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Abstract
In the stiff situation, we consider the long-time behavior of the relative error �n in the 
numerical integration of a linear ordinary differential equation y�(t) = Ay(t), t ≥ 0 , 
where A is a normal matrix. The numerical solution is obtained by using at any step 
an approximation of the matrix exponential, e.g. a polynomial or a rational approxi-
mation. We study the long-time behavior of �n by comparing it to the relative error 
�
long
n  in the numerical integration of the long-time solution, i.e. the projection of the 

solution on the eigenspace of the rightmost eigenvalues. The error � longn  grows line-
arly in time, it is small and it remains small in the long-time. We give a condition 
under which �n ≈ �

long
n  , i.e. �n

�
long
n

≈ 1 , in the long-time. When this condition does not 
hold, the ratio �n

�
long
n

 is large for all time. These results describe the long-time behavior 
of the relative error �n in the stiff situation.

Keywords  Relative error · Linear ordinary differential equations · Numerical 
integration · Approximation of the matrix exponential · Stiff problems · Long-time 
behavior

Mathematics Subject Classification  65F60 · 65L04 · 65L05 · 65L06 · 65L20 · 65L70

 *	 S. Maset 
	 maset@units.it

1	 Dipartimento di Matematica e Geoscienze, Università di Trieste, Trieste, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10092-022-00466-5&domain=pdf


	 S. Maset 

1 3

23  Page 2 of 62

1  Introduction

Consider the ordinary differential equation (ODE)

where A ∈ ℝd×d and y(t) ∈ ℝd , and consider, over the mesh

of constant stepsize h > 0 , a numerical solution of (1.1) given by

where R ∶ D ⊆ ℂ → ℂ is a analytic approximant of the exponential ez , z ∈ ℂ . When 
the numerical solution is obtained by a Runge–Kutta (RK) method, the approxim-
ant R is the stability function of the RK method and it is a polynomial or a rational 
function.

The paper [9] analyzed in the non-stiff situation the time behavior of the norm-
wise relative error

in case of a normal matrix A. It seems to be the first paper in literature dealing in 
detail with the relative error time behavior of numerical solutions of ODEs. This is 
quite surprising because relative errors are generally considered better than absolute 
errors as quality measures of approximations. Indeed, componentwise relative errors 
are involved in the stepsize control mechanism (see [12]).

The present paper continues to analyze, in case of A normal, the error �n by con-
sidering its long-time behavior in the stiff situation. Next subsection, with all its 
subsubsections, contains the basic material for facing such an analysis. Part of this 
material was introduced in [9].

1.1 � Fundamental notations and notions

1.1.1 � Small and large

We set that, for a ≥ 0 , “a is small” is the same as “ a ≪ 1 ” and “a is large” is the 
same as “ a ≫ 1”.

For b ≥ 0 and c > 0 , b ≪ c means b
c
≪ 1.

1.1.2 � The notation ≈

For a, b ∈ ℝ , a ≈ b means

(1.1)
{

y�(t) = Ay(t), t ≥ 0,

y(0) = y0,

tn = nh, n = 0, 1, 2,… ,

(1.2)yn = R(hA)ny0, n = 0, 1, 2,… ,

(1.3)�n =

‖‖‖yn − y
(
tn
)‖‖‖2

‖‖‖y
(
tn
)‖‖‖2

, n = 0, 1, 2,… ,
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with |e| ≪ 1 . We say a ≈ b with degree � , where 𝜀 > 0 , if |e| ≤ �.
Moreover, a ⪅ b means a ≤ c and c ≈ b for some c ∈ ℝ.
For a, b ∈ ℝd , a ≈ b means

We say a ≈ b with degree � , where 𝜀 > 0 , if ‖a−b‖2‖b‖2 ≤ �.

1.1.3 � The meaning of “it is expected”

In the paper, we often say “it is expected S”, where S is a statement, with the mean-
ing that the statement not S is “unlikely” or “unusual” or “extreme”.

Sentences of this form can seem vague, although they are able to convey signifi-
cant information. However, they are never used in definitions or theorems, which are 
stated in a precise manner without any such type of vagueness. The sentences are 
used for a better understanding of technical notions and results.

By introducing probability measures on data, we could made “it is expected S” 
mathematically precise, but this is out of the scope of the present paper.

1.1.4 � The spectrum of A

The spectrum

of the normal matrix A, where �1, �2,… , �p are the distinct eigenvalues of A, is par-
titioned by decreasing real part in the subsets �1,�2,… ,�q (see Fig. 1): we have

a = b(1 + e)

‖a − b‖2
‖b‖2 ≪ 1.

� ∶= {�1, �2,… , �p}

Fig. 1   Spectrum of A partitioned by decreasing real parts
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with 0 = i0 < i1 < ⋯ < iq = p , and

For i = 1,… , p , let Pi be the orthogonal projection on the eigenspace of �i . For 
j = 1,… , q , let

For a nonempty subset �  of � , let

1.1.5 � The initial value y
0

We assume y0 ≠ 0 . Thus y(t) = etAy0 ≠ 0 , for any t, and the relative error �n is 
defined for any n. Let

be the normalized initial value.
Let

The generic situation for the initial value y0 is �∗ = � . In order to use simpler nota-
tions, we assume this generic situation.

If it does not hold, then below we have to see �1,… ,�q as �∗
1
,… ,�∗

q
 without the 

sets �∗
j
 that are empty. In other words, we see �1 as �j∗

1
 where

�2 as �j∗
2
 where

�j = {�ij−1+1, �ij−1+2,… , �ij}

Re
(
�ij−1+1

)
= Re

(
�ij−1+2

)
= ⋯ = Re

(
�ij

)
= rj

j = 1, 2,… , q,

r1 > r2 > ⋯ > rq.

Qj ∶=
∑
�i∈�j

Pi.

(1.4)�
�
∶= max

�i∈�

||�i|| and �
�
∶= min

�i∈�

||�i||.

ŷ0 ∶=
y0

‖y0‖2

�
∗ ∶=

{
�i ∈ � ∶ Piy0 ≠ 0

}

�
∗
j
∶=�j ∩ �

∗, j = 1,… , q.

j∗
1
∶= min{j ∈ {1,… , q} ∶ �

∗
j
≠ �},

j∗
2
∶= min{j ∈ {j∗

1
+ 1,… , q} ∶ �

∗
j
≠ �},
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and so on. Of course, when we do this, the number q of sets in �1,… ,�q is no 
longer equal to the number of possible real parts in the spectrum � , but it is equal to 
the number of possible real parts in �∗.

1.1.6 � Rightmost and non‑rightmost eigenvalues

The set �1 is the set of the rightmost eigenvalues. The set

is the set of the non-rightmost eigenvalues. We assume q > 1 in order to have �− ≠ �.
By recalling the definitions (1.4), we set

1.1.7 � The numbers ˇj

For j = 2,… , q , i.e. for any non-rightmost real part, let

Observe that

It is expected |�2| non-small.

1.1.8 � Dimensionless quantities

We use the dimensionless stepsize h�1 , or h� , and the dimensionless time t�1 , or t� , 
rather than the stepsize h and the time t, respectively, because they are small or large 
independently of the unit used for time.

In this paper, when we say that a certain quantity is small or large, this quantity is 
always dimensionless.

The numbers �j defined above are dimensionless, as well as the errors �i now 
introduced.

�
− ∶= �⧵�1 =

q⋃
j=2

�j

(1.5)

� ∶=�
�

and � ∶= �
�

�1 ∶=��1
and �1 ∶= �

�1

�
− ∶=�

�− and �
− ∶= �

�− .

�j ∶=
rj − r1

�1

.

0 > 𝛽2 > ⋯ > 𝛽q.
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1.1.9 � The errors �i

We assume that the approximant R has order l, where l is a positive integer. This 
means

with C ≠ 0 . It is assumed that the domain D  of R includes a neighborhood of zero. 
Moreover, we assume h�i ∈ D  , i = 1,… , p.

We introduce the complex numbers

where

is the relative approximant. The numbers �i are logarithmic errors of R as an approx-
imant of the exponential, since

For a nonempty subset �  of � , we have

as h�
�
→ 0 , where �

�
 and �

�
 are defined in (1.4).

1.1.10 � Local relative errors and global relative errors

As particular cases of (1.9), we obtain

and

We introduce

and

(1.6)R(z) − ez = Czl+1 + O
(
zl+2

)
, z → 0,

(1.7)�i ∶= log S
(
h�i

)
, i = 1,… , p,

(1.8)S(z) = e−zR(z), z ∈ D,

�i = logR
(
h�i

)
− log eh�i , i = 1,… , p.

(1.9)
max
�i∈�

||�i|| =|C|
(
h�

�

)l+1(
1 + O

(
h�

�

))

min
�i∈�

||�i|| =|C|
(
h�

�

)l+1(
1 + O

(
h�

�

))
.

(1.10)max
�i∈�1

||�i|| = |C|(h�1
)l+1(

1 + O
(
h�1

))
, h�1 → 0,

(1.11)max
�i∈�

||�i|| = |C|(h�)l+1(1 + O(h�)), h� → 0.

E1 ∶=

max
�i∈�1

|�i|
h�1
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We can consider max
�i∈�1

||�i|| and max
�i∈�

||�i|| as local relative errors, and E1 and 
E as global relative errors, of the numerical integration. An explanation for this is 
given below at points 2 of Remarks 1.1 and 1.2.

1.1.11 � The ratios K
1
 and K

When 0 ∉ �1 , let

The right-hand side follows by (1.9). Observe that the generic situation for the 
matrix A is to have �1 constituted by a real eigenvalue or by a unique pair of com-
plex conjugate eigenvalues. In this generic situation, we have K1 = 1.

When 0 ∉ � , let

1.1.12 � The ratios Mi and M

For �i ∈ �
− , i.e. �i is a non-rightmost eigenvalue, let

Moreover, let

1.1.13 � The base situation

We call base situation the situation where max
�i∈�1

||�i|| is small.
Here are some observations about the base situation.

–	 In the base situation, it is expected E1 small, i.e. max
𝜆i∈𝛬1

||𝜎i|| ≪ h𝜌1 , and h�1 
non-large. Look at (1.10).

E ∶=

max
�i∈�

|�i|
h�

(1.12)K1 ∶=
max

�i∈�1

||�i||
min

�i∈�1

||�i||
=

(
�1

�1

)l+1(
1 + O

(
h�1

))
, h�1 → 0,

K ∶=
max

�i∈�
||�i||

min
�i∈�

||�i||
=

(
�

�

)l+1

(1 + O(h�)), h� → 0.

(1.13)Mi ∶=
||�i||

max
�k∈�1

||�k||
=

(|�i|
�1

)l+1

(1 + O(h�)), h� → 0.

(1.14)M ∶= max
�i∈�

−
Mi =

max
�i∈�

−
||�i||

max
�k∈�1

||�k||
=

(
�
−

�1

)l+1

(1 + O(h�)), h� → 0.
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–	 We do not say that in the base situation it is expected h�1 small. In fact, we do not 
see the case where max

�i∈�1

||�i|| is small and h�1 is not small as “unusual”, when 
R is an high order approximant.

1.1.14 � The non‑stiff situation and the stiff situation

The base situation is partitioned in two disjoint sub-situations: the non-stiff situation 
and the stiff situation.

We call non-stiff situation (stiff situation) the sub-situation of the base situation 
where max

�i∈�
||�i|| is small ( max

�i∈�
||�i|| is not small), equivalently max

�i∈�
−
||�i|| is 

small ( max
�i∈�

−
||�i|| is not small).

The non-stiff situation and the stiff situation correspond to what is meant as non-
stiff and stiff in the traditional terminology of numerical ODEs. The explanation is 
given below at point 3 of Remark 1.2.

Here are some observations about the non-stiff and stiff situations.

–	 In the non-stiff situation, it is expected E small, i.e. max
𝜆i∈𝛬

||𝜎i|| ≪ h𝜌 , and h� 
non-large. Look at (1.11).

–	 In the non-stiff situation, it is expected 

 small. In fact, it is expected E1 small and then to have both max
�i∈�

− |�i| and 
max

�i∈�1
|�i| small with their ratio M not satisfying M ≪

1

E1

 appears to be an 
“extreme” case.

–	 In the stiff situation, it is expected h� non-small. In fact, to have max
�i∈�

||�i|| non-
small with h� small appear to be “unlikely”.

–	 In the stiff situation, M is large since it the ratio between a non-small number and 
a small number.

1.1.15 � The function g

Let

The function g is increasing with g(0) = 0 . We have g(c) ≈ c

2
 for c small, 

g(1) = 0.71828 and g(c) = 1 for c = 1.2564.

(1.15)
max

�i∈�
− |�i|

h�1
= ME1

g(c) ∶=
ec − 1 − c

c
, c ≥ 0.
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1.2 � Analysis of the error 

n

After having introduced the basic material in the previous subsection, we can pro-
ceed with our analysis of the error �n.

Next theorem (it is Theorem  4.1 in [9] stated with E instead of max
�i∈�

||�i|| ) 
describes how the error �n grows in time.

Theorem 1.1  Assume 0 ∉ � . Fix c > 0 . For tn� ≤
c

E
 , we have

The theorem with c = 1 reads

for tn� ≤
1

E
.

If E ≪ 1 , then (1.16) says that �n is small and grows linearly in time up to large 
times tn� , precisely up to the large time 1

E
 . This result is useful in the non-stiff situa-

tion, where it is expected E ≪ 1.

