,1M3 c2,2M4 c2,3M5

c3,1M4 c3,2M5

c4,1M5
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)
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and

SB =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1M1

1
2M2

1
3M3

1
4M4

1
5M5 . . .

c1,1
1 M2

c1,2
2 M3

c1,3
3 M4

c1,4
4 M5

c2,1
1 M3

c2,2
2 M4

c2,3
3 M5

c3,1
1 M4

c3,2
2 M5

c4,1
1 M5

...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

The matrix SA is symmetric because C and Mj , for j ≥ 0, are symmetric. By
using (11a) we get that the first block-row of SB is equal to its first block column,
whereas the equation (11b) and the symmetry of C gives the relation

ci−1, j

j
= c j−1,i

i
= ci, j−1

i
,

which directly implies that the (i, j)-th and the ( j, i)-th blocks of SB are equal. Hence
the matrix SB is symmetric and (10) is a symmetric eigenvalue problem. ��

Remark 1 The relation between the eigenpairs of the original NEP (1) and the com-
panion linearization (7) is presented with details in [29], where the space where the
eigenvectors of (7) are defined is analyzed. The eigenpairs of (7) are also eigenvalues
of (10). In case the matrix S is singular, (10) may have spurious eigenvalues. There-
fore, since our approach is based on solving (10), it is essential to compute the residual
with respect to the original problem (1).

Remark 2 The eigenvalue problems (7) and (10) have the same eigenpairs if the sym-
metrizer (9) is nonsingular, namely Sx = 0 only for x = 0. In the next section we
assume that [S]2N is invertible for an N large enough. This condition can be phrases
in terms of solvability of a specific matrix equation as discussed in Observation2.

The method that we refer to as infinite Lanczos, or shortly ILAN, consists of apply-
ing the indefinite Lanczos method (Algorithm 1), described in the next section, to the
symmetric eigenvalue problem (10).

3 Infinite Lanczos method

3.1 Indefinite Lanczos method

Eigenpair approximations to the generalized eigenvalue problem Ax = λBx , with
A, B ∈ C

n×n symmetric matrices, not necessarily Hermitian, and A nonsingular,
can be obtained by using the indefinite Lanczos method [4, Section 8.6.1] that is
summarized in Algorithm 1. The method consists of computing an orthogonal basis
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of the Krylov space

Kk(A
−1B, q1) := span

(
q1, A

−1Bq1, (A
−1B)2q1, . . . , (A

−1B)k−1q1
)

(14)

by using, instead of the (standard) Euclidean scalar product, the indefinite scalar
product defined by the matrix B, namely xT By is the B-product between x, y ∈ C

n .
The fact that A−1B is self-adjoint, with respect to this indefinite scalar product, leads
to the property that the B-orthogonal basis of the Krylov space can be computed with a
three-term recurrence. In particular, at the k-th iteration of Algorithm 1, the following
relations are fulfilled

A−1BQk = Qk+1Tk+1,k, (15a)

QT
k+1BQk+1 = Ωk+1, (15b)

where the diagonal matrix Ωk+1 := diag(ω1, . . . , ωk+1) and the tridiagonal matrix
Tk+1,k = [ti, j ]k+1

i, j=1 contain the orthogonalization and normalization coefficients. The
matrix Qk+1 is B-orthogonal in the sense of (15b) and its columns, generated with a
three-term recurrence, span the Krylov space (14). The Ritz pairs of (15a), defined as
follows,

(λ, Qkz), where Tkz = λΩk z, (16)

provide an approximation to the eigenpairs of the original problem. Since the indefinite
scalar product defined by B is in general degenerate, there may be cases of break down
in Algorithm 1. We refer to [4, Section 8.6.1] and reference therein for a detailed
discussion of this issue.
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3.2 Infinite Lanczos method in finite arithmetic

We now derive a method that consists of applying the indefinite Lanczos method
(Algorithm 1) to the symmetric eigenvalue problem

[SA]N x = λ[SB]N x (17)

obtained by extracting the main block sub-matrices from (10), where N is a non-
fixed parameter greater than the number of iterations performed in Algorithm 1. The
method we derive is independent on N and, under the assumption that S given in (9) is
invertibile, corresponds to apply Algorithm 1 directly to the linear infinite dimensional
eigenvalue problem (10) with a specific starting vector. This equivalence is formally
presented in Theorem5 at the end of this section.

