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Abstract
We present two theoretical results and two surprising conjectures concerning con-
vergence properties of Broyden’s method for smooth nonlinear systems of equa-
tions. First, we show that when Broyden’s method is applied to a nonlinear map-
ping F ∶ ℝ

n
→ ℝ

n with n − d affine component functions and the initial matrix B0 
is chosen suitably, then the generated sequence (uk,F(uk),B

k
)
k≥1 can be identified 

with a lower-dimensional sequence that is also generated by Broyden’s method. This 
property enables us to prove, second, that for such mixed linear–nonlinear systems 
of equations a proper choice of B0 ensures 2d-step q-quadratic convergence, which 
improves upon the previously known 2n steps. Numerical experiments of high preci-
sion confirm the faster convergence and show that it is not available if B0 deviates 
from the correct choice. In addition, the experiments suggest two surprising possi-
bilities: It seems that Broyden’s method is (2d − 1)-step q-quadratically convergent 
for d > 1 and that it admits a q-order of convergence of 21∕(2d) . These conjectures are 
new even for d = n.
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1 Introduction

Given a smooth nonlinear mapping F ∶ ℝ
n
→ ℝ

n , Broyden’s method aims at finding 
a root ū of F,

It is one of the most widely used quasi-Newton methods for systems of nonlinear 
equations and converges locally q-superlinearly, as was shown by Broyden, Dennis 
and Moré in their seminal paper [7]. We state the method as Algorithm BROY.

Before discussing the content of this paper in more detail, let us outline its main 
contributions:

– A well-known result of Gay [11, Theorem 3.1] asserts local 2n-step q-quadratic 
convergence of Broyden’s method under appropriate assumptions. We show 
under the same assumptions that if n − d of the equations are affine and the cor-
responding n − d rows of B0 agree with the corresponding n − d rows of F′ , then 
Broyden’s method is locally 2d-step q-quadratically convergent.

– We provide high-precision numerical experiments that confirm the improved 
convergence speed and observe that it is lost if the relevant rows of B0 are per-
turbed.

– The experiments suggest that Broyden’s method enjoys a q-order of convergence 
no smaller than 21∕(2d) . This is the first time that the q-order of Broyden’s method 
is studied numerically, and even for d = n the conjecture that a q-order larger 
than one may exist is novel.

The starting point of this work is the property of Algorithm BROY that if n − d 
rows of F′ are constant and the initial guess B0 matches these rows exactly, then 
there exist d-dimensional subspaces S ⊂ ℝ

n and ℝn
d
⊂ ℝ

n such that (sk)k≥1 ⊂ S and 
(F(uk))k≥1 ⊂ ℝ

n
d
 , where ℝn

d
∶= {(y1,… , yn)

T ∈ ℝ
n ∶ yj = 0∀j > d} and where we 

have assumed without loss of generality that the constant rows of F′ are the last n − d 
ones. This subspace property is well-known and appears, for instance, in the classical 
book of Dennis and Schnabel [9]. To the best of the author’s knowledge, however, 
it has not been noted before that in this situation the sequence (uk,F(uk),Bk)k≥1 can 
be identified with a sequence (wk,G(wk),Ck)k≥0 ⊂ ℝ

d ×ℝ
d ×ℝ

d×d that is generated 

F(ū) = 0.
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by applying Broyden’s method to a suitable mapping G ∶ ℝ
d
→ ℝ

d . We stress that 
many well-known quasi-Newton methods do not have this property, e.g., the BFGS 
update, cf. Remark 1 in Sect. 2. We will use it to show that (uk)k≥1 is 2d-step q-quad-
ratically convergent under the assumptions of Gay’s theorem on 2n-step q-quadratic 
convergence (which coincide with the classical assumptions for local q-superlinear 
convergence of Broyden’s method). As a corollary we obtain that (uk) exhibits an 
r-order of convergence [30, Sect.  9.2] no smaller than 2

1

2d . We emphasize that no 
modification of Algorithm BROY is necessary to enjoy the faster convergence; it 
is only required to choose B0 in such a way that it agrees with F′ on the rows that 
correspond to affine components of F. On the other hand, it may be numerically 
advantageous to carry out Algorithm BROY for G instead of F, for instance because 
smaller linear systems have to be solved; cf. also Remark 2 (2).

It is clear that there is an abundance of practically relevant nonlinear systems 
of equations that contain some linear equations; these systems are covered by the 
result on 2d-step q-quadratic convergence. In addition, this result supports two 
standard suggestions for the choice of B0 , which are to use either B0 = F�(u0) or 
a componentwise finite difference approximation of F�(u0) , cf. for instance [28, 
comment after Theorem 11.5] and [25, Sect. 10], since both choices imply that B0 
and F′ agree on rows associated to affine component functions of F.

We confirm the 2d-step convergence in numerical experiments of high preci-
sion and observe that it is lost if the rows of B0 that correspond to affine compo-
nents of F are perturbed, while perturbations in other rows have no such effect. 
This shows that choosing B0 to match the constant rows of F′ (if possible) will 
usually decrease both iteration count and runtime.

Besides confirming the 2d-step q-quadratic convergence of Broyden’s method 
on mixed systems of equations, the numerical experiments lead us to three con-
jectures: The iterates (uk) of Broyden’s method

– may converge (2d − 1)-step q-quadratically for d ∈ {2,… , n} (which, if true, 
implies an r-order of convergence no smaller than 2

1

2d−1),
– may exhibit a q-order of convergence [30, Sect. 9.1] larger than one,
– may admit the lower bound 21∕(2d) for their q-order for d ∈ {1,… , n}.

Even for d = n (i.e., fully nonlinear systems) these conjectures are new and per-
haps somewhat surprising. We therefore stress that the conjectured lower bound 
of 21∕(2n) for the q-order of Broyden’s method is consistent with further numerical 
experiments of the author, e.g. in [20–22]. Also, we are aware that the 2n-step 
q-quadratic convergence is derived from the 2n-step convergence of Broyden’s 
method on regular linear systems [11, 12, 29] and that it is more or less accepted 
that fewer than 2n iterations rarely suffice in the case of linear systems. On the 
other hand, since the present work is the first to numerically assess the 2n-step 
q-quadratic convergence and the q-order of convergence of Broyden’s method, no 
numerical evidence that contradicts the above conjectures is available.

Broyden’s method is one of the most prominent quasi-Newton methods for 
solving nonlinear equations, and there is an ever-growing body of literature 
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available. For the case of smooth systems of equations, the surveys [2, 8, 16, 25] 
cover many aspects and provide further references, so we restrict ourselves to 
mentioning [7, 15, 31] that develop the local convergence theory of Broyden’s 
method. Works that are too recent to be included in the surveys are, for instance, 
concerned with the extension of Broyden’s method to constrained nonlinear sys-
tems of equations [24], to set-valued mappings [3], and to single- and set-valued 
nonsmooth problems in infinite-dimensional spaces [1, 23, 27]. Broyden’s method 
is also used in implicit deep learning, cf. [5, 6], which further underlines that 
it continues to play a role nowadays. Despite the vast amount of contributions, 
we are not aware of works that contain the identification of (uk,F(uk),Bk)k≥1 with 
(wk,G(wk),Ck)k≥0 or that exploit the presence of affine equations to prove faster 
convergence. We acknowledge that the use of exact initialization of constant rows 
can be regarded as a special case of the least-change update theory [10], of struc-
tured Broyden methods [4, 18, 26, 32], and of reduced quasi-Newton methods 
[13, 14], but in these and similar contributions it is not specified how the rate of 
convergence depends on the dimension of the underlying spaces, so they yield no 
improvement for the situation at hand.