Remark 1.1 

1.	 By taking a small c in the previous theorem, we have 

 To be more precise, this holds for times tn� ≤ x , where x > 0 is such that 
xE ≪ 1.

2.	 After one step ( n = 1 ), we have 

 This explains because max
�i∈�

||�i|| can be considered as local relative error in the 
numerical integration of the solution. At tn� = 1 , we have 

 This explains because E can be considered as global relative error in the numer-
ical integration of the solution.

3.	 The theorem assumes 0 ∉ � . If � = {0} , we have �n = 0 for any n. For the case 
0 ∈ � and � ≠ {0} , see point 5 of Remark 4.1 in [9].

tn�E

K
(1 − g(c)) ≤ �n ≤ tn�E(1 + g(c)).

(1.16)0.28172 ⋅
tn�E

K
≤ �n ≤ 1.7183 ⋅ tn�E

tn�E

K
⪅ �n ⪅ tn�E.

max
�i∈�

||�i||
K

(1 − g(c)) ≤ �1 ≤ max
�i∈�

||�i||(1 + g(c)).

E

K
(1 − g(c)) ≤ �n ≤ E(1 + g(c)).
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1.2.1 � The long‑time solution

Let ylong be the solution of (1.1) with initial value Q1y0 instead of y0.
The solution ylong is the long-time solution of (1.1), since we have y(t) ≈ ylong(t) 

for t�1 large. In particular, we have y(t) ≈ ylong(t) with degree � , where 𝜀 > 0 , if

(see Theorem 5.1 in [9]). Observe that the left-hand side of (1.17) goes to zero as 
t�1 → +∞.

1.2.2 � The error 
long

n

Let � longn  be the error �n of the long-time solution ylong . Next theorem (it is Theo-
rem 5.2 in [9] stated with E1 instead of max

�i∈�1

||�i|| ) describes how the error � longn  
grows in time.

Theorem 1.2  Assume 0 ∉ �1 . Fix c > 0 . For tn�1 ≤
c

E1

 , we have

The theorem with c = 1 reads

for tn� ≤
1

E1

.
If E1 ≪ 1 , then (1.18) says that � longn  is small and grows linearly in time up to 

large times tn�1 , precisely up to the large time 1
E1

 . This result is useful in the base sit-
uation, where it is expected E1 ≪ 1.

Remark 1.2 

1.	 By taking a small c in the previous theorem, we have 

 This holds for times tn�1 ≤ x , where x > 0 is such that xE1 ≪ 1 . If �1 is con-
stituted by a real eigenvalue or by a complex conjugate pair of eigenvalues (the 
generic situation for the matrix A), we have K1 = 1 and then 

(1.17)

������
q�
j=2

⎛
⎜⎜⎝
e(rj−r1)t

���Qjŷ0
���2

��Q1ŷ0
��2

⎞
⎟⎟⎠

2

=

������
q�
j=2

⎛
⎜⎜⎝
e�jt�1

���Qjŷ0
���2

��Q1ŷ0
��2

⎞
⎟⎟⎠

2

≤ �

tn�1E1

K1

(1 − g(c)) ≤ �
long
n

≤ tn�1E1(1 + g(c)).

(1.18)0.28172 ⋅
tn�1E1

K1

≤ �
long
n

≤ 0.28172 ⋅ tn�1E1

tn�1E1

K1

⪅ �n ⪅ tn�1E1.
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2.	 Similarly to the point 1 of Remark 1.1, we can explain because max
�i∈�1

||�i|| and 
E1 can be considered as local relative error and global relative error, respectively, 
in the numerical integration of the long-time solution.

3.	 Since max
�i∈�

||�i|| and max
�i∈�1

||�i|| can be considered as local relative errors in 
the numerical integration of the solution and the long-time solution, respectively, 
we can say that in the non-stiff situation the local relative error of the solution is 
small, whereas in the stiff situation the local relative error of the solution is not 
small, but the local relative error of the long-time solution is small. This agrees 
with the traditional concepts of non-stiff and stiff.

4.	 The theorem assumes 0 ∉ �1 . If �1 = {0} , we have � longn = 0 for any n. For the 
case 0 ∈ �1 and �1 ≠ {0} , see point 5 of Remark 5.2 in [9].

1.2.3 � Long‑time behavior of 
n

We want to study the long-time behavior of the error �n . This is done by comparing 
it to the error � longn .

Since in the long-time the solution y becomes the solution ylong whose error �n is 
just � longn  , it is quite reasonable to have �n ≈ �

long
n  in the long-time.

Indeed, at point 4 of Remark 5.3 in [9], it is stated the following result.

Theorem 1.3  Assume q > 1 and 0 ∉ �1 . Fix c > 0 such that g(c) < 1 , i.e. c < 1.2564 . 
For any 𝜀 > 0 , there exist H0 > 0 (independent of � ) and s ≥ 0 (dependent on � ) 
such that, for h� ≤ H0 and s ≤ tn� ≤

c

E
 , we have �n ≈ �

long
n  with degree �.

Remark 1.3  The theorem assumes q > 1 . If q = 1 , then �n = �
long
n  for any n. In addi-

tion, it assumes 0 ∉ �1 . If q > 1 and �1 = {0} , then � longn = 0 for any n and it does 
not make sense look at �n ≈ �

long
n  , since this implies �n = 0 . For the case q > 1 , 

0 ∈ �1 and �1 ≠ {0} , see point 6 of Remark 5.3 in [9].

The previous theorem is of interest in the non-stiff situation, where the condi-
tion h� ≤ H0 is not restrictive. In fact, in the non-stiff situation it is expected h� 
non-large.

On the other hand, the result is not useful in the stiff situation, since the condi-
tion h� ≤ H0 is restrictive. In fact, in the stiff situation it is expected h� non-small.

1.3 � The contents of this paper

The present paper wants to study the long-time behavior of the relative error �n in 
the stiff situation. As above, this is done by comparing it to � longn .

In the stiff situation, it is important to have �n ≈ �
long
n  in the long-time. In fact, 

if this happens, since � longn  is small up to large times tn�1 , we have the very sur-
prising fact that the error �n is small in the long-time, although the stepsize h is 

(1.19)�
long
n

≈ tn�1E1.
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tuned only for having a small local relative error of the long-time solution and, 
because of this, the local relative error of the solution is not small.

In other words, when we are interested in the numerical integration of the solu-
tion in the long-time, we can start from the beginning with a stepsize suitable for 
integrating with a small local relative error the long-time solution, larger than the 
stepsize suitable for integrating with a small local relative error the solution, and 
in the long-time we will have a small error �n.

As in [9], we confine our attention to normal matrices. This should be not con-
sidered as a limitation, since the class of the normal matrices is sufficiently large 
to include important types of matrices and, moreover, the test problem (1.1) with 
A normal shows unexplored and interesting situations in numerical ODEs.

The plan of the paper is as follows.

–	 Section  2 shows two examples of stiff situation where we can fail to get 
�n ≈ �

long
n  in the long-time with �n non-small and growing unboundedly.

–	 Section 3 introduces the definition of “ �n ≈ �
long
n  in the long-time” of our inter-

est.
–	 Section 4 gives the condition for having, in the stiff situation, �n ≈ �

long
n  in the 

long-time.
–	 Section 5 show that when this condition does not hold, we have, in the stiff situa-

tion, 𝛾n

𝛾
long
n

≫ 1 for all time.
–	 Section 6 revises the examples of Sect. 2 in the light of the results of Sects. 4 and 

5.
–	 Section 7 studies when the condition for having �n ≈ �

long
n  holds independently of 

the specific non-rightmost spectrum.
–	 Conclusions are draft in Sect. 8.

1.4 � Replies to general questions or criticisms

This final subsection includes replies to general questions or criticisms which 
could be issued about the contents of this paper.

–	 Question. What is the motivation of this paper?
	   Reply. This paper studies the relative error of numerical approximations of 

ODEs, although confined to linear systems with normal matrix. Of course, the 
absolute error and the relative error of the numerical approximations have the 
same order of convergence with respect to the stepsize h, but they have a dif-
ferent time behavior in the numerical integration of a solution spanning over 
various orders of magnitude.

	   The motivation for studying the relative error time behavior in numerical 
ODEs, as the present paper is doing, comes from the following two facts:

–	 as it is widely recognized, the relative error is an important measure for the 
quality of an approximation, often better than the absolute error;
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–	 there has been no attention in the numerical ODEs community about the 
relative error time behavior of numerical approximations.

	    Anyway, the fact that in the numerical ODEs field the relative error is con-
sidered important is attested by the numerical solvers, which accept as an 
input argument a tolerance on the componentwise relative error. Thus, this 
paper (similarly to [9] and [10]) try to fill this gap between theory, where there 
are not studies on the relative error, and practice, where the relative error is 
used.

–	 Question. What is the relevance of the results achieved?
	   Reply. For the numerical ODEs community, it should be of interest to know 

the relative error time behavior of numerical approximations of the ODE (1.1) 
with A normal. The results achieved describes this time behavior and their rel-
evance is that they give a new prospective on the numerical integration errors. 
We can summarize this new perspective in the following points.

–	 In the non-stiff situation, the relative error is small and it grows linearly in 
time. Moreover, this linear growth is determined in the long-time only by 
the rightmost eigenvalues.

–	 In the stiff situation, the relative error is not small at the beginning of 
the numerical integration and it is not guaranteed that in the long-time it 
will become small, with a linear growth determined only by the rightmost 
eigenvalues. This happens if and only if a certain condition is satisfied and 
this condition is a novelty in the numerical ODE theory.

–	 Gauss RK methods, despite they are considered stable in the classic numer-
ical linear stability theory (they are A-stable methods), are not suitable to 
have the above condition satisfied. On the other hand, Radau and Lobatto 
IIIC RK methods are suitable to have this condition satisfied.

–	 Criticism. Componentwise relative errors

where yn,i and yi(tn) , i = 1,… , d , are the components of yn and y(tn) , should be 
considered (as in the numerical ODE solvers), not the normwise relative error 
(1.3).

	   Reply. In literature both normwise relative errors and componentwise rela-
tive errors are considered as quality measures of vector approximations (see 
[2]). The componentwise approach has the advantage that it gives informa-
tion on the precision of the components, but it has the drawback that the com-
ponents must be nonzero (when some component becomes zero, we need to 
switch to the absolute error). On the other hand, the normwise approach can 
give anyway information about the componentwise relative errors (for exam-
ple, a large normwise relative error implies that some component has a large 
relative error) and it works also when some component becomes zero.

|yn,i − yi(tn)|
|yi(tn)| , i = 1,… , d,
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–	 Criticism. Relative errors should be not considered in  situations where the 
exact solution approaches zero, as those studied in this paper. A rule of thumb 
in numerical analysis says that one should switch to the absolute error in this 
situation.

	   Reply. In mathematical modeling and numerical analysis there is a thresh-
old in the order of magnitude of quantities (scalars or vectors) under which 
they are considered zero. Under the threshold, it is important to use the abso-
lute error for approximations, since they are considered approximations of 
zero. But, in case of a solution of (1.1) which is going to zero, and so it is 
spanning over several orders of magnitude, it could be of interest to compute 
with a good precision this solution for the orders of magnitude larger than the 
threshold. In this situation, the relative error is important.

	   Of course, the numerical analyst’s point of view is that the threshold is the 
order of magnitude of the machine epsilon, but in applications this threshold 
can be larger.

	   As an example, we can consider the radioactivity decay of radionuclides, 
where the activity a(t) (measured in becquerel (Bq) by a Geiger counter) 
of a given amount of radionuclide satisfies a�(t) = −�a(t) with 𝜆 > 0 . For a 
decay chain, we have a�(t) = Aa(t) , where A is a lower bi-diagonal matrix, the 
so-called Bateman equation. The threshold could be the order of magnitude 
102Bq∕kg of the background radiation. Of course, this threshold becomes a 
much smaller ten power by using an unit larger than the becquerel, e.g. the 
curie. It could be interesting to numerically compute with a good precision 
a solution a(t) whose initial value has order of magnitude 106Bq∕kg (like in 
a nuclear plant accident). Since the solution becomes small compared to the 
initial value, using the relative error for the approximations of the solution is 
better than using the absolute error when the solution is not yet considered as 
zero.

	   Another example could be a space discretization of the heat equation, with 
homogeneous Dirichlet boundary condition, by the method of lines. In this 
case, the space discrete temperature approaches zero (the border temperature) 
and under a given threshold in the order of magnitude, say 10−2 ◦C , it can be 
considered zero. But, over this order of magnitude, the temperature is not zero 
and it becomes important to use the relative error for time-space approxima-
tions, especially when the solution spans over several orders of magnitude due 
to an initial value with order of magnitude larger than the threshold, for exam-
ple 102 ◦C.

	   We remark that the analysis in this paper also consider the situation where the 
solution, instead of approaching to zero, grows up to large values with respect to 
the initial value. Also in this situation the relative error is important.

–	 Criticism. The paper considers ODEs (1.1) with matrix A normal. Such prob-
lems can be diagonalized with a unitary transformation and then one can assume 
without loss of generality that A is diagonal.

	   Reply. In the paper, we do not assume from the beginning that A is diago-
nal because this does not simplify the exposition. In fact, the analysis presented 
starts from the fundamental relation (4.6) given below for the relative error, 
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which maintains the same form when A is diagonal. We have such a net expres-
sion for the relative error precisely for the possibility to reduce to the diagonal 
case by a unitary transformation. Hence, the assumption that A is diagonal is 
already implicitly done when one decides to deal with a normal matrix.