Algorithm 1 can be efficiently applied to (17) by exploiting the structure of the
matrices (17). We start with Step 2 that can be performed as stated in the following
result.

Theorem 3 (Action of [SA]−1
N [SB]N ) Assume that [S]2N is invertible, let qk ∈ C

Nn

be such that only its first k blocks are nonzero, corresponding to the columns of
Qk := [q̃1, . . . , q̃k]. Then, only the first k + 1 blocks of w = [SA]−1

N [SB]Nqk are
nonzero, corresponding to the columns of W := [w1, . . . , wk+1] given by

W = w1e
T
1 + QkD, (18)

where D ∈ R
k×(k+1) is a diagonal matrix with coefficients d j, j+1 = 1/ j and

w1 = M−1
0

k∑

j=1

Mj

j
q̃ j . (19)

Proof By using the specific structure of the matrices (12) and (13), the nonzero blocks
of w fulfill vec(W ) = ([SA]N )−1([SB]N ) vec([Qk, 0]). We can then derive the
following relations

(
vec(W )

0

)
= ([S]2N [A]2N )−1([S]2N [B]2N )

(
vec([Qk, 0])

0

)

= ([A]2N )−1([B]2N )

(
vec([Qk, 0])

0

)
.

Hence vec(W ) = ([A]N )−1([B]N ) vec([Qk, 0]), this directly implies (18) and (19),
c.f., [29, Section 4.2]. ��

By using the previous result, we conclude that in Algorithm 1, if q1 has only the
first block which is nonzero, then qk at the k-th iteration will have k nonzero blocks.
This is due to the fact that, none of the steps, except Step 2, introduce fill-in in the
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vectors q1, q2, . . . , qk . In Step 4 of Algorithm 1 the products zT qk , zT qk−1 and zTw

are computed. Observe that the vectors multiplied by z have at most k + 1 nonzero
blocks. Therefore, even if z = [SB]Nw is in general a full vector, only the first k + 1
blocks are required. These blocks can be computed as follows.

Theorem 4 (Action of [SB]N ) Let us consider z := [SB]Nw, where w is given
as in Theorem3. Then the first k + 1 blocks of z, corresponding to the columns of
Z := [z1, . . . , zk+1], fulfill the relation

Z =
p∑

m=1

AmW (Gk+1 ◦ Fm), (20)

where Gk+1 ∈ R
(k+1)×(k+1) has coefficients g j,1 = g1, j = 1/ j for j = 1, . . . , k + 1

and gi, j = ci−1, j/ j and

Fm :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (1)
m (0) f (2)

m (0) f (3)
m (0) . . . f (k+1)

m (0)

f (2)
m (0) f (3)

m (0) . . . f (k+2)
m (0)

f (3)
m (0) . . . f (k+3)

m (0)

...
...

f (k+1)
m (0) f (k+2)

m (0) f (k+3)
m (0) . . . f (2k+1)

m (0)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof Since w has only the first k + 1 blocks that are nonzero, we can express

vec Z = [SB]k+1 vecW . (21)

By using (13) and that Mj =
p∑

m=1

f ( j)
m (0)Am , we can decompose

[SB]k+1 =
p∑

m=1

(Gk+1 ◦ Fm) ⊗ Am . (22)

Equation (20) follows by combining (22) and (21), and by using the properties of the
Kronecker product. ��

Observation 1 The scalar product between the vectorization of two matrices can
be carried out directly in matrix form by using the Hadamard product as follows:
(vec Z)T vecW = ẽT (Z ◦ W )e with ẽ ∈ R

n and e ∈ R
k .
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Fig. 1 Illustration of the structure of the matrices and vectors involved in Algorithm 1, at iteration k, when
applied to (17). The vectors q1, . . . , qk−2 in transparency are produced in the previous iterations and are
not used after the (k − 1)-iteration. The oblique lines pattern indicates the nonzero blocks of these vectors.
The lower part of the vector z with grid pattern is not computed. The vector qk+1 is computed at the end
of the iteration and the dotted pattern indicates the nonzero blocks

Observation 2 With the same reasoning as in Theorem4, we can decompose (9) as

[S]2N =
p∑

m=1

[(
1

[C]2N−1

)
◦ Fm

]
⊗ Am .