There is also a considerable amount of numerical studies available for Broyden’s 
method. Since many of the aforementioned works contain numerical experiments 
and the surveys include references to a number of studies, we mention only [33] and 
the monograph [19].

This paper is organized as follows. In Sect.  2 we present and prove the rela-
tionship between (uk,F(uk),Bk)k≥1 and its lower-dimensional counterpart 
(wk,G(wk),Ck)k≥0 , and in Sect. 3 we use it to establish the result on local 2d-step 
q-quadratic convergence. Section 4 is devoted to numerical experiments, and Sect. 5 
provides a summary.

Notation. We use ℕ = {1, 2, 3,…} and ℕ0 ∶= ℕ ∪ {0} . By ‖ ⋅ ‖ we indicate 
the Euclidean norm for vectors, respectively, the spectral norm for matrices. For 
A ∈ ℝ

n×n , Aj indicates the jth row of A, regarded as a row vector, while Ai,j ∈ ℝ 
is an entry of A and Ak is a member of the matrix sequence (Ak) . The linear hull of 
C ⊂ ℝ

n is denoted by ⟨C⟩ and its orthogonal complement is denoted by C⟂.

2  A subspace property of Broyden’s method

The following assumption presents the setting that we are interested in.

Assumption 1 Let n ∈ ℕ , d ∈ {0, 1,… , n} and J ∶= {d + 1, d + 2,… , n} . Let 
F ∶ ℝ

n
→ ℝ

n satisfy Fj(u) = aT
j
u + bj for all j ∈ J , where aj ∈ ℝ

n and bj ∈ ℝ for all 
j ∈ J . Let u0 ∈ ℝ

n and B0 ∈ ℝ
n×n invertible with Bj

0
= aT

j
 for all j ∈ J.

The first lemma describes the behavior of Algorithm BROY on affine compo-
nents of F provided that B0 is initialized with the rows of F′ for these components. It 
appears in [9, Sect. 8.5, Exercise 10], albeit without proof.
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Lemma 1 Let Assumption 1 hold and let (uk) and (Bk) be generated by Algorithm 
BROY with initial guess (u0,B0) . Then we have for all j ∈ J and all k ≥ 1 the identi-
ties Bj

k
= aT

j
 , Fj(u

k) = 0 , aT
j
sk = 0 and Bkaj = B1aj.

Proof Let j ∈ J . From Bj

0
s0 = −Fj(u

0) and F�
j
(u0) = aT

j
= B

j

0
 we deduce

Since B0s
0 = −F(u0) implies y0 − B0s

0 = F(u1) , the Broyden update formula yields 
B
j

1
= B

j

0
= aT

j
 . From Bj

1
s1 = −Fj(u

1) = 0 we infer that aT
j
s1 = 0 . This implies 

Fj(u
2) = Fj(u

1 + s1) = Fj(u
1) + F�

j
(u1)s1 = 0 , hence Bj

2
= B

j

1
= aT

j
 . By induction we 

confirm for all k ≥ 1 that Bj

k
= aT

j
 , Fj(u

k) = 0 , and aT
j
sk = 0 . The update formula 

entails (Bk+1 − Bk)aj = 0 for all k ≥ 1 , whence Bkaj = B1aj for these k.   ◻

Remark 1 Several other quasi-Newton methods do not have the property described 
in Lemma  1. Let us consider the BFGS method as an example. We choose 
F(u) ∶= u (obtained as F = ∇f  for f (u) = 1

2
‖u‖2 ), u0 = (1, 1)T and B0 = diag(1, 2) , 

so that B1
0
= (1, 0) = F�

1
 . It is easy to confirm that u1 = F(u1) = (0,

1

2
)T , but 

B1
1
=

1

15
(17,−4) ≠ B1

0
 and F1(u

2) = −
2

25
≠ 0.

To state the main result of this section we introduce the following notation.

Definition 1 Let Assumption 1 hold. For any matrix B ∈ ℝ
n×n we set

We now establish the fundamental property of Broyden’s method that under 
Assumption  1 the sequence (uk,F(uk),Bk)k≥1 can be identified with a sequence 
(wk,G(wk),Ck)k≥0 that is generated by applying Broyden’s method to a suitable 
mapping G from ℝd into ℝd.

Theorem 1 Let Assumption 1 hold and let (uk) and (Bk) be generated by Algorithm 
BROY with initial guess (u0,B0) . Suppose that each Bk is invertible. Let S ∈ ℝ

n×d be 
a matrix whose columns form an orthonormal basis of ⟨{aj}j∈J⟩⟂ . Define

as well as

Then C0 is invertible and the application of Algorithm BROY to G with initial guess 
(w0,C0) generates sequences (wk) and (Ck) with the following properties:

Fj(u
1) = Fj(u

0 + s0) = Fj(u
0) + F�

j
(u0)s0 = Fj(u

0) + B
j

0
s0 = 0.

B̃ ∶=

⎛
⎜⎜⎝

B1

⋮

Bd

⎞
⎟⎟⎠
∈ ℝ

d×n, and for F we define F̃(u) ∶=

⎛
⎜⎜⎝

F1(u)

⋮

Fd(u)

⎞
⎟⎟⎠
.

G ∶ ℝ
d
→ ℝ

d, G(w) ∶= F̃(u1 + Sw)

C0 ∶= B̃1S ∈ ℝ
d×d and w0 ∶= 0 ∈ ℝ

d.
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(1) Each Ck is invertible and for all k ≥ 1 there hold

(2) The iterates (uk) converge to ū ∈ ℝ
n if and only if there is w̄ ∈ ℝ

d such that (wk) 
converges to w̄ . If (uk) and (wk) converge to ū and w̄ , respectively, then we have 
for all k ≥ 1

Proof Before we prove (1) and (2), let us point out that S is well-defined. This fol-
lows since the invertibility of B0 implies that A ∶= ⟨{aj}j∈J⟩ has dimension n − d , 
hence S ∶= A

⟂ has dimension d.
Proof of (1) We show first that the invertibility of Bk implies the invertibility of 

B̃kS . Let k ≥ 0 and let B̃kSv = 0 for some v ∈ ℝ
d . For w ∶= Sv we have B̃kw = 0 . 

Since w ∈ S = A
⟂ we obtain Bj

k
w = 0 for all j ∈ J , where we used that Bj

k
= aT

j
 for 

all k ≥ 0 by Lemma 1. We infer that Bkw = 0 , hence w = 0 , thus v = 0 , which shows 
that B̃kS is invertible.