–	 Criticism. Since it is possible to reduce to the diagonal case, it would be suffi-
cient to study the behavior of the numerical scheme at a scalar problem, which is 
really trivial.

	   Reply. Although we can reduce to a linear systems of uncoupled scalar differ-
ential equations, this does not mean that they are fully uncoupled in the numeri-
cal scheme, since we are using the same stepsize h in all scalar equations. This 
reflects the fact that the numerical scheme is applied to an ODE (1.1) with a 
matrix A in general non-diagonal, without thinking to diagonalize it in advance. 
Moreover, the analysis of the present paper requires to have rightmost and non-
rightmost eigenvalues. In other words, we need eigenvalues with different real 
parts, i.e. an ODE (1.1) with different time scales. The case of a sole scalar equa-
tion is not considered. Anyway, we can observe that in the base situation for a 
scalar equation, the relative error �n = �

long
n  is expected to be small and linearly 

growing in time up to large times.

2 � Examples

In this section, we give two examples of stiff situations where the error �n is not 
small from the beginning of the numerical integration and it grows without to 
approach in the long-time to the small error � longn .

We remind that the stability region of the approximant R (see [5]) is the set

and the order star of R (see [5–7, 13]) is the set

where S is the relative approximant given in (1.8). The complementary set of S  is

2.1 � Same approximant with different ODEs

As first example, we consider the ODE (1.1) with the symmetric matrix

R ∶= {z ∈ D ∶ |R(z)| ≤ 1}

S ∶= {z ∈ D ∶ |S(z)| > 1},

S
c = D⧵S = {z ∈ D ∶ |S(z)| ≤ 1}.

A =
1

2

[
a + b a − b

a − b a + b

]
,
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whose eigenvalues are a and b with relevant eigenvectors (1, 1) and (1,−1) , respec-
tively. We consider a = −1 and the following three possibilities for b: 

	(P1)	 b = −11;
	(P2)	 b = −13.5;
	(P3)	 b = −16.

The initial value is y0 = (2,−1) , for which we have

The solution y quickly approaches to the long-time solution ylong : we have 
y(t) ≈ ylong(t) if

‖P1ŷ0‖2 = 1√
10

and ‖P2ŷ0‖2 = 3√
10

.

Fig. 2   Possibility P1) with initial value y0 = (2,−1) . Errors �n (solid red line) and � longn  (dash blue line). 
The abscissas are the times tn = nh , n = 0, 1, 2,… ,N
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(look at (1.17)).
For the numerical integration, we use the Taylor approximant of order five

with stepsize h =
1

5
 over N = 25 steps up to tN = Nh = 5.

We have:

e(b−a)t
‖‖P2�y0

‖‖2
‖‖P1�y0

‖‖2
= 3e(b+1)t ≪ 1

R(z) = 1 + z +
z2

2
+

z3

6
+

z4

24
+

z5

120
, z ∈ ℂ,

Fig. 3   Possibility P2) with initial value y0 = (2,−1) . Errors �n (solid red line) and � longn  (dash blue line). 
The abscissas are the times tn = nh , n = 0, 1, 2,… ,N
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We are in the stiff situation: in the three possibilities for b, we have

h�1 = 0.2, |�1| = 1.06 ⋅ 10−7 and E1 =
|�1|
h�1

= 5.28 ⋅ 10−7.

Fig. 4   Possibility P3) with initial value y0 = (2,−1) . Errors �n (solid red line) and � longn  (dash blue line). 
The abscissas are the times tn = nh , n = 0, 1, 2,… ,N
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Since

by (1.19) we obtain

for tn ≤ tN.
For the possibility P1), we see in Fig.  2, for n = 0, 1, 2,… ,N , the relative 

errors �n (solid red line) and � longn  (dash blue line).

|�2|
P1) 4.09

P2) 3.50

P3) 4.46

tN𝜌1E1 = 2.64 ⋅ 10−6 ≪ 1,

�
long
n

≈ tn�1E1 = tn ⋅ 5.28 ⋅ 10
−7

Fig. 5   Order star (in blue) and complementary set (in white) of the five order Taylor approximant with 
the stability region (in red) overlapped
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Starting from a non-small �1 (remind that �0 = 0 ), the error �n goes down to the 
small error � longn  . In the long-time, we have small errors �n although the stepsize is 
tuned only for having a small �1 , without any concern about �2.

For the possibility P2), we see in Fig. 3 the same as in Fig. 2. As in P1), start-
ing from a non-small �1 , the error �n goes down to � longn  , although � longn  is reached 
at a larger time with respect to P1).

Finally, for the possibility P3), we see in Fig. 4 the same as in Figs. 2 and 3. 
Unlike P1) and P2), the error �n does not go down to � longn  , but it continues to 
grow.

2.1.1 � Order star and stability region

Fixed a = −1 , we are interested in understanding for which b, with b < a , we have 
�n ≈ �

long
n  in the long-time. This happens in P1) and P2), but not in P3).

Order star and stability region for the Taylor approximant of order five are 
depicted in Fig. 5.

The values of |S(hb)| and |R(hb)| are:

Observe that hb ∈ R for all three possibilities and hb ∈ S
c only in P1). In other 

words, by looking at the negative real axis of Fig 5, hb lies in the red region for all 
three possibilities and hb lies in the white finger only in P1).

In the next Sect. 4, we will see a condition on hb for having �n ≈ �
long
n  in the 

long-time. When it does not hold, we have 𝛾n

𝛾
long
n

≫ 1 for all time. The condition is 
something between hb ∈ S

c (i.e. to stay in the white finger) and hb ∈ R (i.e. to 
stay in the red region). Indeed, to have hb ∈ S

c is sufficient, but not necessary, 
for this condition on hb and to have hb ∈ R is necessary, but not sufficient.

2.2 � Same ODE with different approximants

As second example, we consider the ODE (1.1) with the normal matrix

with

and Q with orthonormal columns u1, u1, u3, u3 , where

|S(hb)| |R(hb)|
P1) 0.0728 0.00807

P2) 4.72 0.317

P3) 23.8 0.968

A = QDQH

D = diag
(
�1, �1, �3, �3

)
= diag(−1 + i,−1 − i,−3 + 1000i,−3 − 1000i)
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Consider the initial value y0 = (3, 3, 3,−2) for which we have

The solution y consists of two decaying oscillations: the fast oscillation y − ylong 
decays faster than the slow oscillation ylong and, in the long-time, only the slow 
oscillation is present. We have y(t) ≈ ylong(t) if

(look at (1.17)).
Assume that the numerical integration of the ODE is accomplished by the fourth 

order two-stage Gauss RK method, corresponding to the (2, 2)−Padé approximant

and by the third order two-stage Radau RK method, corresponding to the (1, 2)−
Padé approximant

Both methods are applied with stepsize h =
1

10
 over N = 100 steps up to 

tN = Nh = 10 . Observe that such a stepsize is not suitable for approximating the fast 
oscillation.

We are in the stiff situation:

Since

u1 =v1 + iv2, u3 = v3 + iv4,

v1 =
1

2
√
2
(1, 1, 1, 1), v2 =

1

2
√
2
(1, 1,−1,−1),

v3 =
1

2
√
2
(1,−1, 1,−1), v4 =

1

2
√
2
(−1, 1, 1,−1).

‖P1ŷ0‖2 = ‖P2ŷ0‖2 = 0.5462 and ‖P3ŷ0‖2 = ‖P4ŷ0‖2 = 0.4490.

e(r2−r1)t
‖‖Q2�y0

‖‖2
‖‖Q1�y0

‖‖2
= 0.82199 ⋅ e−2t ≪ 1

R(z) =
1 +

z

2
+

z2

12

1 −
z

2
+

z2

12

, z ∈ ℂ⧵
�
3 ± i

√
3
�
,

R(z) =
1 +

z

3

1 −
2z

3
+

z2

6

, z ∈ ℂ⧵
�
2 ± i

√
2
�
.

h�1 |�1| = |�2| E1 |�3| = |�4|
Gauss RK method 0.141 7.86 ⋅ 10−8 5.56 ⋅ 10−7 0.51

Radau RK method 0.141 5.41 ⋅ 10−6 3.82 ⋅ 10−5 3.78

tN𝜌1E1 =

{
7.86 ⋅ 10−6 for the Gauss RK method

5.41 ⋅ 10−4 for the Radau RK method
≪ 1,
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by (1.19) we have

�
long
n

≈ tn�1E1 =

{
tn ⋅ 7.86 ⋅ 10

−7 for the Gauss RK method

tn ⋅ 5.41 ⋅ 10
−5 for the Radau RK method

Fig. 6   Upper part: trajectory 
(
y1
(
tn
)
, y2

(
tn
))

 , tn ∈ [8, 10] , for the exact solution. Middle part: trajectory (
yn,1, yn,2

)
 , tn ∈ [8, 10] , for the Gauss RK method solution. Lower part: trajectory 

(
yn,1, yn,2

)
 , tn ∈ [8, 10] , 

for the Radau RK method solution
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for tn ≤ tN.
In the upper part of Fig. 6, we see the trajectory tn ↦

(
y1
(
tn
)
, y2

(
tn
))

 in the plane ℝ2 
for the first two components of the exact solution y(tn) , when tn ∈ [8, 10] . In the middle 
and lower parts, we see the trajectory tn ↦

(
yn,1, yn,2

)
 for the first two components of 

Fig. 7   Errors �n (solid red line) and � longn  (dash blue line). The abscissas are the times tn , n = 0, 1,… ,N

Fig. 8   Order star (in blue) and complementary set (in white) with the stability region (in red) overlapped 
for the Gauss RK method (left) and the Radau RK method (right)
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the numerical solution yn , when tn ∈ [8, 10] . Middle part for the Gauss RK method and 
lower part for the Radau RK method.

For the long-time tn ∈ [8, 10] , where only the slow oscillation ylong is present, the 
exact components y1(tn) and y2(tn) are equal and have order of magnitude 10−4 . The 
Gauss RK method exhibits numerical components yn,1 and yn,2 of order of magnitude 
100 . On the other hand, the Radau RK method exhibits accurate numerical components 
yn,1 and yn,2 , although the stepsize is not suitable for approximating the fast oscillation.

In Fig.  7, we see the error �n , for n = 0, 1,… ,N , for both approximants: for the 
Gauss RK method the error continues to grow and for the Radau RK method it goes 
down to � longn .

2.2.1 � Order star and stability region

Fixed �1 = −1 + i and �3 = −3 + 1000i , we are interested in understanding for which 
approximants we have �n ≈ �

long
n  in the long-time. In our situation, this happens for the 

Radau RK method, but not for the Gauss RK method.
Order star and stability region for such approximants are shown in Fig. 8.
We have h�3 ∈ R for both methods, since they are A-stable. On the other hand, we 

have h�3 ∈ S
c only for the Radau RK method:

In Sect. 4, we will see a condition on the approximant for having �n ≈ �
long
n  in the 

long-time. When the condition does not hold, we have 𝛾n

𝛾
long
n

≫ 1 for all time. To have 
h�3 ∈ S

c (i.e., with reference Fig. 8, the white region of the approximant contains 
h�3 ) is sufficient, but not necessary, for this condition on the approximant and to 
have h�3 ∈ R (i.e. the red region of the approximant contains h�3 ) is necessary, but 
not sufficient.

3 � The appropriate definition of 

n
≈ 
long

n
 in the long‑time

In the following, we assume to be in the base situation. Then, it is expected E1 
small and h�1 non-large. To make easier the exposition, we assume E1 small and h�1 
non-large.

Since E1 is small, the error � longn  grows linearly in time and it is small up to large 
times tn�1.

We also fix a number c > 0 and let

(The number c plays a role similar the number c appearing in Theorems 1.1, 1.2 and 
1.3). As a reference value for c, one can take c = 1 . As a matter of generality, we do 
not confine c only to this value. In all theorems below, it is stated for which c > 0 

|||S
(
h�3

)||| =
{

1.3494 for the Gauss RK method

0.0270 for the Radau RK method.

� ∶=
c

E1

.
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they are valid. However, when the theorems are applied, c is considered non-small, 
so we have

and such that g(c) < 1 , i.e. c < 1.2564 , with 1 − g(c) non-small.
In order to describe the long-time behavior of the error �n , we compare it to � longn  

and we are interested in whether or not �n ≈ �
long
n  in the long-time.

Here, “in the long-time” does not mean tn�1 → +∞ . In fact, it is not of great 
interest to consider what happens for tn�1 → +∞ , since � longn  becomes non-small for 
a sufficiently large tn�1 . It is of interest to have �n ≈ �

long
n  starting from times tn�1 

such that � longn  is still small.
So, we introduce the following definition.

Definition 3.1  We say that �n ≈ �
long
n  in the long-time if, for some s ∈ [0, �) , 

�n ≈ �
long
n  for tn�1 in the interval [s, �] and 𝛾 longn ≪ 1 for tn�1 up to the beginning of 

this interval, i.e. for tn�1 ∈ [0, �s] and � ≥ 1 non-large.

In the definition, we consider times tn�1 up to � . Observe that if K1 is not large 
(remind (1.12) and remind that K1 = 1 is the generic situation for the matrix A), then 
the error � longn  is not small for tn�1 at the end of the interval [0, �].

In fact, for tn�1 ∈ [��, �] , where � ∈ (0, 1] is not small, by Theorem 1.2 we have

and the right-hand side in this inequality is not small.