Therefore, we can relate the invertibility of [S]2N with the solvability of the following
linear matrix equation

p∑

m=1

AmX

[(
1

[C]2N−1

)
◦ Fm

]
= B

for any B ∈ C
2N×n. Linear matrix equations are extensively studied in recent lit-

erature. See the review paper [49] and reference therein. In the numerical examples
reported in Sect.5 we never encounter a case when [S]2N was singular. A case when
this matrix is obviously singular is when the NEP is defined by polynomial functions.
Although the theory does not cover this case, we have successfully applied the method
we are deriving without introducing any breakdown or instability.

Figure1 illustrates the structure of thematrices andvectors, involved inAlgorithm1,
when applied to (17)with a starting vector that has only the first blockwhich is nonzero.
At iteration k only the vectors qk−1, qk are needed, therefore they are the only vectors
that need to be stored.
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19 Page 12 of 24 G. Mele

Algorithm 2 is the combination of the results presented in this section. More pre-
cisely, Algorithm 2 is the reformulation of Algorithm 1, applied to (17), where the
nonzero blocks of the vectors qk, qk−1, w, and the needed blocks of z, are stored as
columns of the matrices Qk, Qk−1,W and Z . Moreover, the size of the lineariza-
tion (17) is implicitly expanded at each iteration. Observe that at iteration k only the
first 2k+1 derivatives f ( j)

m (0) form = 1, . . . , p and j = 1, . . . , 2k+1 are needed.We
now conclude this section by showing the equivalence between Algorithm 1, directly
applied to the infinite dimensional problem (10), and Algorithm 2.

Theorem 5 (Infinite dimensional equivalence) Assume that the matrix S, given in (9),
is invertible and let q1 be an infinite length vector with only the first block q1 nonzero.
Then, Algorithm 1, with stating vector q1, is applicable to (10) and the matrices Qk,
that have as columns the first k nonzero blocks of qk , Tk , and ωk are equal to the
homonymous matrices generated by Algorithm 2 with starting matrix Q1 = [q1].
Proof We denote by q1, q2, . . . , qk the infinite-length vectors generated by Algo-
rithm 1 and by Q1, Q2, . . . , Qk the matrices generated by Algorithm 2. The proof is
based on induction over the iteration count k. The result is trivial for k = 1. Suppose
the results holds for some k. In Step 2 of Algorithm 1, by using that S is invertible,
we have

w = (SA)−1(SB)qk = A−1Bqk .

By using the induction hypothesis, qk has k nonzero blocks, corresponding to the
column of the matrix Qk generated at the (k−1)-th iteration of Algorithm 2. Because
of the structure of the matrices (12) and (13), we get that w has only the first k blocks
which are nonzero, corresponding to the columns of the matrix W that fulfills (18).
Therefore this matrix corresponds to the matrix computed in Step 2 of Algorithm 2.
In the Step 3 of Algorithm 1 we compute z = SBw. This vector is in general full.
However, in the Step 4 of Algorithm 1 the products zT qk , z

T qk−1 and zTw are
computed. By induction hypothesis, qk , qk−1 have respectively k and k − 1 nonzero
blocks, corresponding to the columns of the matrices Qk and Qk−1 generated by
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Algorithm 2. Therefore, only the first k + 1 blocks of z are required and they can be
computed with the same reasoning of Theorem4. More precisely, the first k+1 blocks
of z are the columns of the matrix Z that fulfills (20). Therefore this matrix coincides
with the matrix generated by Step 3 of Algorithm 2. In order to conclude that qk+1 has
only we first k + 1 nonzero blocks, corresponding to the columns of the matrix Qk+1
generated by Algorithm 2, we only need to use the equality ‖M‖F = ‖ vec(M)‖2,
which holds for every matrix M . ��

3.3 Robust extraction of eigenpair approximations

We propose to enhance Algorithm 2 as follows. We consider the projected NEP

V T M(λ)V z = 0, (23)

where V ∈ C
n×k is an orthogonal matrix. Under the assumption that V posses

good approximation properties, eigenpair approximations to the NEP (1) are given
by (λ, V z). This can be seen as the Galerkin projection method that uses the range
of V as projection space. This technique for extracting eigenpair approximations,
called nonlinear Rayleigh–Ritz procedure or subspace acceleration, is often used to
improve properties of more basic algorithms, e.g., the nonlinear Arnoldi method [54],
Jacobi–Davidson methods [7, 16], infinite Arnoldi [27], block preconditioned har-
monic projection methods [56], and many more.

In our framework, there is a natural choice for the projection space. The matrix V is
chosen as the orthogonal matrix whose columns span the subspace of vectors obtained
by extracting the first column from Q1, . . . , Qk generated by Algorithm 2. The reason
this matrix contains good approximation properties is due to the following argument.
In theRitz pairs extraction described in Sect. 3.1, the eigenvector approximations of (7)
(or equivalently of (10)) are given by the first block row of the Ritz vectors (16). Thus,
the eigenvector approximations to the NEP (1) are also obtained by the first block of
these Ritz vectors and thus by the first block row of the Krylov basis, namely by the
columns of the proposed matrix V .

The projected problem (23) has size k equal to the number of iterations, which is
typically, in the context of Krylov methods, a small number, i.e., k  n. Therefore,
the projected problem (23) has small size and solving (23) is not the computationally
dominating part of Algorithm 2. In the numerical experiments we have tested, for
solving (23), the following methods: Beyn’s contour integral method [8, Algorithm
1], NLEIGS [22] and IAR [29]. The choice the method for solving (23) depends
on the features of the original problem (1) and there is not a favorite candidate. For
example, one may want to exploit that the projected problem (23) is defined by the
same nonlinear functions and inherits several features of the original NEP (1), e.g.,
being symmetric, palindromic, polynomial, etc. Therefore, this problem can be solved
in a more robust way with structure preserving methods.
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4 Indefinite scalar product computation

Under the assumption that the linear systems with the matrix M0 can be efficiently
solved, e.g., exploiting the sparsity, the dominating part of Algorithm 2 is the Step 3,
namely the computation of (20), which has complexity O(k2n). In this section we
derive efficient methods for computing this quantity.

4.1 Computation of step 3: general case

The following theorem provides an effective approximation to (20) without any spe-
cific assumption on the coefficients of (2).

Theorem 6 Let U , V ∈ R
n×q the factors of the best rank q approximation, with

respect to the Euclidean norm, to the matrix Gk+1. Then

Z̃ =
p∑

m=1

Am

q∑

j=1

W diag(u j )Fm diag(v j ) (24)

is such that

‖Z − Z̃‖F ≤
( p∑

m=1

‖AmW‖F‖Fm‖F
)

k∑

j=q+1

σ j (Gk). (25)

Proof The approximation (24) is obtained by replacing Gk+1 with UV T in (20) and
using u jv

T
j ◦ Fm = diag(u j )Fm diag(v j ). The equation (25) follows by the triangular

inequality and by the fact that the Frobenius norm is sub-multiplicative with respect
to the Hadamard product. ��

The approximation (24) is effective, with q small, since the matrix Gk , which is
problem independent, has a fast decay in the singular values. In Fig. 2 the singular
values1 of this matrix are displayed for different sizes k. Moreover, the computation
of (24), requires less computation time than (20) since the products with the Hankel
matrices Fj can be efficiently computed with FFTs [34, Section 4]. The complexity
for computing (24) is O(nk log k).