We now prove that Algorithm BROY generates sequences (wk) and (Ck) , that each 
Ck is invertible, and that the first and last of the three asserted equalities in (1) hold. To 
proceed by induction, we note that w0 = 0 , so u1 + Sw0 = u1 holds. Also, C0 = B̃1S 
by definition, so C0 is invertible by the first part of the proof. For the induction step 
let k ∈ ℕ and assume that wk−1 and Ck−1 satisfying uk = u1 + Swk−1 and Ck−1 = B̃kS 
have been generated and that Ck−1 is invertible. Since sk ∈ S by Lemma 1 and since 
the columns of S are a basis of S , there is a vector � ∈ ℝ

d such that sk = S� . The 
ith equation of Bks

k = −F(uk) thus reads Bi
k
S� = −Fi(u

1 + Swk−1) for i ∈ {1,… , n} , 
where we used the induction assumption. By definition, the first d of these equa-
tions can be expressed as B̃kS� = −G(wk−1) . Since Ck−1 = B̃kS by induction assump-
tion and Ck−1 is regular, it follows that the system Ck−1s

k−1
w

= −G(wk−1) in line 3 of 
Algorithm BROY has the unique solution sk−1

w
= � , hence wk = wk−1 + sk−1

w
 exists, 

and we obtain sk = S� = Ssk−1
w

= S(wk − wk−1) . Adding uk and using the induction 
assumption uk = u1 + Swk−1 this yields uk+1 = u1 + Swk , which is the first equality in 
(1). We observe that

where the last equality follows since the columns of S are orthonormal. To conclude 
the induction it is left to demonstrate the third equality in (1) and the invertibility of 
Ck . Invoking STS = I ∈ ℝ

d×d , Ck−1 = B̃kS , (3) and Ssk−1
w

= sk we infer that

(1)uk = u1 + Swk−1, F̃(uk) = G(wk−1) and Ck−1 = B̃kS.

(2)ū = u1 + Sw̄ and ‖uk − ū‖ = ‖wk−1 − w̄‖.

(3)‖sk‖ = ‖S�‖ = ‖Ssk−1
w

‖ = ‖sk−1
w

‖,

(4)
Ck = Ck−1 +

G(wk) − G(wk−1) − Ck−1s
k−1
w

‖sk−1
w

‖2 (sk−1
w

)TSTS

= B̃kS +
F̃(uk+1) − F̃(uk) − B̃ks

k

‖sk‖2 (sk)TS,
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where we used the first equality from (1) to rewrite the argument of F̃ as uk+1 , 
respectively, uk . Since F(uk) ≠ 0 implies sk ≠ 0 , we conclude from (3) that Ck exists 
and from (4) that it satisfies

as desired. By the first part of the proof this representation of Ck also implies that Ck 
is invertible, which concludes the induction. The remaining second equality of (1) 
follows from the first and the definition of G.

Proof of (2) All claims follow readily by use of uk = u1 + Swk−1.
  ◻

Remark 2 

(1) To illustrate Theorem 1, let us consider the special case that S is given by the 
first d columns of the n × n identity matrix. In the notation of the previous proof 
this corresponds to S = ℝ

n
d
∶= {(y1,… , yn)

T ∈ ℝ
n ∶ yj = 0 ∀j > d} . In this set-

ting we find that Ci,j

k−1
= B

i,j

k
 for i, j ∈ {1,… , d} , i.e., Ck−1 is the d × d submatrix 

of Bk that results from deleting the last n − d rows and columns of Bk . Due to 
(sk)k≥1 ⊂ ℝ

n
d
 and (F(uk))k≥1 ⊂ ℝ

n
d
 the Broyden update affects only the entries of 

this submatrix of Bk for k ≥ 1 . Similarly, for k ≥ 1 only the first d entries of uk , 
respectively, of F(uk) change, and wk−1 , respectively, G(wk−1) contain exactly 
these entries.

(2) Theorem 1 (1) shows that once u1 is computed, all further iterates (uk,Bk,Fk) , 
k ≥ 2 , can be obtained by an application of Broyden’s method to G with initial 
guess (w0,C0) . Using G instead of F may reduce the numerical costs, for instance 
because the linear systems that have to be solved involve the d × d matrix Ck 
rather than the n × n matrix Bk . Moreover, if F is used it is possible that round-
ing errors destroy the properties (sk)k≥1 ⊂ S and (F(uk))k≥1 ⊂ ℝ

n
d
 , which cannot 

happen if G is used instead. The properties (sk)k≥1 ⊂ S and (F(uk))k≥1 ⊂ ℝ
n
d
 are 

crucial to obtain the improved convergence result of this work, both in theory 
and practice; loosing them slows down the convergence.

3  Improved convergence for mixed linear–nonlinear systems

In this section we show that Gay’s result on local 2n-step q-quadratic convergence of 
Broyden’s method can be improved if F has some affine component functions. This 
requires the notion of multi-step q-quadratic converge.

Definition 2 Let (uk) ⊂ ℝ
n with limk→∞ uk = ū for some ū . Then (uk) is called 

m-step q-quadratically convergent, m ∈ ℕ , iff there is a constant C > 0 such that

is satisfied.

Ck = B̃kS +
(
B̃k+1 − B̃k

)
S = B̃k+1S,

‖uk+m − ū‖ ≤ C‖uk − ū‖2 ∀k ≥ 0
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Remark 3 For m = 1 this is q-quadratic convergence in the usual sense.

Gay’s theorem is based on the following assumption.

Assumption 2 Let F ∶ ℝ
n
→ ℝ

n be differentiable in a neighborhood of some ū 
with F(ū) = 0 . Let there be L > 0 such that ‖F�(u) − F�(ū)‖ ≤ L‖u − ū‖ is satisfied 
for all u in that neighborhood. Let F�(ū) be invertible.

Gay’s theorem on local 2n-step q-quadratic convergence, cf.  [11, Theo-
rem 3.1], reads as follows.

Theorem 2 Let Assumption 2 hold. Then there exist 𝛿, 𝜀 > 0 and C > 0 such that 
for all (u0,B0) with ‖u0 − ū‖ ≤ 𝛿 and ‖B0 − F�(ū)‖ ≤ 𝜀 , Algorithm BROY either ter-
minates with output u∗ = ū or it generates a sequence (uk) that converges to ū and 
satisfies

Remark 4 

(1) It is well known that under the assumptions of Theorem 2, (uk) is q-superlinearly 
convergent and the sequences (‖Bk‖) and (‖B−1

k
‖) are bounded.

(2) While it is not required by Definition 2, we note that the constant C in Theorem 2 
is independent of (u0,B0).

The following result improves Theorem 2 in the presence of linear equations.