3.1 � The definition of 

n
≈ 
long

n
 in the long‑time with monitor function

We can make the previous definition more precise by a monitor function.

Definition 3.2  Let s ∶ (0,+∞) × (0,+∞) → [0,+∞) be a function such that

We say that �n ≈ �
long
n  in the long-time with monitor function s if, for any 𝜀 > 0 , we 

have

where en is such that �n = �
long
n (1 + en).

Remark 3.1  In the previous definition, we also allow monitor functions 
s ∶ (0, a] × [b,+∞) → [0,+∞) , where 0 < a, b < +∞ . In this case, we have to spec-
ify that (3.1) holds for � ∈ (0, a] and (3.2) holds for � ∈ (0, a] and � ≥ b.

𝜏 ≫ 1,

�
long
n

≥ tn�1
E1

K1

(1 − g(c)) ≥
�c(1 − g(c))

K1

(3.1)lim
x→+∞

s(𝜀, x)

x
= 0 for any 𝜀 > 0.

(3.2)|en| ≤ � for tn�1 ∈ [s(�, �), �],
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3.2 � What does the definition with monitor function mean?

Suppose �n ≈ �
long
n  in the long-time with monitor function s.

Let 𝜀 > 0 . By (3.2), we see that �n ≈ �
long
n  with degree � for tn�1 ∈ [s(�, �), �] . 

Moreover, by Theorem 1.2, we see that if s(𝜀,𝜏)
𝜏

≪ 1 , then

for tn�1 ∈ [0, �s(�, �)] , where � ≥ 1 is not large, i.e. 𝛾 longn ≪ 1 for tn�1 up to the 
beginning of the interval [s(�, �), �].

In summary:

Regarding the satisfiability of s(𝜀,𝜏)
𝜏

≪ 1 , observe that s satisfies (3.1) and we have 
𝜏 ≫ 1.

4 � Analysis of the long‑time behavior of 

n

In the paper [9], it was presented an analysis of the long-time behavior of the error �n 
important for the non-stiff situation. In the present paper, it is developed another type of 
analysis important for the stiff situation. In this new analysis, the complex numbers wi 
and �i introduced below are important.

4.1 � The numbers w
i

For any �i ∈ �
− , i.e. for any non-rightmost eigenvalue, we introduce the complex 

number

where j = 2,… , q is such that �i ∈ �j . We set

4.2 � The numbers ̨
i

For any �i ∈ �
− , we introduce the complex number

(3.3)𝛾
long
n

≤ tn𝜌1E1(1 + g(c)) = 𝜅
s(𝜖, 𝜏)

𝜏
c(1 + g(c)) ≪ 1

If 𝛾n ≈ 𝛾
long
n

in the long-time with monitor function s and
s(𝜀, 𝜏)

𝜏
≪ 1

for some small 𝜀 > 0, then 𝛾n ≈ 𝛾
long
n

in the long-time. In particular,

we have 𝛾n ≈ 𝛾
long
n

with degree 𝜀 for tn𝜌1 ∈ [s(𝜀, 𝜏), 𝜏].

wi ∶= eh(rj−r1)S
(
h�i

)
,

(4.1)W ∶= max
�i∈�

−
|wi|.
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We set

Since

we have

where j = 2,… , q is such that �i ∈ �j.
As a consequence we obtain

Here are some observations about �.

–	 It is expected |�| non-small. In fact, let �i ∈ �j , with j = 2,… , q , be a non-right-
most eigenvalue such that 

 The case where |�| is small, i.e. 

 with |e| ≪ 1 , is “unlikely”. Observe that it is expected |�j| non-small.
–	 In the non-stiff situation, it is expected � negative non-small. In fact, it is 

expected |�2| non-small and, in the non-stiff situation, it is expected that the right-
hand side of (4.4) is small and then it is expected |� − �2| small.

4.3 � The basic theorem

The next theorem is, in our new analysis, the analog of Theorem 5.3 in [9] (which 
was suitable for studying the long-time behavior of �n in the non-stiff situation).

Theorem 4.1  Assume q > 1 and 0 ∉ �1 . Fix c > 0 such that g(c) < 1 , i.e. c < 1.2564.

�i ∶=
logwi

h�1
.

(4.2)� ∶= max
�i∈�

−
Re(�i) =

logW

h�1
.

�i = log S(h�i),

(4.3)�i = �j +
�i

h�1
,

(4.4)|� − �2| ≤
max
�i∈�

−
|�i|

h�1
.

� = Re(�i) = �j +
Re(�i)

h�1
.

h�1 =
Re(�i)

e + |�j| ,



	 S. Maset 

1 3

23  Page 28 of 62

For tn�1 ≤ � , we have

where

Proof  For n = 0, 1, 2,… , the error �n is given by

where

(see Theorem 2.1 in [9]). By (4.6), as applied with the initial value Q1y0 instead of 
y0 , we obtain

By (4.6) and (4.7), we can write

where

�n = �
long
n

(
1 + en

)
,

(4.5)

��en�� ≤1

2
max

⎧
⎪⎨⎪⎩

q�
j=2

⎛
⎜⎜⎝
e�jtn�1

���Qjŷ0
���2

��Q1ŷ0
��2

⎞
⎟⎟⎠

2

,

q�
j=2

�
�i∈�j

�
�e�itn�1 − e�jtn�1 ��

tn�1
⋅

K1

c(1 − g(c))
⋅

��Piŷ0
��2

��Q1ŷ0
��2

�2⎫⎪⎬⎪⎭
.

(4.6)�n =

�∑q

j=1

�
e(rj−r1)tn�n,j

�2

�∑q

j=1

�
e(rj−r1)tn

���Qjŷ0
���2
�2

,

�n,j ∶=

‖‖‖‖‖‖
∑
�i∈�j

(
S
(
h�i

)n
− 1

)
Piŷ0

‖‖‖‖‖‖2
, j = 1,… , q,

(4.7)�
long
n

=
�n,1

‖‖Q1ŷ0
‖‖2

.

�n = �
long
n

(
1 + en

)
,
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By Theorem 1.2 and (4.7), we have

(The assumption g(c) < 1 implies that the right-hand side is positive). Moreover, for 
j = 2,… , q , we have

where the third equality follows by A normal, which implies the orthogonality of the 
eigenspaces. So, in (4.8) we have

and (4.5) now follows. 	�  ◻

Remark 4.1  In the case 0 ∈ �1 and �1 ≠ {0} , the theorem still holds holds with (4.5) 
replaced by

(4.8)

��en�� =

����������

�
1 +

∑q

j=2

�
e(rj−r1)tn

�n,j

�n,1

�2

�
1 +

∑q

j=2

�
e(rj−r1)tn

‖Qjŷ0‖2‖Q1 ŷ0‖2

�2
− 1

����������

≤
1

2
max

⎧
⎪⎨⎪⎩

q�
j=2

⎛⎜⎜⎝
e(rj−r1)tn

���Qjŷ0
���2

��Q1ŷ0
��2

⎞⎟⎟⎠

2

,

q�
j=2

�
e(rj−r1)tn

�n,j

�n,1

�2
⎫
⎪⎬⎪⎭
.

�n,1 ≥
tn�1E1

K1

(1 − g(c))‖‖Q1ŷ0
‖‖2 =

tn�1

�
⋅

c(1 − g(c))

K1

‖‖Q1ŷ0
‖‖2.

(4.9)

e(rj−r1)tn�n,j =

‖‖‖‖‖‖
∑
�i∈�j

(
e(rj−r1)tnS

(
h�i

)n
− e(rj−r1)tn

)
Piŷ0

‖‖‖‖‖‖2
=

‖‖‖‖‖‖
∑
�i∈�j

(
wn
i
− e(rj−r1)tn

)
Piŷ0

‖‖‖‖‖‖2
=

√∑
�i∈�j

|||wn
i
− e(rj−r1)tn

|||
2‖‖Piŷ0

‖‖22

=

√∑
�i∈�j

||e�itn�1 − e�j tn�1 ||2‖‖Piŷ0
‖‖22,

q∑
j=2

(
e(rj−r1)tn

�n,j

�n,1

)2

≤

q∑
j=2

∑
�i∈�j

(
|e�itn�1 − e�jtn�1 |�

tn�1
⋅

K1

c(1 − g(c))
⋅

‖‖Piŷ0
‖‖2

‖‖Q1ŷ0
‖‖2

)2
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where

In the following, we continue to assume 0 ∉ �1 , but all our conclusions are valid 
(with easy adaptations) also for the case 0 ∈ �1 and �1 ≠ {0}.

4.4 � A first result

We give a first theorem about �n ≈ �
long
n  in the long-time with a monitor function.

Theorem 4.2  Assume q > 1 and 0 ∉ �1 . Fix c > 0 such that g(c) < 1 , i.e. c < 1.2564.

We have �n ≈ �
long
n  in the long-time with monitor function

defined for 𝜀 > 0.

Proof  Let s ∈ [0, �] . For tn�1 ∈ [s, �] , in (4.5) of Theorem 4.1 we have

and

��en�� ≤1

2
max

⎧
⎪⎨⎪⎩

q�
j=2

⎛
⎜⎜⎝
e�jtn�1

���Qjŷ0
���2

��Q1ŷ0
��2

⎞
⎟⎟⎠

2

,

q�
j=2

�
�i∈�j

⎛
⎜⎜⎜⎝

�e�itn�1 − e�jtn���
tn�1

⋅

K+
1

c(1 − g(c))
⋅

��Piŷ0
��2�∑

�k∈�1⧵{0}
��Pkŷ0

��22

⎞
⎟⎟⎟⎠

2⎫
⎪⎬⎪⎭
,

K+
1
=

max
�i∈�1

||�i||
min

�i∈�1⧵{0}

||�i||
=

(
�1

�
�1⧵{0}

)l+1(
1 + O

(
h�1

))
, h�1 → 0.

(4.10)

s(�, x) = s(�) =
1

��2�
�
max

�
0, log

�
eMc − 1

�
+ logK1 + log

1

c(1 − g(c))

�

+ log

�
1 − ��Q1ŷ0

��22
��Q1ŷ0

��2
+

1

2
log

1

�
−

1

2
log 2

⎞
⎟⎟⎟⎠
,

e�jtn�1 ≤ e�js
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where the last equality follows by (4.3) (remind (1.13)).
So, for tn�1 ∈ [s, �] , we obtain

By inverting the function f, we obtain the monitor function (4.10). 	�  ◻

Remark 4.2 

1.	 For ‖Q1ŷ0‖2 sufficiently close to 1, we have s(𝜀) < 0 . There are two ways for deal-
ing with this. One is to redefine s(�) as 0 when s(𝜀) < 0 . The other is to use (0, a] 
as domain of s, where s(a) = 0 . So, we have s(�) ≥ 0 for � ∈ (0, a].

2.	 By (4.10), (1.14) and (1.12), one can easily prove Theorem 1.3.

The previous theorem with c = 1 gives the following results.

Theorem 4.3  Let � =
1

E1

 , let k > 0 and let

If 𝜀 = e−k ≪ 1 and

then �n ≈ �
long
n  for tn�1 in the interval [s, �] and 𝛾 longn ≪ 1 for tn�1 up to the beginning 

of this interval. In particular, we have �n ≈ �
long
n  with degree � for tn�1 ∈ [s, �] and

|e�itn�1 − e�j tn�1 |�
tn�1

=e�jtn�1
|e(�i−�j)tn�1 − 1|�

tn�1
≤ e�jtn�1

(
e|�i−�j|tn�1 − 1

)
�

tn�1

≤e�jtn�1
(
e|�i−�j|� − 1

)

=e�jtn�1
(
eMic − 1

)
≤ e�js

(
eMic − 1

)
,

��en�� ≤1

2
max

⎧
⎪⎨⎪⎩

q�
j=2

⎛
⎜⎜⎝
e�js

���Qjŷ0
���2

��Q1ŷ0
��2

⎞
⎟⎟⎠

2

,

q�
j=2

�
�i∈�j

�
e�js

�
eMic − 1

� K1

c(1 − g(c))
⋅

��Piŷ0
��2

��Q1ŷ0
��2

�2⎫⎪⎬⎪⎭
.

≤
1

2

⎛
⎜⎜⎜⎝
e�2s max

�
1, (eMc − 1)

K1

c(1 − g(c))

��
1 − ��Q1ŷ0

��22
��Q1ŷ0

��2

⎞
⎟⎟⎟⎠

2

= f (s)

(4.11)s =
1

��2�
⎛⎜⎜⎜⎝
M + logK1 + log

�
1 − ��Q1ŷ0

��22
��Q1ŷ0

��2
+

k

2
+ 0.9203

⎞⎟⎟⎟⎠
.

s

𝜏
≪ 1,
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for tn�1 ∈ [0, �s] , where � ≥ 1 is not large.

Proof  By putting c = 1 in (4.10) and by observing that log(eM − 1) ≤ M , we obtain

since K1 ≥ 1 and 1 − g(1) < 1 . Now, (4.11) follows since

About (4.12), take c = 1 in (3.3). 	�  ◻

Theorem 4.4  If

then �n ≈ �
long
n  in the long-time.