4.2 Computation of step 3: delay eigenvalue problem

The stability analysis of delay systems of the form

ẋ(t) = A2x(t) +
p∑

m=3

Amx(t − τm) (26)

1 The singular values are computed in BigFloat arithmetic using the package GenericSVD.
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Fig. 2 Singular values decay of the matrices Gk for k = 50, 100, 200

is related to solving NEPs, referred to as delay eigenvalue problems, see [25, Ch. 2]
and [42, Ch. 1 Sect. 1.2], defined as follows:

M(λ) = −λI + A2 +
p∑

m=3

Ame
−λτm . (27)

In this case thematrices Fm have atmost rank one.More precisely, a direct computation
leads to F1 = −e1eT1 , F2 = 0 and for m ≥ 3 we get Fm = −τmvvT with v j =
(−τm) j−1. Therefore, the computation time of (24) is much lower than (20) since it
involves only products with low rank matrices. The complexity for computing of (24)
is reduced, by exploiting the low-rank structure, to O(npk).

4.3 Computation of Step 3: polynomial plus low-rank structured NEPs

In certain applications (2) can be written as sum of a polynomial and a low-rank part.
See, e.g., [15, Ch. 2 Sect. 4], [52, Ch. 1 Sect. 1.2], [6, gun problem] and [5, Sect.
6.2.2]. More precisely:

M(λ) =
d∑

m=1

λm−1Am +
p∑

m=d+1

fm(λ)UmU
T
m (28)

with Um,Um ∈ C
n×rm and rm  n. In this case we split (20) in the polynomial and

low-rank terms, namely Z = Z p + Zlr with

Z p :=
d∑

m=1

Am
[
W (Gk+1 ◦ Fm)

]
, (29a)

Zlr :=
p∑

m=d+1

[
Um(UT

mW )
]
(Gk+1 ◦ Fm). (29b)
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The term (29a) can be efficiently approximated as in (24) by exploiting the low-rank
structure of the matrices Fm . Moreover, since UmUT

m in (29b) have low rank, the
computation of Z with (29), respecting the order given by the parentheses in (29b),
requires less computation time than (20). The complexity of (29) isO((d+r)n)where
r = max

d+1≤t≤p
rm .

5 Numerical simulations

In the following numerical experiments2 we use, as error measure, the relative residual
norm defined as follows

Err(λ, x) := ‖M(λ)x‖2∑p
m=1 | fm(λ)|‖Am‖∞‖x‖2

.

An eigenpair approximation is marked as “converged” if Err(λ, x) < 10−8. The
software used in these simulations is implemented in the Julia programming language
[9], and publicly available in the Julia package NEP-PACK [26].3

5.1 Delay eigenvalue problem

We consider the delay eigenvalue problem arising from the spatial discretization of
the following partial delay differential equation

ut (ξ, t) = −Δu(ξ, t) + a(ξ)u(ξ, t − 1)

ξ = (ξ1, ξ2) ∈ [0, π ]2, t > 0 (30)

where a(ξ) = −ξ1 sin(ξ1 + ξ2), resulting in a problem of the form (26) where all
the matrices are real and symmetric. The spatial domain is partitioned with a uniform
equispaced grid with N points in each direction. The Laplace operator is discretized by
the 5-points stencil finite difference approximation, leading to a NEP of size n = N 2,
cf. [5, Section 6.2.1].More precisely, theNEP is defined asM(λ) = −λI+A2+e−λA3
where I ∈ R

n×n and the other matrix coefficients are given by

D := 1

h2

⎛

⎜⎜⎜⎜⎜⎜⎝

−2 1

1
. . .

. . .

. . . 1

1 −2

⎞

⎟⎟⎟⎟⎟⎟⎠
∈ R

N×N ,

F := vec
([
a(ξi , ξ j )

]N
i, j=1

)
∈ R

N×N ,

Ĩ ∈ R
N ,

A2 := D ⊗ Ĩ + Ĩ ⊗ D ∈ R
n×n , A3 := diag(F) ∈ R

n×n

2 All simulations were carried out with Intel octa core i7-4770 CPU 3.40GHz and 24 GB RAM.
3 The scripts reproducing several of the presented examples are directly available in the web-page: https://
people.kth.se/~gmele/InfLan/