Theorem 3 Let Assumption 2 hold. Let d ∈ {0, 1,… , n} , J ∶= {d + 1, d + 2,… , n} 
and suppose that F satisfies Fj(u) = aT

j
u + bj for all j ∈ J , where aj ∈ ℝ

n and bj ∈ ℝ 
for all j ∈ J . Then there exist 𝛿, 𝜀 > 0 and C > 0 such that for all (u0,B0) with 
‖u0 − ū‖ ≤ 𝛿 , ‖B0 − F�(ū)‖ ≤ 𝜀 and Bj

0
= aT

j
 for all j ∈ J , Algorithm BROY either 

terminates with output u∗ = ū or it generates a sequence (uk) that converges to ū and 
satisfies

Proof If Algorithm BROY terminates with u∗ = ū , then there is nothing to show, 
so we can assume that this termination does not occur. Since the assumptions of 
Theorem  2 are satisfied, it follows that Algorithm BROY successfully generates 
(uk) and (Bk) and that (uk) converges to ū . Since each Bk is invertible, we can apply 
Theorem 1. In particular, this endows us with a matrix S, a mapping G, sequences 
(wk) and (Ck) , and a point w̄ , all satisfying the properties stated in that theorem. We 
observe that G(w̄) = �F(u1 + Sw̄) = �F(ū) = 0 by the definition of G and (2). Using 
again that u1 + Sw̄ = ū , we infer that

‖uk+2n − ū‖ ≤ C‖uk − ū‖2 ∀k ≥ 0.

(5)‖uk+2d − ū‖ ≤ C‖uk − ū‖2 ∀k ≥ 1.
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for all w sufficiently close to w̄ . Thus, Theorem 2 is applicable to G if G�(w̄) = �F�(ū)S 
is invertible and if the norms ‖w0 − w̄‖ and ‖C0 − G�(w̄)‖ are sufficiently small. Once 
these properties are established, Theorem 2 yields

from which (5) follows by virtue of the second identity in (2). It remains to show the 
aforementioned properties. By (3.5) in Gay’s proof of [11, Theorem 3.1] (or, alter-
natively, by the q-linear convergence of Broyden’s method) we can assume without 
loss of generality that ‖u1 − ū‖ ≤ ‖u0 − ū‖ . Therefore, it is evident that 
‖w0 − w̄‖ = ‖u1 − ū‖ becomes sufficiently small if � is small enough. Using that 
B
j

1
= aT

j
= F�

j
(ū) for all j ∈ J by Lemma 1, we deduce

Thus, it follows from (3.6) in the proof of [11, Theorem 3.1] (or, alternatively, from 
the well-known bounded deterioration principle) that ‖C0 − G�(w̄)‖ ≤ 2𝜀 . The 
invertibility of F�(ū) implies the invertibility of G�(w̄) = �F�(ū)S verbatim as in the 
first part of the proof of Theorem 1.   ◻

Remark 5 If (uk) satisfies (5) for some C > 0 , then it also satisfies Definition 2 for 
m = 2d and the constant Ĉ ∶= max{C, ‖u2d − ū‖∕‖u0 − ū‖2} , so (uk) is indeed 
2d-step q-quadratically convergent. Note, however, that while the constant C in The-
orem 3 is independent of (u0,B0) , this may no longer be true for Ĉ.

Theorem  3 yields the following bound for the r-order of convergence [30, 
Sect. 9.2] of Broyden’s method.

Corollary 1 Any sequence (uk) that satisfies (5) and converges to ū admits an 
r-order of convergence of at least p0 ∶=

2d
√
2 if d ≥ 1.

Proof Without loss of generality we can assume that the constant C appearing in 
(5) satisfies C ≥ 1 . Let D ∶= 2d . Since (uk) converges to ū , there is T ∈ ℕ such that 
‖uk − ū‖ < 1 for all k ≥ T  . By induction it follows from (5) that

for all t ∈ {T , T + 1,… , T + D − 1} and all j ∈ ℕ0 . As pt+jD
0

= 2
t

D
+j and C ≥ 1 , this 

readily yields

for all t and j as before. Setting � ∶= maxT≤t≤T+D−1 �t it follows that

‖G�(w) − G�(w̄)‖ = ‖�F�(u1 + Sw) − �F�(u1 + Sw̄)‖
= ‖F�(u1 + Sw) − F�(u1 + Sw̄)‖ ≤ L‖S(w − w̄)‖ = L‖w − w̄‖

‖wk+2d − w̄‖ ≤ C‖wk − w̄‖2 ∀k ≥ 0,

‖C0 − G�(w̄)‖ = ‖�B1S −
�F�(ū)S‖ = ‖�B1 −

�F�(ū)‖ = ‖B1 − F�(ū)‖.

‖ut+jD − ū‖ ≤ C(2j−1)
⋅ ‖ut − ū‖(2j)

‖ut+jD − ū‖
1

p
t+jD
0 ≤ ‖ut − ū‖

1

2
t
D =∶ 𝛼t < 1
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for all k ≥ T  , which proves the claim.   ◻

Remark 6 Corollary  1 shows that in the setting of Theorem  3 the r-order of con-
vergence of Broyden’s method is bounded from below by 21∕(2d) for d ≥ 1 . In addi-
tion, the numerical experiments in Sect. 4 suggest that for d > 1 , Broyden’s method 
may be (2d − 1)-step q-quadratically convergent, which would imply that the r-order 
is no smaller than 21∕(2d−1) . While the exact r-order of Broyden’s method remains 
unknown, cf. also [16, pp. 308–310], we mention that the exact r-order is known for 
the adjoint Broyden method, cf. [17].

4  Numerical experiments

We provide numerical results to verify the 2d-step q-quadratic convergence 
established in Theorem  3. We also assess the q-order of convergence of 
Broyden’s method, which has not been done before. We will see that the numeri-
cal results are consistent with the following conjectures C1 and C2:

Here, as before, we have supposed that n − d of n equations are linear. Both con-
jectures are new even for d = n and, in fact, the existence of a nontrivial q-order for 
Broyden’s method has not been proposed before.

In Sect. 4.1 we present the design of the experiments, Sect. 4.2 contains the 
examples and results.

4.1  Design of the experiments

4.1.1  Implementation and accuracy

The experiments are carried out in Matlab 2017a using its variable precision 
arithmetic (vpa) with a precision of 1000 digits. We replace the termination 
criterion F(uk) = 0 in Algorithm BROY by ‖F(uk)‖ ≤ 10−320 . The rather small 
residual tolerance of 10−320 ensures that the number of iterations is large enough 
to meaningfully assess asymptotic properties such as the q-order of conver-
gence. Of course, the small residual tolerance necessitates the usage of suffi-
ciently many digits. By k̄ ≥ 0 we denote the final value of k in Algorithm BROY.

‖uk − ū‖
1

pk
0 ≤ 𝛼 < 1

C1 ∶ Broyden’s method has q-order at least 21∕(2d) for d ≥ 1.

C2 ∶ Broyden’s method is (2d − 1)-step q-quadratically convergent for d ≥ 2.
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4.1.2  Known solution and random initialization

All examples have an explicitly available solution ū and the initial guesses are such 
that convergence to ū takes place in all runs. In all examples F�(ū) is invertible. The 
initial point u0 is generated using Matlab’s function rand, which produces uni-
formly distributed random numbers, and satisfies u0 ∈ ū + [−10−3, 10−3]n . For B0 
we choose B0 = F�(u0) + �̂�‖F�(u0)‖R , where �̂� ∈ {0, 10−30, 10−10, 10−3} and where 
R ∈ ℝ

n×n is a random matrix whose entries belong to [−1, 1] , but that has a par-
ticular structure in which many entries are zero. Specifically, we use two schemes 
for R: Either R affects only those rows of B0 that correspond to nonlinear compo-
nents of F, in which case Rj = 0 for all j ∈ J (cf. Assumption 1 for notation), or it 
affects only those rows that correspond to affine components, in which case Rj = 0 
for all j ∈ {1,… , d} . In the first case we want to demonstrate that the perturbation 
has essentially no effect, so we allow R to be nonzero in the entire rows, i.e., for 
each j ∈ {1,… , d} the row Rj is randomly drawn from [−1, 1]n . In the second case 
the aim is to show that even minimal perturbations significantly decrease the order 
of convergence, so we modify only one entry of B0 per row, i.e., for each j ∈ J all 
entries of Rj except one are zero. The nonzero entry is taken to be a random number 
in [−1, 1] and its position within the row is random, too. We denote �̂� = �̂�n (nonlin-
ear) in the first case and �̂� = �̂�l (linear) in the second.