Proof  Use the previous theorem with 𝜀 =
1

𝜏
= E1 ≪ 1 and observe that

(4.12)𝛾
long
n

≤ 1.7183𝜅
s

𝜏
≪ 1

s(�) ≤ s =
1

��2�
�
max

�
0,M + logK1 + log

1

1 − g(1)

�

+ log

�
1 − ��Q1ŷ0

��22
��Q1ŷ0

��2
+

1

2
log

1

�
−

1

2
log 2

⎞
⎟⎟⎟⎠
,

=
1

��2�
�
M + logK1 + log

1

1 − g(1)

+ log

�
1 − ��Q1ŷ0

��22
��Q1ŷ0

��2
+

1

2
log

1

�
−

1

2
log 2

⎞
⎟⎟⎟⎠

log
1

1 − g(1)
−

1

2
log 2 = 0.9203.

(4.13)

1

|𝛽2| ⋅
max
𝜆i∈𝛬

−

||𝜎i||
h𝜌1

≪ 1

1

|𝛽2| logK1 ⋅ E1 ≪ 1

1

|𝛽2| log
√

1 − ‖‖Q1�y0
‖‖22

‖‖Q1�y0
‖‖2

⋅ E1 ≪ 1

1

|𝛽2|
(
1

2
log

1

E1

+ 0.9203

)
⋅ E1 ≪ 1,

M

�
= ME1 =

max
�i∈�

−
||�i||

h�1
.
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	�  ◻

It is expected that the last three conditions in (4.13) are satisfied. In fact, since 
E1 ≪ 1 , they are not satisfied only in “extreme” cases. Moreover, in the non-stiff sit-
uation, it is expected that the first condition is satisfied. In fact, since in the non-stiff 
situation it is expected 

max
𝜆i∈𝛬

− |𝜎i|
h𝜌1

≪ 1 , the first condition is not satisfied only in 
“extreme” cases.

So, we can state the following important conclusion.

Conclusion 4.5  Suppose to be in the non-stiff situation. It is expected �n ≈ �
long
n  in 

the long-time.

4.5 � The condition A

We introduce the condition

where W and � are defined in (4.1) and (4.2), respectively.
Next theorem shows that, under the condition A, we have �n ≈ �

long
n  in the long-

time with a new monitor function different from (4.10).

Theorem 4.6  Assume q > 1 and 0 ∉ �1 . Fix c > 0 such that g(c) < 1 , i.e. c < 1.2564.

If A holds, then �n ≈ �
long
n  in the long-time with monitor function

defined for x ≥ 1 and for 𝜀 > 0 such that the right-hand side of (4.14) with x = 1 is 
greater than or equal to 1, so we have s(�, x) ≥ 1 for x ≥ 1 and such �.

Proof  Let A holds. Let � ≥ 1 and let s ∈ [1, �] . For tn�1 ∈ [s, �] , in (4.5) of Theo-
rem 4.1 we have

and

A: W < 1, equivalently 𝛼 < 0,

(4.14)

s(�, x) =
1

min{���, ��2�}
⎛
⎜⎜⎜⎝
log x + logK1 + log

�
1 − ��Q1ŷ0

��22
��Q1ŷ0

��2

+
1

2
log

1

�
+ log

1

c(1 − g(c))
+

1

2
log 2

�

e�jtn�1 ≤ e�js

|e�itn�1 − e�jtn�1 |
tn�1

≤
eRe(�i)tn�1 + e�j tn�1

tn�1
≤

eRe(�i)s + e�js

s
≤ eRe(�i)s + e�js,
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where the last equality follows by s ≥ 1 . So, for tn� ∈ [s, �] , we obtain

where the last equality follows by

By inverting the function f with respect to s, we obtain the monitor function (4.14). 	
� ◻

Remark 4.3 

1.	 The monitor function (4.14) is defined for � ∈ (0, a] , where 

2.	 By looking at the proof of the previous theorem, we see that there is also a moni-
tor function s(�, x) defined for all 𝜀 > 0 and x > 0 . It is obtained by inverting with 
respect to s the upper bound 

 of |en| , where en is given in Theorem 4.1. Observe that the inverse exists since 
e−min{|�|,|�2 |}s

s
 is a strictly decreasing function of s. This new monitor function has 

��en�� ≤1

2
max

⎧
⎪⎨⎪⎩

q�
j=2

⎛
⎜⎜⎝
e�js

���Qjŷ0
���2

��Q1ŷ0
��2

⎞
⎟⎟⎠

2

,

q�
j=2

�
�i∈�j

��
eRe(�i)s + e�js

�
�

K1

c(1 − g(c))
⋅

��Piŷ0
��2

��Q1ŷ0
��2

�2⎫⎪⎬⎪⎭
.

≤
1

2

⎛
⎜⎜⎜⎝
emax{�,�2}s max

�
1, 2�

K1

c(1 − g(c))

��
1 − ��Q1ŷ0

��22
��Q1ŷ0

��2

⎞
⎟⎟⎟⎠

2

=
1

2

⎛
⎜⎜⎜⎝
emax{�,�2}s2�

K1

c(1 − g(c))
⋅

�
1 − ��Q1ŷ0

��22
��Q1ŷ0

��2

⎞
⎟⎟⎟⎠

2

= f (s, �),

𝜏
K1

c(1 − g(c))
≥

1

c(1 − g(c))
> 1.

a =
1

2

⎛⎜⎜⎜⎝
e−min{���,��2�}2

K1

c(1 − g(c))
⋅

�
1 − ��Q1ŷ0

��22
��Q1ŷ0

��2

⎞⎟⎟⎟⎠

2

.

1

2

⎛⎜⎜⎜⎝

e−min{���,��2�}s
s

2�
K1

c(1 − g(c))
⋅

�
1 − ��Q1ŷ0

��22
��Q1ŷ0

��2

⎞⎟⎟⎟⎠

2

= f (s, �).
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the advantage that it is no longer necessary to suppose � ≤ a (where is a given 
at point 1) above) and � ≥ 1 . However, we prefer to use the old monitor function 
(4.14) because it has an explicit expression.

The previous theorem with c = 1 gives the next important results.

Theorem 4.7  Suppose A holds. Let � =
1

E1

 , let k > 0 and let

If 𝜀 = e−k ≪ 1 and

then �n ≈ �
long
n  for tn�1 in the interval [max{1, s}, �] and 𝛾 longn ≪ 1 for tn�1 up to 

the beginning of this interval. In particular, we have �n ≈ �
long
n  with degree � for 

tn�1 ∈ [max{1, s}, �] and

for tn�1 ∈ [0, �max{1, s}] , where � ≥ 1 is not large.

Proof  We use Theorem  4.6 with c = 1 . If s ≥ 1 , then s(�, �) = s . Observe that in 
(4.14) with c = 1 we have

Theorem 4.6 says that �n ≈ �
long
n  with degree � for tn�1 ∈ [s, �] . If s < 1 , consider k , 

with k > k , such that

We have s(�, �) = 1 , where � = e−k , with 𝜀 < 𝜀 . Theorem  4.6 says that �n ≈ �
long
n  

with degree � , and then with degree � , for tn�1 ∈ [1, �] . 	�  ◻

Theorem 4.8  Suppose A holds. If

(4.15)

s =
1

min{���, ��2�}
⎛
⎜⎜⎜⎝
log � + logK1 + log

�
1 − ��Q1ŷ0

��22
��Q1ŷ0

��2
+

k

2
+ 1.6134

⎞
⎟⎟⎟⎠
.

max{1, s}

𝜏
≪ 1,

𝛾
long
n

≤ 1.7183𝜅
max{1, s}

𝜏
≪ 1

log
1

1 − g(1)
+

1

2
log 2 = 1.6134.

1

min{���, ��2�}
⎛⎜⎜⎜⎝
log � + logK1 + log

�
1 − ��Q1ŷ0

��22
��Q1ŷ0

��2
+

k

2
+ 1.6134

⎞⎟⎟⎟⎠
= 1.



	 S. Maset 

1 3

23  Page 36 of 62

then �n ≈ �
long
n  in the long-time.

Proof  Use the previous theorem with 𝜀 =
1

𝜏
= E1 ≪ 1 . 	�  ◻

It is expected that if A holds, then the three conditions in (4.16) are satisfied. In 
fact, since E1 ≪ 1 , they are not satisfied only in “extreme” cases. So, it is expected 
that if A holds then �n ≈ �

long
n  in the long-time. Of course, we already know that 

in the non-stiff situation it is expected �n ≈ �
long
n  in the long-time, independently of 

the condition A, as well as we know that it expected that A holds in the non-stiff 
situation.

So, what is really important is the following conclusion.

Conclusion 4.9  Suppose to be in the stiff situation. It is expected that if A holds, 
then �n ≈ �

long
n  in the long-time.

4.5.1 � Order star and stability region

The condition A can be related to the order star and the stability region of the 
approximant (recall the beginning of Sect. 2).

Theorem 4.10  Let Sc be the complementary set of the order star of the approxim-
ant. The condition

implies A.

Proof  Let �i ∈ �
− . If h�i ∈ S

c , then |wi| < 1 . In fact, if h�i ∈ S
c , then

where j = 2,… , q is such that �i ∈ �j . 	�  ◻

Theorem 4.11  Let

(4.16)

1

min{|𝛼|, |𝛽2|} logK1 ⋅ E1 ≪ 1

1

min{|𝛼|, |𝛽2|} log

√
1 − ‖‖Q1�y0

‖‖22
‖‖Q1�y0

‖‖2
⋅ E1 ≪ 1

1

min{|𝛼|, |𝛽2|}
(
3

2
log

1

E1

+ 1.6134

)
⋅ E1 ≪ 1,

h�i ∈ S
c for any �i ∈ �

−

||wi
|| = eh(rj−r1)

|||S
(
h𝜆i

)||| <
|||S
(
h𝜆i

)||| ≤ 1,

◦

R = {z ∈ D ∶ |R(z)| < 1}
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be the interior of the stability region R of the approximant. If r1 ≤ 0 , then A implies 
the condition

If r1 ≥ 0 , then the condition (4.17) implies A.

Proof  Let �i ∈ �
− . If r1 ≤ 0 and |wi| < 1 , then

If r1 ≥ 0 and h�i ∈
◦

R , then

	�  ◻

These theorems agree with what has been observed in the examples of Sect. 2 
about order stars and stability regions.

4.5.2 � The region Rx

For any x ∈ ℝ , let

We have R0 =
◦

R.
For �i ∈ �

− , we have

Thus, the condition A can be restated as

In the case r1 = 0 , it becomes

according to Theorem 4.11 about the cases r1 ≤ 0 and r1 ≥ 0.

4.5.3 � The conditions B and C

When A does not hold, we have B or C, where

and

(4.17)h�i ∈
◦

R for any �i ∈ �
−.

|R(h𝜆i)| = ehr1 |wi| ≤ |wi| < 1.

|wi| = e−hr1 |R(h𝜆i)| ≤ |R(h𝜆i)| < 1.

(4.18)Rx ∶= {z ∈ D ∶ |R(z)| < ex}.

|wi| = e−hr1 |R(h�i)|.

h�i ∈ Rhr1
for any �i ∈ �

−.

h�i ∈
◦

R for any �i ∈ �
−

B: W > 1, equivalently 𝛼 > 0,
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In the next section we study, what happens when A does not holds. Of course, when 
A does not hold, it is expected that B holds.

5 � When the condition A does not hold

Next theorem helps to say when 𝛾n

𝛾
long
n

≫ 1 . We exclude the time tn�1 = 0 , i.e. the 
index n = 0 , since the ratio �n

�
long
n

 for n = 0 is indeterminate 0
0
.

Theorem 5.1  Assume q > 1 . Fix c > 0.

For tn�1 ∈ (0, �] , we have

where j = 2,… , q is such that �i ∈ �j.

Proof  Recall (4.6) and (4.7). For any j = 2,… , q and �i ∈ �j we have, for 
n = 0, 1, 2,…,

where the second equality follows by (4.9).
By Theorem 1.2, we have

and then

The inequality (5.1) now follows. 	�  ◻

C: W = 1, equivalently � = 0.

(5.1)
�n

�
long
n

≥ max
�i∈�

−

|e�itn�1 − e�jtn�1 |�
tn�1

⋅

1

c(1 + g(c))
‖‖Piŷ0

‖‖2,

�n

�
long
n

=

�
1 +

∑q

m=2

�
e(rm−r1)tn

�n,m

�n,1

�2

�
1 +

∑q

m=2

�
e(rm−r1)tn

‖Qmŷ0‖2‖Q1 ŷ0‖2

�2

=

�
1 +

∑q

m=2

∑
�k∈�m

��e�k tn�1−e�mtn�1 �‖Pkŷ0‖2

�n,1

�2

�
1 +

∑q

m=2

�
e�mtn�1

‖Qmŷ0‖2‖Q1 ŷ0‖2

�2

≥

��e�itn�1 − e�jtn�1 ��
�n,1

��Piŷ0
��2��Q1ŷ0

��2,

�n,1 ≤ tn�1E1(1 + g(c))‖‖Q1ŷ0
‖‖2

�n

�
long
n

≥
|e�itn�1 − e�jtn�1 |�

tn�1
⋅

1

c(1 + g(c))
‖‖Piŷ0

‖‖2.
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5.1 � Definition of  
n


long
n

≫ 1 for all time

Here, “for all time” we do not mean for all times tn�1 , since in our analysis we con-
sider tn�1 up to � . So, we introduce the following definition

Definition 5.1  We say that 𝛾n

𝛾
long
n

≫ 1 for all time if 𝛾n

𝛾
long
n

≫ 1 for tn�1 ∈ (0, �].

This definition is made more precise by using a monitor function.