123

https://people.kth.se/~gmele/InfLan/
https://people.kth.se/~gmele/InfLan/


The infinite Lanczos method for symmetric... Page 17 of 24 19

Fig. 3 Converged eigenvalues
after 50 iterations of
Algorithm 2 applied to the NEP
in Sect. 5.1. The eigenvalue
approximations are computed by
extracting the Ritz pairs and by
solving the projected NEP
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with h := π/(N−1) discretization step.We run 50 iterations ofAlgorithm2. In Figs. 3
and 4 we illustrate the robustness of the strategy for extracting the eigenpair approx-
imations presented in Sect. 3.3. More precisely, we compare the standard approach
for extracting the eigenpair approximations, which is based on the computation of the
Ritz pairs, with the more robust approach consisting of solving the projected NEP. In
Fig. 3 is displayed the spectrum and the converged eigenvalues, respectively computed
with the Ritz and the projected NEP approach. In this example we solve the projected
NEP with the Beyn contour integral method4 [8]. The error history is presented in
Fig. 4. As expected, the convergence of the Algorithm 2, with the Ritz pair approxi-
mation, appear to be slower with respect to the convergence of the Algorithm 2 with
the more robust eigenpair extraction based on solving the projected NEP. Therefore,
an important aspect that strongly influences the convergence of Algorithm 2 consists
in using a robust algorithm for solving the projected NEP. Similar conclusions are
reached in [13], in our case this is even more critical due to the loss of orthogonality
of the Lanczos method which Algorithm 2 is based on.

The performance of Algorithm 2 is affected by the method used for solving the
projected NEP. In Table1 we compare the time, and the number of computed eigen-
values, after 50 iterations of Algorithm 2 combined with three different NEP solves
for the projected problem: Beyn contour integral method (with the same settings as
before), IAR [29] (50 iterations) 5 and IAR (100 iterations). For the latter variation
of Algorithm 2, besides the 11 eigenvalues in the disk centered in zero with radius
4, which is the region used in the Beyn contour integral method, several eigenvalues
outside this disk are also computed.

4 The disk of interest is set with center in the origin and radius 4 with N = 1000 discretization points and
tolres = tolrank = 10−8.
5 We perform 50 iteration of IAR for solving the projected NEP and return the converged eigenvalues.
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Fig. 4 Error history of
Algorithm 2 for the NEP in
Sect. 5.1. In each iteration the
eigenvalue approximations are
computed by extracting the Ritz
pairs and by solving the
projected NEP
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Table 1 Performance of Algorithm 2 applied to the NEP in Sect. 5.1 of different sizes

Beyn IAR: 50 iter. IAR: 100 iter.

Prob. size Time Conv. Eig Time Conv. Eig Time Conv. Eig

10000 1.997s 11 1.500s 9 2.570s 13

90000 14.191s 11 13.120s 9 14.295s 19

250000 36.177s 11 35.496s 9 36.460s 17

The NEPs are obtained by discretizing (30) respectively with N = 100, 300, 500 nodes in each direction.
The projected problems are solved only at the last iteration with: Beyn contour integral method, IAR [29]
(50 iterations) and IAR (100 iterations)

5.2 A benchmark problem

We now illustrate the performance of Algorithm 2 for solving a NEP that is symmetric
but not Hermitian.We consider the gun problem that belong to the problem collection
[6]. This NEP has the following form

M(λ) = A1 − λA2 + i
√

λA3 + i
√

λ − σ 2
2 A4 (31)

where σ2 = 108.8774. The matrices A j ∈ R
9956×9956, for j = 1, . . . , 4, are real and