4.1.3  Quantities of interest

Let (uk) be generated by Algorithm BROY. For k ≥ 0 we define

where m ∈ {1,… , 2n} will be specified for each example. Whenever any of these 
quantities is undefined we set it to −1 ; e.g., �m

k
∶= −1 for all k ∈ {0,… ,m − 1}.

4.1.4  Single runs and cumulative runs

We perform single runs and cumulative runs. For single runs we display the quanti-
ties of interest during the course of Algorithm BROY. For cumulative runs we per-
form 10,000 single runs with varying initial data as described in Sect.  4.1.2. For 
each of the 10,000 single runs we compute

where j ∈ I ∶= {1,… , 10000} indicates the respective single run and we always use 
the value k0(j) ∶= ⌊0.75k̄(j)⌋ . As outcome of a cumulative run we display

Fk ∶= F(uk), 𝜌m
k
∶=

log(‖uk − ū‖)
log(‖uk−m − ū‖) and Cm

k
∶=

‖uk − ū‖
‖uk−m − ū‖2 ,

�̂�j
m
∶= min

k0(j)≤k≤k̄(j)
𝜌m
k

and Ĉj
m
∶= max

k0(j)≤k≤k̄(j)
Cm
k
,

𝜌−
m
∶= min

j∈I
�̂�j
m
, 𝜌+

m
∶= max

j∈I
�̂�j
m
,
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for several values of m. In case of m-step q-quadratic convergence we expect (Ĉj
m)j 

to be bounded from above (due to the uniformity of C discussed in Remarks 4 and 
5) and (�̂�jm)j to be bounded from below by (approximately) 2, and this should be 
reflected in C+

m
 and �−

m
 , respectively. Correspondingly, C−

m+1
 , C+

m+1
 , respectively, C−

m−1
 , 

C+
m−1

 should be indicative of null sequences, respectively, unbounded growth, while 
�−
m+1

 , �+
m+1

 , respectively, �−
m−1

 , �+
m−1

 should be clearly above, respectively, below 2. If 
lim infk→∞ �1

k
≥ � , then the q-order of (uk) is no smaller than � . The r-order is at least 

as large as the q-order, cf. [30, 9.3.3.]. We view �−
1
 as lower bound for the q- and 

r-order of Algorithm BROY and we expect the actual q-order to belong to the inter-
val [�−

1
, �+

1
] , while the r-order may be larger.

4.2  Numerical examples

4.2.1  Example 1 a

The first example is [9, Example 8.2.6]. Let

The mapping F has the root ū = (1, 1)T . Since F does not have affine component 
functions, Theorem 3 and Corollary 1 assert 4-step q-quadratic convergence and an 
r-order no smaller than 21∕4 ≈ 1.189 . Table 1 displays the numerical outcome of a 

C−
m
∶= min

j∈I
Ĉj
m
, C+

m
∶= max

j∈I
Ĉj
m

F ∶ ℝ
2
→ ℝ

2, F(u) =

(
u2
1
+ u2

2
− 2

eu1−1 + u3
2
− 2

)
.

Table 1  Example 1 a: Single run with �̂� = 0

k ||F
k
|| �1

k
�4
k

�3
k

�2
k

C
4

k
C
3

k
C
2

k

 0 4.4e−3 −1 −1 −1 −1 −1 −1 −1
 1 2.4e−6 2.08 −1 −1 −1 −1 −1 −1
 2 2.4e−9 1.44 −1 −1 3.01 −1 −1 1.1e−3
 3 6.4e−13 1.38 −1 4.15 1.99 −1 4.6e−7 1.2
 4 2.2e−16 1.28 5.32 2.55 1.77 1.6e−10 4.1e−4 111
 5 2.2e−22 1.38 3.53 2.44 1.77 4.1e−10 1.1e−4 600
 6 3.4e−31 1.41 3.44 2.49 1.94 1.7e−13 9.2e−7 7.6
 7 2.7e−41 1.33 3.32 2.59 1.87 7.2e−17 6.0e−10 600
 8 6.0e−52 1.26 3.27 2.36 1.68 1.3e−20 1.4e−8 5.7e9
 9 2.7e−67 1.30 3.07 2.18 1.64 6.0e−24 2.5e−6 4.2e14
10 6.2e−91 1.35 2.96 2.22 1.76 5.9e−30 9.8e−10 1.9e12
11 5.8e−120 1.32 2.94 2.33 1.79 9.1e−39 1.8e−17 9.2e13
12 2.3e−151 1.26 2.94 2.26 1.67 7.1e−49 3.6e−18 6.5e29
13 1.0e−192 1.27 2.88 2.13 1.61 1.6e−59 2.9e−12 3.4e46
14 2.5e−255 1.33 2.82 2.13 1.69 7.1e−75 8.2e−17 5.3e46
15 5.0e−337 1.32 2.82 2.23 1.75 1.7e−98 1.1e−35 5.5e47
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single run with �̂� = 0 , while Table 2 shows the data from the cumulative runs with 
�̂� = 0 and �̂�n = 10−3 . The data suggest that the iterates converge 3-step q-quadrati-
cally rather than 4-step, which fits with conjecture C2. The worst-case estimate for 
the q- and r-order is �−

1
≈ 1.20 , which confirms the proven lower bound 21∕4 for the 

r-order and is in line with conjecture C1 that 21∕4 may also be a lower bound for the 
q-order. Comparing the first and second row in Table 2 shows that perturbing the 
rows of B0 that correspond to nonlinear components of F has essentially no effect 
on the rate of convergence. In Example 1 b we will see that this is very different 
if rows are perturbed that correspond to affine components. The iteration numbers 
range from 14 to 16.