Definition 5.2  Let F ∶ (0,+∞) → (0,+∞) such that

We say that 𝛾n

𝛾
long
n

≫ 1 for all time with monitor function F if

Remark 5.1  In the previous definition, we also allow monitor functions 
F ∶ [b,+∞) → [0,+∞) , where 0 < b < +∞.

Thus:

Regarding the satisfiability of F(𝜏) ≫ 1 , observe that F satisfies (5.2) and we have 
𝜏 ≫ 1.

5.2 � The condition B

The next theorem explains what happens under the condition B.

Theorem 5.2  Assume q > 1 . Fix c > 0.

If B holds, then 𝛾n

𝛾
long
n

≫ 1 for all time with monitor function

(5.2)lim
x→+∞

F(x) = +∞.

�n

�
long
n

≥ F(�) for tn�1 ∈ (0, �].

if
𝛾n

𝛾
long
n

≫ 1 for all time with monitor function F and F(𝜏) ≫ 1,

then
𝛾n

𝛾
long
n

≫ 1 for all time. In particular, we have
𝛾n

𝛾
long
n

≫ F(𝜏)

for tn𝜌1 ∈ (0, 𝜏].
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defined for x > 0.

Proof  Let B holds. For tn�1 ∈ (0, �] , in (5.1) we have

If Re(�i) ≤ 0 , we have

If Re(𝛼i) > 0 , we have

So, by (5.1), we obtain

for tn�1 ∈ (0, �] , where F is the function in (5.3). 	�  ◻

Remark 5.2  We can have another monitor function by substituting in (5.3) the term 
𝛼min

𝜆i ∈ 𝛬
−

Re(𝛼i) > 0

‖‖Pi�y0
‖‖2 by min

𝜆i ∈ 𝛬
−

Re(𝛼i) > 0

Re(𝛼i) ⋅max
𝜆i ∈ 𝛬

−

Re(𝛼i) > 0

‖‖Pi�y0
‖‖2.

The previous theorem with c = 1 gives the following important results.

Theorem 5.3  Suppose B holds. Let � =
1

E1

 . If

then 𝛾n

𝛾
long
n

≫ 1 for tn�1 ∈ (0, �] . In particular, we have �n

�
long
n

≥ F(�) for tn�1 ∈ (0, �].

Theorem 5.4  Suppose B holds. If

(5.3)
F(x) =

1

c(1 + g(c))
𝛼 min

𝜆i ∈ 𝛬
−

Re(𝛼i) > 0

‖‖Pi�y0
‖‖2 ⋅ x

||e�itn�1 − e�jtn�1 ||
tn�1

≥
eRe(�i)tn�1 − 1

tn�1
.

eRe(�i)tn�1 − 1

tn�1
≤ 0.

eRe(�i)tn�1 − 1

tn�1
≥ Re(�i).

𝛾n

𝛾
long
n

≥ max
𝜆i∈𝛬

−

(
eRe(𝛼i)tn𝜌1 − 1

)
𝜏

tn𝜌1
⋅

1

c(1 + g(c))
⋅
‖‖Pi�y0

‖‖2

≥ max
𝜆i ∈ 𝛬

−

Re(𝛼i) > 0

Re(𝛼i)𝜏
1

c(1 + g(c))
‖‖Pi�y0

‖‖2 ≥ F(𝜏)

(5.4)
F(𝜏) = 0.5820 ⋅ 𝛼 min

𝜆i ∈ 𝛬
−

Re(𝛼i) > 0

‖‖Pi�y0
‖‖2𝜏 ≫ 1,
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then 𝛾n

𝛾
long
n

≫ 1 for all time.

In the stiff situation, it is expected that if B holds, then (5.5) holds. In fact, E1 ≪ 1 
and it is expected |�| non-small. So, we can state the following important conclusion.

Conclusion 5.5  Suppose to be in the stiff situation. It is expected that if B holds, 
then 𝛾n

𝛾
long
n

≫ 1 for all time.

The all time lower bound (5.4) of the ratio �n

�
long
n

 is proportional to �� . At the end of 
the interval [0, �] this ratio has a lower bound exponential in ��.

In fact, by Theorem  5.1, we see that for tn�1 ∈ [��, �] , where � ∈ (0, 1] is not 
small,

Moreover, by Theorem 1.2 we obtain

5.3 � The condition C

Although it is expected that C does not hold, we study anyway the condition C since 
it characterizes the transition between �n ≈ �

long
n  in the long-time and 𝛾n

𝛾
long
n

≫ 1 for all 
time.

For the condition C, we need a weak form of 𝛾n

𝛾
long
n

≫ 1 for all time.

Definition 5.3  Let S ∶ (0,+∞) → (0,+∞) be a function such that

We say that S-weakly 𝛾n

𝛾
long
n

≫ 1 for all time if 𝛾n

𝛾
long
n

≫ 1 for tn�1 ∈ (0, S(�)].

Here is the definition with a monitor function.

Definition 5.4  Let S,F ∶ (0,+∞) → (0,+∞) such that

(5.5)
𝛼 min

𝜆i ∈ 𝛬
−

Re(𝛼i) > 0

‖‖Pi�y0
‖‖2 ⋅ 1

E1

≫ 1,

𝛾n

𝛾
long
n

≥
1

c(1 + g(c))
min

𝜆i ∈ 𝛬
−

Re(𝛼i) > 0

‖‖Pi�y0
‖‖2 e

𝜅𝛼𝜏 − 1

𝜅
.

𝛾n ≥
1 − g(c)

1 + g(c)
⋅

1

K1

min
𝜆i ∈ 𝛬

−

Re(𝛼i) > 0

‖‖Pi�y0
‖‖2(e𝜅𝛼𝜏 − 1).

S(x) ≤ x for x > 0 and lim
x→+∞

S(x) = +∞.
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We say that S-weakly 𝛾n

𝛾
long
n

≫ 1 for all time with monitor function F if

Remark 5.3  In the two previous definitions, we also allow functions 
S,F ∶ [b,+∞) → [0,+∞) , where 0 < b < +∞.

Thus:

The next theorem explains what happens under the condition C.

Theorem 5.6  Assume q > 1 . Fix c > 0 . Let v ∈ (0, 1) and let

If C holds, then S-weakly 𝛾n

𝛾
long
n

≫ 1 for all time with monitor function

defined for x ≥ 1.

Proof  Let C holds. Let S ∈ (0, �] . For tn�1 ∈ (0, S] , in (5.1) we have

If Re(𝛼i) < 0 , we have

If Re(�i) = 0 , we have

Thus, by (5.1), we obtain

S(x) ≤ x for x > 0, lim
x→+∞

S(x) = +∞ and lim
x→+∞

F(x) = +∞.

�n

�
long
n

≥ F(�) for tn�1 ∈ (0, S(�)].

if S-weakly
𝛾n

𝛾
long
n

≫ 1 for all time with monitor function F and F(𝜏) ≫ 1,

then S-weakly
𝛾n

𝛾
long
n

≫ 1 for all time. In particular, we have
𝛾n

𝛾
long
n

≫ F(𝜏)

for tn𝜌1 ∈ (0, S(𝜏)].

S(x) = xv, x ≥ 1.

(5.6)
F(x) =

1

c(1 + g(c))
(1 − e�2 ) max

�i ∈ �
−

�i = 0

‖‖Piŷ0
‖‖2 ⋅ x1−v

||e�itn�1 − e�jtn�1 ||
tn�1

≥
eRe(�i)tn�1 − e�jtn�1

tn�1

eRe(�i)tn�1 − e�j tn�1

tn�1
≤

1 − e�j tn�1

tn�1
.

eRe(�i)tn�1 − e�j tn�1

tn�1
=

1 − e�j tn�1

tn�1
.
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for tn�1 ∈ (0, S] . In particular, for S = �
v , in (5.7) we have

whenever � ≥ 1 . Then

for tn�1 ≤ (0, �v] , where F is the functions in (5.6). 	�  ◻

The previous theorem with c = 1 gives the following results.

Theorem 5.7  Suppose C holds. Let � =
1

E1

 . Let v ∈ (0, 1) . If

then 𝛾n

𝛾
long
n

≫ 1 for tn�1 ∈ (0, �v] . In particular, we have �n

�
long
n

≥ F(�) for tn�1 ∈ (0, �v].

Theorem 5.8  Suppose C holds. Let v ∈ (0, 1) . If

then S-weakly 𝛾n

𝛾
long
n

≫ 1 for all time, where S(x) = xv, x ≥ 1.

Suppose to be in the stiff situation and suppose that C holds and E1−v
1

≪ 1 . 
Then it is expected that (5.8) holds. So, we can state the following conclusion.

(5.7)

�n

�
long
n

≥ max
�i∈�

−

(
eRe(�i)tn�1 − e�jtn�1

)
�

tn�1
⋅

1

c(1 + g(c))
⋅
‖‖Piŷ0

‖‖2

= max
�i ∈ �

−

Re(�i) = 0

(
1 − e�jtn�1

)
�

tn�1
⋅

1

c(1 + g(c))
⋅
‖‖Piŷ0

‖‖2

≥ max
�i ∈ �

−

Re(�i) = 0

(
1 − e�jS

)
�

S
⋅

1

c(1 + g(c))
⋅
‖‖Piŷ0

‖‖2

(
1 − e�jS

)
�

S
=
(
1 − e�j�

v)
�
1−v

≥
(
1 − e�j

)
�
1−v

�n

�
long
n

≥ max
�i ∈ �

−

Re(�i) = 0

(
1 − e�j

)
�
1−v 1

c(1 + g(c))
‖‖Piŷ0

‖‖2 ≥ F(�)

F(𝜏) = 0.5820 ⋅
(
1 − e𝛽2

)
max

𝜆i ∈ 𝛬
−

Re(𝛼i) = 0

‖‖Pi�y0
‖‖2𝜏1−v ≫ 1

(5.8)

(
1 − e𝛽2

)
max

𝜆i ∈ 𝛬
−

Re(𝛼i) = 0

‖‖Pi�y0
‖‖2 ⋅ 1

E1−v
1

≫ 1,
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Conclusion 5.9  Let S(x) = xv, x ≥ 1 , with v ∈ (0, 1) such that E1−v
1

≪ 1 . Suppose to 
be in the stiff situation and suppose that C holds. It is expected S-weakly 𝛾n

𝛾
long
n

≫ 1 for 
all time.

6 � Examples revisited

Now, we look at the two examples of Sect. 2 in the light of the results of Sects. 4 
and 5.

6.1 � Same approximant with different ODEs

The conditions A, B and C, are W < 1 , W > 1 and W = 1 , respectively, where

Fig. 9   Order star (in blue) and complementary set (in white) of the five order Taylor approximant with 
the region R−0.2 (in red) overlapped: the horizontal black half-line is (−∞, ha) = (−∞,−0.2) and the ver-
tical black line is the line Re(z) = ha = −0.2
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with ha = −0.2 . We have

in the three possibilities for b. With c = 1 , we have

In (P1) and (P2), the condition A holds. The values of s in in (4.15) relevant to 
k = 3 , i.e. � = 4.98 ⋅ 10−2 , are:

We have �n ≈ �
long
n  with degree � for tn�1 = tn ∈ [s, �] and

for tn�1 ∈ [0, �s] , where � ≥ 1 is not large. We have �n ≈ �
long
n  in the long-time. 

Observe that the values s agree with Figs. 2 and 3.
In (P3), the condition B holds. The value of the monitor function (5.4) is 

F(�) = 8.79 ⋅ 105 . We have �n

�
long
n

≥ F(�) for tn�1 = tn ∈ (0, �] and so 𝛾n

𝛾
long
n

≫ 1 for all 
time.

6.1.1 � The region Rhr1

Recall Sect. 4.5.2. The condition A can be stated as

or, since hb < ha,

The region R−0.2 is shown in Fig. 9 (compare with Fig. 5 showing R0 =
◦

R ). The 
part of R−0.2 ∩ (−∞,−0.2) in the white finger corresponds to the sufficient condi-
tion hb ∈ S

c . Out of the white finger, we have an additional range of values for 
hb guaranteeing the condition A. The border value for b between the conditions A 
and B, where the condition C holds, is b = −15.565 . Observe that we are out of the 
white finger for b < −11.887 and out of the stability region for b < −16.085.

W = |w2| = e−ha|R(hb)|

W � = Re(�2) =
log |w2|
h|a| �2 =

b−a

|a|
(P1) 0.00986 − 23.1 − 10

(P2) 0.387 − 4.75 − 12.5

(P3) 1.183 1.19 − 15

� =
1

E1

= 1.89 ⋅ 106.

s =

{
1.87 in (P1)

3.93 in (P2).

𝛾
long
n

≤ 1.7183𝜅
s

𝜏
≤ 𝜅s ⋅ 10−6 ≪ 1

hb ∈ Rha = R−0.2

hb ∈ Rha ∩ (−∞, ha) = R−0.2 ∩ (−∞,−0.2).
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6.2 � Same ODE with different approximants

The conditions A, B and C, are W < 1 , W > 1 and W = 1 , respectively, where

Fig. 10   Region R−0.1 (in red) for the Gauss RK method (left) and the Radau RK method (right). The two 
vertical black lines are the lines Re(z) = hr1 = −0.1 and Re(z) = hr2 = −0.3
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with hr1 = −0.1 . We have

and, with c = 1,

For the Gauss RK method, the condition B holds. The value of the monitor function 
(5.4) is F(�) = 3.31 ⋅ 105 . We have �n

�
long
n

≥ F(�) for tn�1 =
√
2tn ∈ (0, �] and so 

𝛾n

𝛾
long
n

≫ 1 for all time.
For the Radau RK method, the condition A holds. The value of s in (4.15) 

relevant to k = 3 is s = 9.25 . We have �n ≈ �
long
n  with degree � = 4.98 ⋅ 10−2 for 

tn�1 =
√
2tn ∈ [s, �] and

for tn�1 ∈ [0, �s] , where � ≥ 1 is not large. We have �n ≈ �
long
n  in the long-time. 