symmetric. The NEP (31) can be written in the form (28) since the matrix coefficients
of the nonlinear part have low-rank, namely rank(A3) = 19 and rank(A4) = 65. The
eigenvalues of interest are located inside the the closed disk centered in 2502 and with
radius 5 · 104. Before applying Algorithm 2, the problem is shifted and scaled. We
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Fig. 5 Converged eigenvalues
after 100 iterations of
Algorithm 2 applied to the NEP
in Sect. 5.2. The projected
problem is solved with IAR (50
iterations) and IAR (200
iterations)
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Fig. 6 Error history, for the NEP
in Sect. 5.2. In each iteration the
projected problem is solved with
IAR (50 iterations) and IAR
(200 iterations)
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set the parameters to λ = λ0 + αλ̂ where λ0 = 3002 and α = (300 − 200)2. This
problem has been solved with various methods [19, 22, 29, 33, 53] and, by numerical
evidences, there are 21 eigenvalues in the region of interest. We now use IAR for
solving the projected NEP. More precisely, we test two variants: IAR (50 iterations)
and IAR (200 iterations). As showed in the numerical experiment in Sect. 5.1, the
robustness of the whole Algorithm 2 is effected by the choice of the method used
for solving the projected NEP. In Fig. 5 we can see that more eigenvalues converge
when we solve more accurately the projected problem. The error history is presented
in Fig. 6. Solving more accurately the projected NEP is necessary to compute the
outermost eigenvalues.

5.3 A random symmetrized problem

In conclusion we illustrate how Algorithm 2 can be used for solving a nonsymmetric
NEP. We introduce a symmetrization technique, consisting of doubling the problem
size, based in the idea presented in [43, Sect. 5]. Namely, we define the symmetrized
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Fig. 7 Converged eigenvalues
after 50 iterations of Algorithm 2
applied to the NEP (32) that is
the symmetrization of (33). The
convergence is tested with
respect to the original NEP (33).
The projected problem is solved
with NLEIGS
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NEP as

M̃(λ) :=
(

0 M(λ)

M(λ)T 0

)
=

p∑

m=1

fm(λ)

(
0 Am

AT
m 0

)
. (32)

Observe that if
(
λ, [yT , xT ]T )

is an eigenpair of (32), then (λ, x) is an eigenpair of
M(λ). We now consider the symmetrization, in the sense of (32), of the following
NEP that is artificially constructed:

M(λ) = A1 − λA2 + sin(λ)A3 + e−λA4 (33)

where A j ∈ C
500×500 are defined as follows: A1 is the bidiagonalmatrixwith elements

equal to 500 in the upper and lower diagonal, A2 is the identity matrix, A3 = A1/500
and A4 is a diagonal matrix with elements equal to i (complex unit) in the lower
diagonal. We perform 50 iterations of Algorithm 2 and solve the projected NEP with
NLEIGS 6 [22] by targeting the eigenvalues contained in the square with opposite
vertices in −1.5 − 1.5i and 0.5 + 0.5i . In Fig. 7 is illustrated the spectrum and the
converged eigenvalues, in the region of interest, after 50 iterations of Algorithm 2.
The error history is illustrated in Fig. 8.

6 We used the static variant with Leja-Bagby points automatically generated from the polygonal target.
The shift is in zero and it is kept constant during the iterations.
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Fig. 8 Error history of
Algorithm 2 applied to the
NEP (32) that is the
symmetrization of (33). The
error is computed with respect to
the original NEP (33)
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6 Conclusions and outlook

We have presented a method for solving symmetric NEPs. We have also illustrated
how the problem structure, in particular the structure of the matrices and functions
in (2), can be exploited in order to reduce the computation time. However, there are
NEPs that cannot be written in the format (2), e.g., the waveguide eigevalue problem
[28], the reformulation of the Dirichlet eigenvalue problemwith the boundary element
method [17, 50], etc. For some of these problems, only a routine for computing Mkx
is available. We believe that further research can potentially extend the applicability
of Infinite Lanczos to such problems.

In the numerical experiment in Sect. 5.3, we have successfully solved a nonsym-
metric NEP in the following way. Firstly we constructed a symmetric NEP (32) whose
eigenvalues are also eigenvalues of the original NEP. Then we applied the infinite
Lanczos to the symmetrized problem (32). The matrices (32) have clearly a very
well defined block structure. We believe that infinite Lanczos can be further special-
ized for solving nonsymmetric NEPs by exploiting these structures. In conclusion we
also believe that similar ideas can be extended to NEPs that are Hermitian, namely,
M(λ)H = M(λ̄) where λ̄ represents the complex conjugate of λ ∈ C and M(λ)H the
Hermitian, or conjugate transpose, of the matrix M(λ).
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