4.2.2  Example 1 b

We linearize the first component function of F from Example 1 a) and obtain

with unchanged root ū = (1, 1)T . From Theorem 3 we expect 2-step q-quadratic con-
vergence if B1

0
= (2 2) , resulting in a lower bound of 1.41 for the r-order. Table 3 

shows a single run with �̂� = 0 , while Table 4 provides the data from the cumulative 
runs conducted with �̂� = 0 , �̂�n = 10−3 and �̂�l ∈ {10−30, 10−10, 10−3} . The results are 
very clear: For �̂� = 0 and �̂�n = 10−3 the fact that only one component function of 

F ∶ ℝ
2
→ ℝ

2, F(u) =

(
2u1 + 2u2 − 4

eu1−1 + u3
2
− 2

)
,

Table 2  Example 1 a: Cumulative runs with �̂� = 0 (top) and �̂�
n
= 10−3 (bottom)

�−
1

�+
1

�−
4

�+
4

�−
3

�+
3

�−
2

�+
2

C
−
4

C
+
4

C
−
3

C
+
3

C
−
2

C
+
2

1.20 1.29 2.76 2.90 1.99 2.21 1.50 1.69 1e−50 2e−36 3e−20 27.0 2e44 9e106
1.20 1.30 2.73 2.92 1.99 2.22 1.50 1.69 1e−53 4e−31 3e−20 71.8 9e43 3e111

Table 3  Example 1 b: Single 
run with �̂� = 0

k ||F
k
|| �3

k
�2
k

�1
k

C
3

k
C
2

k
C
1

k

 0 5.2e−3 −1 −1 −1 −1 −1 −1
 1 3.0e−6 −1 −1 1.97 −1 −1 1.2
 2 7.0e−9 −1 2.88 1.46 −1 2.9e−3 1.1e3
 3 1.8e−14 4.81 2.45 1.67 7.6e−9 2.9e−3 533.0
 4 1.1e−22 3.9 2.66 1.59 1.7e−11 3.3e−6 4.7e5
 5 1.8e−36 4.32 2.58 1.62 5.2e−20 7.5e−9 2.0e8
 6 1.7e−58 4.17 2.62 1.61 7.4e−31 2.0e−14 7.7e13
 7 2.7e−94 4.24 2.61 1.62 3.1e−50 1.2e−22 1.3e22
 8 4.2e−152 4.22 2.62 1.62 1.8e−80 1.9e−36 7.9e35
 9 9.9e−246 4.23 2.62 1.62 4.6e−130 1.9e−58 8.1e57
10 3.6e−397 4.23 2.62 1.62 6.9e−210 3.0e−94 5.2e93
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F is not affine induces a reduction of Algorithm BROY to one dimension, so its 
convergence rate is the same as that of the one-dimensional secant method, i.e., con-
vergence with exact q- and r-order 1+

√
5

2
≈ 1.618 , cf. [20, 34]. This implies that the 

error decays faster than 2-step q-quadratically, which can also be seen from C−
2
 and 

C+
2
 . In contrast, even a deviation of �̂�l = 10−30 in only one entry of B1

0
= (2 2) slows 

down the convergence to 3-step q-quadratic, which is the same as in the fully nonlin-
ear Example 1 a, cf. Table 2. While this fits well with conjecture C2, we notice that 
for �̂�l = 10−30 the worst-case estimate �−

1
= 1.16 of the q-order is somewhat smaller 

than our conjecture C1 of 21∕4 ≈ 1.189 ; on the other hand, [�−
1
, �+

1
] = [1.16, 1.24] 

comfortably includes 1.189. The iteration numbers vary between 9 and 10 if 
B1
0
= (2 2) and between 10 and 16 otherwise.

4.2.3  Example 1 c

We modify Example 1 a by inserting an additional equation. Let

The mapping F has the root ū = (1, 1, 1)T . Theorem  3 implies 4-step q-quadratic 
convergence for �̂� = 0 and �̂�n = 10−3 , yielding an r-order of at least 1.189, whereas 
conjectures C1 and C2 predict that the latter is also the q-order and that 3 steps are 
sufficient for q-quadratic convergence. Table 5 shows a single run with �̂� = 0 , while 
Tables 6 and 7 provide the data from the cumulative runs conducted with �̂� = 0 and 
�̂�n = 10−3 , respectively, �̂�l ∈ {10−30, 10−10, 10−3} . The results in Table 6 are similar 
to those from Example 1  a in Table 2 and confirm the 3-step q-quadratic conver-
gence and the q-order of 1.19. Table 7 shows that perturbations in any entry of the 
third row of B0 have a strong detrimental effect as they induce a rate between 4-step 
and 5-step q-quadratic convergence. This convergence is, however, consistent with 
conjecture C2 for d = n , and so is the worst-case estimate �−

1
= 1.13 with conjecture 

C1. The iteration numbers range from 13 to 16 for �̂� = 0 and �̂�n = 10−3 , respec-
tively, from 15 to 20 otherwise.

F ∶ ℝ
3
→ ℝ

3, F(u) =

⎛⎜⎜⎝

u2
1
+ u2

2
− 2

eu1−1 + u3
2
− 2

u1 + u2 − 2u3

⎞⎟⎟⎠
.

Table 4  Example 1 b: Cumulative runs with �̂� = 0 (top), �̂�
n
= 10−3 (second to top), �̂�

l
= 10−3 (third to 

top), �̂�
l
= 10−10 (second to last), �̂�

l
= 10−30 (last)

�−
3

�+
3

�−
2

�+
2

�−
1

�+
1

C
−
3

C
+
3

C
−
2

C
+
2

C
−
1

C
+
1

4.18 4.23 2.60 2.62 1.61 1.62 2e−65 4e−40 1e−29 2e−18 4e75 2e122
4.11 4.23 2.59 2.62 1.61 1.62 2e−65 1e−39 1e−29 5e−18 4e75 2e122
1.99 2.21 1.51 1.69 1.20 1.30 5e−20 23.1 2e43 2e102 1e99 3e246
2.04 2.25 1.53 1.71 1.21 1.30 2e−25 4e−5 2e40 2e81 1e99 2e223
2.00 2.27 1.37 1.63 1.16 1.24 4e−29 3.05 1e52 1e98 1e99 8e217
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4.2.4  Example 2

Let F ∶ ℝ
4
→ ℝ

4 be given by

F(u) =

⎛⎜⎜⎜⎝

sin(u1) cos(u2) + u3
3
− u2

4

eu2+u3 − (u4 + 1)2

10u1 + u2 − u3 + 0.1u4
2u1 − u2 + 5u3 − 3u4

⎞⎟⎟⎟⎠
.

Table 5  Example 1 c: Single run with �̂� = 0

k ||F
k
|| �1

k
�4
k

�3
k

�2
k

C
4

k
C
3

k
C
2

k

 0 5.1e−3 −1 −1 −1 −1 −1 −1 −1
 1 2.4e−6 2.09 −1 −1 −1 −1 −1 −1
 2 3.5e−9 1.44 −1 −1 3.01 −1 −1 1.2e−3
 3 9.2e−13 1.43 −1 4.31 2.06 −1 2.1e−7 0.41
 4 4.4e−16 1.27 5.45 2.61 1.81 1.0e−10 2.0e−4 45.0
 5 2.6e−22 1.39 3.64 2.52 1.77 1.2e−10 2.7e−5 855.0
 6 4.5e−31 1.40 3.53 2.47 1.95 4.5e−14 1.4e−6 6.2
 7 1.4e−43 1.41 3.47 2.74 1.97 4.6e−19 2.0e−12 5.6
 8 1.8e−56 1.30 3.56 2.55 1.83 2.4e−25 6.9e−13 2.4e5
 9 7.0e−72 1.27 3.25 2.33 1.65 2.7e−28 9.4e−11 9.3e14
10 1.2e−95 1.33 3.10 2.20 1.70 1.6e−34 1.6e−9 1.1e17
11 2.1e−129 1.35 2.98 2.30 1.80 2.8e−43 1.8e−17 1.2e14
12 1.0e−167 1.30 2.98 2.34 1.76 8.8e−56 5.6e−25 1.9e23
13 1.9e−211 1.26 2.95 2.21 1.64 1.1e−68 3.6e−21 1.2e47
14 2.3e−274 1.30 2.87 2.12 1.64 4.3e−84 1.4e−16 6.2e60
15 1.2e−365 1.33 2.83 2.18 1.73 7.4e−108 3.2e−31 8.5e56