With reference to Fig.  6, we have �n ≈ �
long
n  with degree � for tn ∈ [8, 10] , i.e. for 

tn� =
√
2tn ∈ [11.31, 14.14].

6.2.1 � The region Rhr1

The condition A can be written as

The region R−0.1 for the two methods is shown in Fig. 10. In the left part of the fig-
ure, we see that the region for the Gauss RK method does not cover points with large 
imaginary part on the line

On the other hand, in the right part, we see that the region for the Radau RK method 
completely includes this line.

W = ||w3
|| = e−hr1

|||R
(
h𝜆3

)||| < 1

W = ��w3
�� � = Re(�3) =

log �w3�
h��1� �2 =

r2−r1

��1�
Guass RK method 1.105 2.12 −

√
2

Radau RK method 0.0221 − 27.0 −
√
2

� =
1

E1

=

{
1.80 ⋅ 106 for the Gauss RK method

2.61 ⋅ 104 for the Radau RK method.

𝛾
long
n

≤ 1.7183𝜅
s

𝜏
≤ 𝜅s ⋅

{
10−6 for the Gauss RK method

10−4 for the Radau RK method.
≪ 1

h�3 ∈ Rhr1
= R−0.1.

Re(z) = hr2 = Re(h�3) = −0.3.
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7 � Independence of the non‑rightmost spectrum

In this section, we study when the condition A holds independently of the par-
ticular non-rightmost spectrum �−.

Here, we consider an analytic approximant R with domain D such that 
{z ∈ ℂ ∶ Re(z) < 𝛽R} ⊆ D for some �R ∈ (0,+∞] , i.e. D includes a left half-plane.

7.1 � The property A(x)

We introduce the property A(x) of the approximant R.

Definition 7.1  Let x < 𝛽R . Let

where def
⟺

 has the meaning of “if and only if” by definition.

The property A(x) can be also written as

where Rx is the region defined in (4.18). Observe that A(0) is the A-stability 
property.

The property A(x) is important because A(hr1) implies the condition A for all non-
rightmost spectra �−.

It is of interest to consider the property A(x) for |x| non-large. In fact, |hr1| ≤ h�1 and 
we are assuming h�1 non-large.

We have the following negative result.

Theorem 7.1  There exists x0 > 0 such that, for x < 𝛽R with |x| ≤ x0 and x ≠ 0 , A(x) 
is not true.

Proof  Remind that l is the order of the approximant R. In the complex plane, there 
exists a small disk centered at the origin which consists of l + 1 sectors of width �

l+1
 

included in the order star S  , intercalated with l + 1 sectors of width �

l+1
 included in 

S
c . Thus, there exists x0 > 0 such that, for x < 𝛽R with |x| ≤ x0 and x ≠ 0 , the line 

Re(z) = x has a non-empty intersection with the order star S  . Let w be a point in 
this intersection. We have Re(w) = x and

Then, due to the continuity of R, there exists 𝜀 > 0 such that, for any z ∈ ℂ with 
x − � ≤ Re(z) ≤ x and Im(z) = Im(w) , we have

	�  ◻

A(x)
def

⟺ e−x|R(z)| < 1 for all z ∈ ℂ such that Re(z) < x,

{z ∈ ℂ ∶ Re(z) < x} ⊆ Rx,

e−x|R(w)| > 1.

e−x|R(z)| > 1.
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7.2 � Non‑significant eigenvalues I

The previous Theorem 7.1 says that, for any x < 𝛽R with |x| ≤ x0 and x ≠ 0 , there 
exists z ∈ ℂ with Re(z) < x such that e−x|R(z)| ≥ 1 . So, we can have, for some nor-
mal matrix A, a situation where the rightmost real part is r1 =

x

h
 and �i =

z

h
 is a non-

rightmost eigenvalue. For this eigenvalue we have

and then the condition A does not hold.

Definition 7.2  We say that a non-rightmost eigenvalue �i with |wi| ≥ 1 is non-signif-
icant (significant) if

It is expected that any non-rightmost eigenvalue �i with |wi| ≥ 1 is significant. In 
fact, by (4.3) we have

and it is expected |�2| non-small.
So, the negative result of Theorem 7.1 is not disastrous. The theorem says that, 

for any rightmost real part r1 ≠ 0 with |hr1| ≤ x0 , there is a situation where we have 
a non-rightmost eigenvalue �i such that |wi| ≥ 1 . But, such eigenvalue could be 
non-significant and, if this is true, then it is expected that such a situation does not 
happen.

In Sect.  7.10 below, we will introduce a condition on the approximant under 
which any non-rightmost eigenvalue �i with |wi| ≥ 1 is non-significant.

7.3 � The properties A(x, a) and B(x, a)

It is expected that any non-rightmost eigenvalue �i with ||wi
|| ≥ 1 has |h�i| non-small. 

In fact, it is expected that �i is significant, i.e. it is expected that

is not small, and then it is “unlikely” to have |h�i| small.
Thus, we look at condition A for a non-rightmost spectrum �− with all the eigen-

values �i such that |h�i| is not small. In this context, the following two properties of 
the approximant R are important.

Definition 7.3  Let x < 𝛽R and let a ≥ 0 . Let

|wi| = e−hr1 |R(h�i)| ≥ 1,

|𝜎i|
h𝜌1

≪ 1

(|𝜎i|
h𝜌1

is not small

)
.

|�2| ≤
|�i|
h�1

.

|�i|
h�1

=
|�i|
�1

|C||h�i|l
(
1 + O

(|h�i|
))
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The properties A(x, a) and B(x, a) can be also written as

respectively, where 
◦

R
c

x
 is the interior of the complementary set Rc

x
 of Rx.

Observe that A(x) is A(x, 0) and

The properties A(x, a) and B(x, a) are important because A(hr1, a) implies the condi-
tion A for all non-rightmost spectra �− such that h�− ≥ a and B(hr1, a) implies the 
condition B for all non-rightmost spectra �− such that h�− ≥ a . Remind that �− and 
�
− are defined in (1.5).

7.4 � The limit L

Now, we assume that

exists. In addition, we also assume the following.

–	 When L < +∞ : 

 where k > 0 , and, for any x < 𝛽R and D ≥ 0 , 

 where C = C(x,D) ≥ 0.
–	 When L = +∞ : 

 where k > 0 , and, for any x < 𝛽R and D ≥ 0 , 

 where C = C(x,D) > 0.
The next two subsections consider, for x < 𝛽R , the cases L > ex and L < ex.

A(x, a)
def

⟺ e−x|R(z)| < 1 for all z ∈ ℂ such that Re(z) < x and |z| ≥ a

B(x, a)
def

⟺ e−x|R(z)| > 1 for all z ∈ ℂ such that Re(z) < x and |z| ≥ a.

{z ∈ ℂ ∶ Re(z) < x and |z| ≥ a} ⊆ Rx and {z ∈ ℂ ∶ Re(z) < x and |z| ≥ a} ⊆

◦

R
c

x
,

A(x, a1) ⇒ A(x, a2) and B(x, a1) ⇒ B(x, a2) if a1 < a2.

L ∶= lim
z→∞

|R(z)|

| |R(z)| − L | = O

(
1

|z|k
)
, |z| → +∞,

(7.1)| |R(z)| − L | ≤ C

|z|k for Re(z) < x and |z| ≥ D,

1

| R(z)| = O

(
1

|z|k
)
, |z| → +∞,

(7.2)|R(z)| ≥ C|z|k for Re(z) < x and |z| ≥ D,
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7.5 � The case L > ex

Theorem 7.2  Let x < 𝛽R . Suppose L > ex . For any � ∈ (1, e−xL) there exists a ≥ 0 
such that

(Compare with the definition of B(x, a) given above). We have (7.3) for

Proof  Let � ∈ (1, e−xL) . Since

we have

for |z| sufficiently large.
About (7.4), fix D ≥ 0 . Under the assumptions (7.1) or (7.2), we have, for 

Re(z) < x and |z| ≥ D,

whenever

i.e.

Now (7.4) immediately follows. 	�  ◻

Remark 7.1  Consider L < +∞ . If C = C(x,D) is a decreasing function of D, and this 
is obtained for example by considering the “optimal”

then a = D in (7.4), where D ≥ 0 is such that

(7.3)e−x|R(z)| ≥ 𝜃 for all z ∈ ℂ such that Re(z) < x and |z| ≥ a.

(7.4)a =

⎧
⎪⎪⎨⎪⎪⎩

inf
D≥0

max

��
C

L−𝜃ex

� 1

k

,D

�
if L < +∞

inf
D≥0

max

��
𝜃ex

C

� 1

k

,D

�
if L = +∞.

lim
z→∞

e−x|R(z)| = e−xL > 𝜃,

e−x|R(z)| ≥ �

e−x|R(z)| ≥ �

e−x
(
L −

C

|z|k
)

≥ � or e−xC|z|k ≥ �,

|z| ≥
(

C

L − �ex

) 1

k

or |z| ≥
(
�ex

C

) 1

k1
.

C = sup

Re(z) < x

|z| ≥ D

| |R(z)| − L | ⋅ |z|k,
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A similar observation applies to the case L = +∞.

Theorem 7.2 has two important consequences given in Theorems 7.3 and  7.4.

Theorem 7.3  Let x < 𝛽R . If L > ex , then B(x, a) for

Proof  For any � ∈ (1, e−xL) , Theorem 7.2 says that we have B(x, a) for

So, we have B(x, a) for

	�  ◻

Theorem  7.4  If L > ehr1 , then for any � ∈
(
1, e−hr1L

)
 and for any non-rightmost 

spectrum �− satisfying h�− ≥ a , where a is given in (7.4) with x = hr1 , the condition 
B holds with

(
C(x,D)

L − �ex

) 1

k

= D.

a >

⎧
⎪⎪⎨⎪⎪⎩

inf
D≥0

max

��
C

L−ex

� 1

k

,D

�
if L < +∞

inf
D≥0

max

��
ex

C

� 1

k

,D

�
if L = +∞.

a ≥

⎧
⎪⎪⎨⎪⎪⎩

inf
D≥0

max

��
C

L−𝜃ex

� 1

k

,D

�
if L < +∞

inf
D≥0

max

��
𝜃ex

C

� 1

k

,D

�
if L = +∞.

a > inf
𝜃∈(1,e−xL)

⎧
⎪⎪⎨⎪⎪⎩

inf
D≥0

max

��
C

L−𝜃ex

� 1

k

,D

�
if L < +∞

inf
D≥0

max

��
𝜃ex

C

� 1

k

,D

�
if L = +∞.

=

⎧⎪⎪⎨⎪⎪⎩

inf
D≥0

max

��
C

L−ex

� 1

k

,D

�
if L < +∞

inf
D≥0

max

��
ex

C

� 1

k

,D

�
if L = +∞.
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Moreover,

where Lsup = sup
Re(z)<hr1

|R(z)|.

Proof  Suppose h�− ≥ a . For a non-rightmost eigenvalue �i of maximum modulus 
we have |h�i| ≥ a and then

by Theorem 7.2. Thus

Moreover, for any non-rightmost eigenvalue �i , we have

Thus,

	�  ◻

Observe that, by varying � in 
(
1, e−hr1L

)
 , the lower bound log �

h�1
 of � can be arbitrar-

ily close from below to the positive number

If, in addition, L = Lsup , then � is not larger than this positive number and � can be 
arbitrarily close to it.

7.6 � The case L < ex

Theorem 7.5  Let x < 𝛽R . Suppose L < ex . For any � ∈ (e−xL, 1) there exists a ≥ 0 
such that

� ≥
log �

h�1
.

� ≤ −
r1

�1

+
log Lsup

h�1
.

||wi
|| = e−hr1 |R(h�i)| ≥ �

� ≥ Re(�i) =
log |wi|
h�1

≥
log �

h�1
.

||wi
|| = e−hr1 |R(h�i)| ≤ e−hr1Lsup.

� = max
�i∈�

−
Re(�i) = max

�i∈�
−

log |wi|
h�1

≤
log(e−hr1Lsup)

h�1
= −

r1

�1

+
log Lsup

h�1
.

−
r1

�1

+
log L

h�1
.

(7.5)e−x|R(z)| ≤ 𝜃 for all z ∈ ℂ such that Re(z) < x and |z| ≥ a.
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(Compare with the definition of A(x, a) given above). We have (7.5) for

Proof  Let � ∈ (e−xL, 1) . Since

we have

for |z| sufficiently large.
About (7.6), observe that, under the assumption (7.1), we have, for Re(z) < x and 

|z| ≥ D,

whenever

i.e.

Now (7.6) immediately follows. 	�  ◻

Remark 7.2  An observation about a in (7.6), similar to the observation of 
Remark 7.1 can be done.

Theorem 7.5 has two important consequences given in and Theorems 7.6 and 7.7.