Table 6  Example 1 c: Cumulative runs with �̂� = 0 (top) and �̂�
n
= 10−3 (bottom)

�−
1

�+
1

�−
4

�+
4

�−
3

�+
3

�−
2

�+
2

C
−
4

C
+
4

C
−
3

C
+
3

C
−
2

C
+
2

1.20 1.29 2.70 2.96 1.99 2.21 1.51 1.68 2e−51 2e−34 6e−21 24.1 7e44 4e104
1.20 1.30 2.76 2.93 1.99 2.23 1.50 1.69 1e−51 5e−31 7e−20 20.5 4e41 9e110

Table 7  Example 1 c: Cumulative runs with �̂�
l
= 10−3∕10−10∕10−30 (top/middle/bottom)

�−
1

�+
1

�−
5

�+
5

�−
4

�+
4

�−
3

�+
3

C
−
5

C
+
5

C
−
4

C
+
4

C
−
3

C
+
3

1.13 1.20 2.25 2.57 1.84 2.10 1.54 1.74 8e−43 5e−17 3e−12 4e24 8e39 3e103
1.14 1.20 2.29 2.66 1.87 2.17 1.56 1.76 9e−50 2e−24 1e−16 1e24 3e37 2e97
1.13 1.20 2.43 2.84 1.93 2.20 1.57 1.82 2e−82 4e−54 2e−31 2e11 2e31 4e79
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The mapping F has the root ū = 0 . The developed theory guarantees 4-step q-quad-
ratic convergence and an r-order no smaller than 1.189 provided B0 is chosen appro-
priately. Table 8 shows a single run with �̂� = 0 , while Tables 9 and 10 provide the 
data from the cumulative runs conducted with �̂� = 0 and �̂�n = 10−3 , respectively, 
with �̂�l ∈ {10−30, 10−10, 10−3} . Table 9 displays 3-step q-quadratic convergence and 
�−
1
≥ 1.19 , both of which are in line with conjectures C1 and C2. Table  10 indi-

cates that if B0 is perturbed in the third and fourth row, then the convergence lies 
somewhere between 5- and 6-step q-quadratic. The values �−

1
= 1.08∕1.09∕1.1 in 

Table 10 fit with the prediction 21∕8 ≈ 1.091 obtained from conjecture C1 for d = n . 

Table 8  Example 2: Single run with �̂� = 0

k ||F
k
|| �1

k
�4
k

�3
k

�2
k

C
4

k
C
3

k
C
2

k

 0 0.01 −1 −1 −1 −1 −1 −1 −1
 1 9.3e−7 1.61 −1 −1 −1 −1 −1 −1
 2 3.0e−8 1.33 −1 −1 2.13 −1 −1 0.43
 3 1.4e−11 1.57 −1 3.35 2.08 −1 1.6e−4 0.42
 4 1.6e−14 1.31 4.37 2.72 2.05 2.1e−7 5.5e−4 0.49
 5 2.2e−17 1.23 3.35 2.53 1.61 7.8e−7 6.9e−4 5.1e3
 6 2.8e−22 1.32 3.34 2.12 1.63 9.0e−9 0.066 3.8e4
 7 1.1e−30 1.42 3.01 2.31 1.88 2.7e−10 1.5e−4 77
 8 4.1e−39 1.30 3.00 2.43 1.84 5.5e−13 2.8e−7 1.6e3
 9 1.2e−47 1.23 2.99 2.27 1.60 8.2e−16 4.8e−6 3.0e11
10 5.2e−61 1.29 2.93 2.07 1.59 2.1e−19 0.013 9.9e14
11 1.1e−82 1.37 2.83 2.18 1.77 2.7e−24 2.1e−7 2.4e10
12 2.2e−108 1.32 2.88 2.34 1.81 4.2e−33 4.8e−16 2.6e11
13 6.9e−134 1.24 2.90 2.24 1.64 1.5e−41 8.2e−15 1.9e29
14 9.7e−169 1.26 2.83 2.07 1.57 1.1e−49 2.6e−6 6.3e45
15 1.8e−225 1.34 2.77 2.10 1.70 4.9e−63 1.2e−11 1.2e40
16 1.6e−298 1.33 2.79 2.25 1.78 1.0e−84 1.0e−33 5.4e36
17 3.2e−375 1.26 2.83 2.24 1.67 2.1e−110 1.1e−40 3.0e73

Table 9  Example 2: Cumulative runs with �̂� = 0 (top) and �̂�
n
= 10−3 (bottom)

�−
1

�+
1

�−
4

�+
4

�−
3

�+
3

�−
2

�+
2

C
−
4

C
+
4

C
−
3

C
+
3

C
−
2

C
+
2

1.20 1.29 2.66 2.88 1.97 2.19 1.50 1.68 3e−48 6e−24 3e−18 314.0 3e44 9e110
1.19 1.29 2.64 2.90 1.94 2.19 1.47 1.68 3e−38 7e−24 1e−14 4e4 2e45 8e111

Table 10  Example 2: Cumulative runs with �̂�
l
= 10−3∕10−10∕10−30 (top/middle/bottom)

�−
1

�+
1

�−
4

�+
4

�−
3

�+
3

�−
2

�+
2

C
−
4

C
+
4

C
−
3

C
+
3

C
−
2

C
+
2

1.08 1.19 2.07 3.02 1.78 2.49 1.55 2.07 3e−49 3e−7 7e−33 8e42 5e−9 6e100
1.09 1.19 2.19 3.15 1.83 2.60 1.55 2.11 7e−68 3e−15 2e−46 3e31 1e−11 5e98
1.10 1.18 2.34 3.59 1.93 2.86 1.61 2.21 4.e−101 4e−54 8e−75 5e13 1e−32 4e81
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The iteration numbers range from 14 to 19 for �̂� = 0 and �̂�n = 10−3 , respectively, 
from 17 to 26 otherwise.

4.2.5  Example 3

Let F ∶ ℝ
10

→ ℝ
10 be given by

The mapping F has the root ū = 0 . We expect no more than 6 steps for q-quadratic 
convergence if �̂� = 0 and �̂�n = 10−3 as well as an r-order no smaller than 1.122. 
Table 11 displays a single run with �̂� = 0 and Table 12 provides the data from the 
cumulative runs conducted with �̂� = 0 and �̂�n = 10−3 . Five steps are sufficient for 
quadratic convergence and �−

1
= 1.13 is compatible with the conjectured lower 

bound 1.122 for the q-order. Table 13 provides the data for �̂�l ∈ {10−30, 10−10, 10−3} , 
but in contrast to previous experiments we have only perturbed three of the seven 
rows of B0 that correspond to affine components of F, so Theorem 3 and Corollary 1 
ensure 12-step q-quadratic convergence and an r-order of at least 1.06, while C1 
and C2 predict 11 steps and a q-order of 1.06. Table 13 confirms the q-order and 
indicates that 6 to 8 steps are enough for quadratic convergence depending on the 
magnitude of the perturbation. The iteration numbers range from 17 to 23 for �̂� = 0 
and �̂�n = 10−3 , respectively, from 19 to 33 otherwise.

4.2.6  Example 4

As final example we consider F ∶ ℝ
6
→ ℝ

6 given by

where A ∈ ℝ
4×6 is a random matrix with entries in [−1, 1] that is changed after each 

of the 10,000 runs of the cumulative run. The root of F is ū = 0 and A is chosen such 
that F�(ū) is invertible. Theorem 3 ensures 4-step q-quadratic convergence for �̂� = 0 
and this is clearly confirmed in Table 14, that actually suggests 3-step q-quadratic 
convergence. In accordance with conjecture C1 the worst-case estimate �−

1
= 1.20 of 

the q-order is slightly larger than 21∕4 . The iteration numbers lie between 14 and 16. 

F(u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1 − u2
3
+ u5u6u7 − (u8 + 1)(u9 − 1) − 1

u1 + 0.5 ln
�
1 + u2

9

�
− 2 exp(u10) + 2

u2 + 0.5 ln
�
1 + u2

8

�
− exp(u10) + 1

u1 + u2 + 2u3 + u4 + u5 + u6 − 3u7 − 2u8 + u10
u2 − 4u3 + 3u5 − u7 − u10
−2u3 + 0.1u7 + 0.3u9

u1 + u3 − 10u2 − 5u4 − u6 − u8
2u1 + 2u3 + 2u5 + 2u7 + u9

u6 − u7 + 2u9
2u3 + 2u8 + 2u9 + u10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

F(u) =

⎛⎜⎜⎝

u1u2u3u4 + (u5 − 1)(u6 + 1) + 1

e
∑6

j=1
uj − 1

Au

⎞⎟⎟⎠
,
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Table 11  Example 3: Single run with �̂� = 0

k ||F
k
|| �1

k
�5
k

�4
k

�3
k

C
5

k
C
4

k
C
3

k

 0 4.6e−3 −1 −1 −1 −1 −1 −1 −1
 1 6.0e−7 2.28 −1 −1 −1 −1 −1 −1
 2 2.5e−11 1.75 −1 −1 −1 −1 −1 −1
 3 7.7e−15 1.34 −1 −1 5.36 −1 −1 1.1e−9
 4 3.5e−18 1.21 −1 6.48 2.85 −1 1.1e−12 7.1e−6
 5 9.1e−22 1.20 7.75 3.41 1.94 4.5e−16 2.9e−9 4.2
 6 5.3e−26 1.20 4.10 2.34 1.74 1.7e−13 2.4e−4 4.9e3
 7 7.6e−36 1.39 3.26 2.43 2.01 3.5e−14 7.1e−7 0.67
 8 1.3e−46 1.31 3.18 2.63 2.20 1.3e−17 1.2e−11 7.2e−5
 9 2.6e−56 1.21 3.19 2.67 2.22 2.3e−21 1.4e−14 4.1e−6
10 4.0e−66 1.18 3.14 2.61 1.87 2.2e−24 6.4e−16 3.1e4
11 6.4e−77 1.17 3.04 2.18 1.67 1.0e−26 4.9e−7 1.6e15
12 5.9e−91 1.19 2.59 1.97 1.63 4.5e−21 14.0 3.9e20
13 7.1e−115 1.27 2.50 2.06 1.75 1.7e−23 4.7e−4 1.9e16
14 4.9e−145 1.26 2.61 2.21 1.90 3.3e−34 1.3e−14 5.3e7
15 4.5e−175 1.21 2.68 2.29 1.94 1.2e−44 4.9e−23 5.8e5
16 1.3e−205 1.18 2.70 2.28 1.80 1.4e−53 1.7e−25 1.2e23
17 3.7e−237 1.15 2.63 2.07 1.64 4.8e−57 3.3e−9 6.7e51
18 5.1e−276 1.16 2.42 1.91 1.58 4.5e−48 9.3e12 1.1e73
19 6.8e−338 1.23 2.34 1.94 1.65 1.2e−49 1.5e11 1.7e72

Table 12  Example 3: Cumulative runs with �̂� = 0 (top) and �̂�
n
= 10−3 (bottom)

�−
1

�+
1

�−
5

�+
5

�−
4

�+
4

�−
3

�+
3

C
−
5

C
+
5

C
−
4

C
+
4

C
−
3

C
+
3

1.13 1.20 2.29 2.60 1.85 2.12 1.56 1.74 3e−45 2e−21 3e−12 3e29 6e32 6e100
1.13 1.19 2.24 2.51 1.83 2.08 1.53 1.73 9e−37 5e−18 7e−8 7e18 3e37 2e94

Table 13  Example 3: Cumulative runs with �̂�
l
= 10−3∕10−10∕10−30 (top/middle/bottom)

�−
1

�+
1

�−
8

�+
8

�−
7

�+
7

�−
6

�+
6

C
−
8

C
+
8

C
−
7

C
+
7

C
−
6

C
+
6

1.06 1.14 1.96 3.15 1.76 2.77 1.60 2.36 1e−63 1100 4e−48 2e21 7e−30 3e54
1.06 1.15 2.24 3.30 1.96 2.91 1.74 2.49 1e−75 2e−16 2e−57 1644 6e−36 1e25
1.08 1.14 3.01 3.84 2.49 3.29 2.04 2.72 8e−119 6e−77 2e−94 3e−65 1e−63 2e−7

Table 14  Example 4: Cumulative run with �̂� = 0

�−
1

�+
1

�−
4

�+
4

�−
3

�+
3

�−
2

�+
2

C
−
4

C
+
4

C
−
3

C
+
3

C
−
2

C
+
2

1.20 1.30 2.77 2.93 1.98 2.23 1.50 1.71 3e−51 2e−34 3e−21 46.3 2e44 3e104
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In passing, let us point out that the values depicted in Table 14 are quite similar to 
those in Table 2, which illustrates the key point of Theorem 3 that d determines the 
behavior of Broyden’s method rather than n.

5  Summary

We have demonstrated that the local convergence of Broyden’s method improves 
from 2n-step q-quadratic to 2d-step q-quadratic if F ∶ ℝ

n
→ ℝ

n has n − d affine 
component functions and the corresponding n − d rows of B0 match those of the 
Jacobian of F. We have confirmed the faster convergence in numerical experiments 
and observed that it is stable under perturbations of the d rows of B0 associated to 
nonlinear component functions of F, but not under perturbations of the remaining 
n − d rows. Based on the numerical results we have proposed the conjectures that 
Broyden’s method enjoys (2d − 1)-step q-quadratic convergence for d ∈ {2,… , n} 
and admits a q-order of convergence that is bounded from below by 21∕(2d).
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