Theorem 7.6  Let x < 𝛽R . If L < ex , then A(x, a) for

Proof  For any � in (e−xL, 1) , Theorem 7.5 says that we have A(x, a) for

So, we have A(x, a) for

(7.6)a = inf
D≥0

max

{(
C

�ex − L

) 1

k

,D

}
.

lim
z→∞

e−x|R(z)| = e−xL < 𝜃,

e−x|R(z)| ≤ �.

e−x|R(z)| ≤ �

e−x
(
L +

C

|z|k
)

≤ �,

|z| ≥
(

C

�ex − L

) 1

k

.

a > inf
D≥0

max

{(
C

ex − L

) 1

k

,D

}
.

a ≥ inf
D≥0

max

{(
C

�ex − L

) 1

k

,D

}
.
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	�  ◻

Theorem  7.7  If L < ehr1 , then for any � ∈
(
e−hr1L, 1

)
 and for any non-rightmost 

spectrum �− satisfying h�− ≥ a , where a is given in (7.6) with x = hr1 , the condition 
A holds with

Moreover,

where Linf = infRe(z)<hr1 |R(z)|.

Proof  Suppose h�− ≥ a . For a non-rightmost eigenvalues �i such that � = Re(�i) we 
have |h�i| ≥ a and then

by Theorem 7.5. Thus,

Moreover, for any non-rightmost eigenvalue �i we have

Thus,

Observe that, by varying � in 
(
e−hr1L, 1

)
 , the upper bound log �

h�1
 of � can be arbi-

trarily close from above to the negative number

If, in addition, L = Linf , then � is not smaller than this negative number and � can be 
arbitrarily close to it.

a > inf
𝜃∈(e−xL,1)

inf
D≥0

max

{(
C

𝜃ex − L

) 1

k

,D

}
= inf

D≥0
max

{(
C

ex − L

) 1

k

,D

}
.

� ≤
log �

h�1
.

� ≥ −
r1

�1

+
log Linf

h�1
.

||wi
|| = e−hr1 |R(h�i)| ≤ �

� = Re(�i) =
log |wi|
h�1

≤
log �

h�1
.

||wi
|| = e−hr1 |R(h�i)| ≥ e−hr1Linf .

� = max
�i∈�

−
Re(�i) = max

�i∈�
−

log |wi|
h�1

≥
log(e−hr1Linf )

h�1
= −

r1

�1

+
log Linf

h�1
.

−
r1

�1

+
log L

h�1
.



	 S. Maset 

1 3

23  Page 56 of 62

7.7 � Approximants with L = +∞

Consider approximants with L = +∞ . Examples of such approximants are Taylor 
approximants and superdiagonal Padé approximants.

The results in Sect. 7.5 say that the condition B holds for h�− sufficiently away from 
zero, as confirmed in the first example of Sect. 2. In particular, B holds for

As h�− → +∞ , B holds with � → +∞.

7.8 � Approximants with L = 0

Consider approximants with L = 0 . Examples of such approximants are subdiagonal 
Padé approximants. Radau e Lobatto IIIC RK methods correspond to the first and sec-
ond subdiagonal Padé approximants, respectively.

The results in Sect. 7.6 say that the condition A holds for h�− sufficiently away from 
zero. In particular, A holds for

As h�−
→ +∞ , A holds with � → −∞ . Moreover, Theorem 7.1 says that, for any 

rightmost real part r1 ≠ 0 with |hr1| ≤ x0 , we cannot have that A holds for all h�−.
A-stable approximants with L = 0 are called L-stable (see [5]) and they are consid-

ered particularly suitable for integrating very stiff ODEs (see [1, 3, 8, 11]). Observe that 
here we are also considering approximants with L = 0 which are not A-stable. Indeed, 
the A-stability property does not play a crucial role in this context. Among subdiagonal 
Padé approximants, only the first and second subdiagonal Padé approximants (Radau 
and Lobatto IIIC methods) are A-stable.

7.9 � Approximants with L = 1

Consider approximants with L = 1 . Examples of approximants with L = 1 are diagonal 
Pad é approximants, which are also A-stable. Gauss methods correspond to the diago-
nal Padé approximants.

Suppose r1 < 0 . The results in Sect. 7.5 say that the condition B holds for h�− suf-
ficiently away from zero, as confirmed in the second example of Sect. 2. In particular, 
B holds for

For an A-stable approximant, B holds with � ≤ −
r1

�1

 and, as h�− → +∞ , � → −
r1

�1

.

h𝜌− > inf
D≥0

max

{(
ehr1

C

) 1

k

,D

}
.

h𝜇−
> inf

D≥0
max

{(
e−hr1C

) 1

k ,D

}
.

h𝜌− > inf
D≥0

max

{(
C

1 − ehr1

) 1

k

,D

}
.
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Suppose r1 > 0 . The results in Sect. 7.6 say that the condition A holds for h�− 
sufficiently away from zero. In particular, A holds for

For an A-stable approximant, A holds with � ≥ −
r1

�1

 and, as h�−
→ +∞ , � → −

r1

�1

.

7.10 � Non‑significant eigenvalues II

In this subsection we study when any non-rightmost eigenvalue �i with |wi| ≥ 1 is 
non-significant (see Sect. 7.2).

7.10.1 � The region Px

For x < 𝛽R , let

where Rc

x
 is the complementary set of Rx.

We have A(x) if and only if Px = � . Moreover, for a ≥ 0 , we have A(x, a) if and 
only if the open disk of radius a centered at the origin includes Px.

The importance of the region Px is due to the fact that, for a non-rightmost eigen-
value �i , we have |wi| ≥ 1 if and only if h�i ∈ Phr1

.

7.10.2 � The number a(x)

For x < 𝛽R , let

In other words, a(x) is the infimimum of the radii of open disks centered at the ori-
gin and including Px.

The importance of the number a(x) is given by the following theorem.

Theorem  7.8  For a non-rightmost eigenvalue �i such that |wi| ≥ 1 , we have 
|h�i| ≤ a

(
hr1

)
.

Proof  The closed disk of radius a(x) centered at the origin includes the region Px . 
The theorem follows by reminding that Px contains the non-rightmost eigenvalues 
�i such that |wi| ≥ 1 . 	�  ◻

7.10.3 � The theorem on the non‑significant eigenvalues

Next theorem says when any non-rightmost eigenvalue �i with |wi| ≥ 1 is non-signif-
icant. It involves the behavior of a(x) as x → 0.

h𝜇−
> inf

D≥0
max

{(
C

ehr1 − 1

) 1

k

,D

}
.

Px ∶= {z ∈ ℂ ∶ Re(z) < x} ∩R
c

x
,

a(x) ∶= inf{a ≥ 0 ∶ A(x, a)}.
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Theorem 7.9  Consider an approximant such that

where 𝜂 > 0 . If

where l is the order of the approximant, then any non-rightmost eigenvalue �i with 
|wi| ≥ 1 is non-significant.

Proof  Consider a non-rightmost eigenvalue �i with |wi| ≥ 1 . By Theorem  7.8, we 
have

Recall (1.6) and (1.7). Since

we obtain

(7.7)a(x) ≤ �|x|(1 + O(x)), x → 0,

(7.8)𝜂
l+1E1

(
1 + O

(
h𝜌1

))
≪ 1,

||h�i|| ≤ a
(
hr1

)
≤ �|hr1|

(
1 + O

(
hr1

))
≤ �h�1

(
1 + O

(
h�1

))
.

| log S(z)| = |C|zl+1(1 + O(z)),

Fig. 11   Regions Rx and Px for the implicit Euler method. Rx is the exterior of the red circle of center 1 
and radius e−x . Px is the part of the closed disk at the left of the line Re(z) = x
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and then

The theorem now follows by reminding the definition of non-significant eigenvalue. 	
� ◻

Remark 7.3  The term O(h�1) in (7.8) is not larger than Ch�1 for h�1 ≤ D , where 
C ≥ 0 and D > 0 depend only on the approximant.

By the previous theorem we obtain the following important conclusion.

Conclusion 7.10  Suppose that the approximant satisfies (7.7). It is expected that A 
holds.

In fact, suppose A does not hold, i.e. there is a non-rightmost eigenvalue �i with 
|wi| ≥ 1 . It is expected that this eigenvalue is significant. On the other hand, if it is 
significant, then, by the previous theorem, we obtain that (7.8) does not hold and 
this is “unlikely”.

In the next subsection, we show that the implicit Euler method satisfies (7.7).

7.11 � The implicit Euler method

We examine the property A(x) and determine the number a(x) for the the implicit 
Euler method, corresponding to the (0, 1)-Padé approximant

This approximant has �R = 1.
The region Rx , x < 1 , for this approximant is the exterior of the disk of center 1 

and radius e−x and the region Px is the part of the closed disk at the left of the line 
Re(z) = x (see Fig. 11).

Theorem 7.11  Let x < 1 . For the implicit Euler method, we have A(x) if and only 
x = 0 . Moreover, we have

|�i| = | log S(h�i)| = |C|(|h�i|
)l+1(

1 + O
(|h�i|

))

≤ |C|(�h�1
(
1 + O

(
h�1

)))l+1(
1 + O

(
h�1

))

= �
l+1|C|(h�1

)l+1(
1 + O

(
h�1

))

|�i|
h�1

≤ �
l+1|C|(h�1

)l(
1 + O

(
h�1

))

= �
l+1

E1

1 + O(h�1)

(
1 + O

(
h�1

))
recall (1.9)

= �
l+1E1

(
1 + O

(
h�1

))
.

R(z) =
1

1 − z
, z ∈ ℂ⧵{1}.
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Proof  When x = 0 , A(x) is the A-stability. When x ≠ 0 , we have 1 − e−x < x and 
then

since the complementary set Rc

x
 of Rx is the closed disk of center 1 and radius e−x 

(see Fig. 10). Thus A(x) is not true.
For the second part, let b ≥ 0 . An easy computation shows that, for z ∈ ℂ such 

that |z| = b , we have

Hence

if and only if

For x > 0 , (7.10) is equivalent to

For x < 0 , (7.10) is equivalent to

Now, equation (7.9) follows. 	�  ◻

By (7.9), we obtain

We can conclude that it is expected that A holds for the implicit Euler method.

8 � Conclusions

In the stiff situation, we have studied the long-time behavior of the relative error in 
the numerical integration of the ODE (1.1) with A normal. The numerical integra-
tion is accomplished over a mesh of constant stepsize h, by using at any step of 
an analytic approximant R of the exponential: see (1.2). The relative error �n of the 
numerical integration is given in (1.3).

(7.9)a(x) =
√
e−2x − 1 + 2x.

Px = {z ∈ ℂ ∶ Re(z) < x} ∩R
c

x
≠ �,

z ∈ R
c

x
⇔ |z − 1| ≤ e−x ⇔ Re(z) ≥

1

2

(
b2 + 1 − e−x

)
.

� ≠
{
z ∈ ℂ ∶ z ∈ Px and |z| = b

}
=
{
z ∈ ℂ ∶ Re(z) < x and |z| = b and z ∈ R

c

x

}

=
{
z ∈ ℂ ∶ |z| = b and

1

2

(
b2 + 1 − e−x

)
≤ Re(z) < x

}

(7.10)
1

2

(
b2 + 1 − e−x

)
< x and x > −b and

1

2

(
b2 + 1 − e−x

)
≤ b.

1 − e−x ≤ b <

√
e−2x − 1 + 2x.

−x < b <

√
e−2x − 1 + 2x.

a(x) =
√
2�x�(1 + O(x)), x → 0.
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We have defined the long-time solution ylong as the solution of (1.1) projected 
on the eigenspace of the rightmost eigenvalues and we have considered the relative 
error � longn  of the numerical integration of ylong . The error � longn  grows linearly in time, 
it is small and it remains small in the long-time.

We have introduced the condition

where r1 is the real part of the rightmost eigenvalues of A. When A holds, we have 
�n ≈ �

long
n  in the long-time. When A does not hold, we have 𝛾n

𝛾
long
n

≫ 1 for all time.
Let L = limz→∞ |R(z)| . In order to have the condition A satisfied, it is better to use 

approximant with L = 0 (for example Radau and Lobatto IIIC methods). Approxim-
ants with L = 1 (for example Gauss methods) does not work well when r1 < 0.

The paper [10] analyzes the numerical integration in the stiff situation by looking 
to a different question. In [10], the interest is about numerical approximations (1.2) 
of the long-time solution starting with a perturbed initial value. The approximants 
are analyzed by means of their error growth function �R (see [4, 5]) in order to study 
how they propagate the initial perturbation from the relative error point of view. In 
this other context, we have a non-large propagation of the initial perturbation if and 
only if

We have considered the case of A normal. Some numerical experiments, not 
included here, suggest that also for non-normal matrices we have �n ≈ �

long
n  in the 

long-time when the condition A holds and 𝛾n

𝛾
long
n

≫ 1 for all time when A does not 
hold. In light of this, the results of Sect. 7 becomes more important, since they are 
about the condition A.

We conclude by remarking that the findings of this paper are interesting in 
applications involving differential models described by linear ODEs with r1 ≠ 0 . 
In particular, they are interesting when we are integrating an ODE whose solution 
decreases to small orders of magnitude (case r1 < 0 ), but it is not yet considered as 
zero, or grows up to a large orders of magnitude (case r1 > 0 ), but it is not yet con-
sidered as infinite.
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A: |R(h𝜆)| < ehr1 for any non-rightmost eigenvalue 𝜆 of A,

�R(x) = 1 + x + o(x), x → 0.
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