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Abstract
Given a linear self-adjoint differential operator L  along with a discretization 
scheme (like Finite Differences, Finite Elements, Galerkin Isogeometric Analy-
sis, etc.), in many numerical applications it is crucial to understand how good the 
(relative) approximation of the whole spectrum of the discretized operator L (n) is, 
compared to the spectrum of the continuous operator L  . The theory of Generalized 
Locally Toeplitz sequences allows to compute the spectral symbol function � asso-
ciated to the discrete matrix L (n) . Inspired by a recent work by T. J. R. Hughes and 
coauthors, we prove that the symbol � can measure, asymptotically, the maximum 
spectral relative error E ≥ 0 . It measures how the scheme is far from a good rela-
tive approximation of the whole spectrum of L  , and it suggests a suitable (possibly 
non-uniform) grid such that, if coupled to an increasing refinement of the order of 
accuracy of the scheme, guarantees E = 0.

Keywords Spectral symbol · Discretization schemes · Linear self-adjoint differential 
operators · Maximum spectral relative error

Mathematics Subject Classification 47B35 · 35P05 · 65N99 · 65D25 · 65F99

1 Introduction

If L (n) is a matrix that discretizes a linear self-adjoint differential operator L  , 
obtained by a discretization scheme like Finite Differences (FD), Finite Elements 
(FE), Isogeometric Galerkin Analysis (IgA), etc., several problems require that 
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the spectrum of L (n) converges uniformly to the (point) spectrum of the operator 
L  . More precisely, let us set the notation: for any fixed k, j ∈ ℕ ⧵ {0} , indicate 
with �k and �−j the k-th nonnegative and the j-th negative real eigenvalue of a 
given operator, respectively. Given a dn × dn matrix L (n) with dn real eigenvalues, 
denote with d+

n
 the sum of the null and positive indices of inertia and with d−

n
 the 

negative index of inertia, i.e.,

Clearly, dn = d−
n
+ d+

n
 . Finally, sort the eigenvalues in nondecreasing order, that is,

With this notation, the property of uniform spectral convergence we mentioned 
above translates into asking that

where n is the mesh fineness parameter, and �(n)
k

 and �k are the k-th eigenvalues of 
the discretized and the continuous operator, respectively. Typically, E > 0 : the rela-
tive error estimates for the eigenvalues and eigenfunctions are good only in the low-
est modes, that is, for |k| = 1,… ,Kn , where Kn∕dn → � as n → ∞ and such that 
𝜎 ≪ 1 . In general, a large portion of the eigenvalues, the so-called higher modes, are 
not approximations of their continuous counterparts in any meaningful sense. This 
may negatively affect the solutions obtained by discrete approximations of elliptic 
boundary-value problems, or parabolic and hyperbolic initial value problems. In 
these cases, all modes may contribute in the solution to some extent and inaccura-
cies in the approximation of higher modes can not always be ignored. Regarding 
this, see for example the spectral-gap problem of the one dimensional wave equation 
for the uniform observability of the control waves [8, 20, 28, 35] or structural engi-
neering problems [27, Sects. 3–6].

In this setting, the theory of Generalized Locally Toeplitz (GLT) sequences 
provides the necessary tools to understand whether the methods used to discretize 
the operator L  are effective in approximating the whole spectrum. The GLT the-
ory originated from the seminal work of P. Tilli on Locally Toeplitz sequences 
[48] and was later developed by S. Serra-Capizzano in [41, 42]. It was devised to 
compute and analyze the spectral distribution of matrices arising from the numer-
ical discretization of integral equations and differential equations. Let ̂L (n) be the 
discrete operator normalized by an appropriate power of dn , which depends on the 
dimension of the underlying space and on the maximum order of derivatives 
involved. It usually happens that the sequence of matrices 

{
̂L
(n)
}

n
 enjoys an 

asymptotic spectral distribution as n → ∞ , i.e., as the mesh goes to zero. More 
precisely, for any test function F(t) ∈ Cc(ℂ) it holds that

d+
n
∶=

|||
{
𝜆

(
L

(n)
)
∶ 𝜆

(
L

(n)
)
≥ 0

}|||, d−
n
∶=

|||
{
𝜆

(
L

(n)
)
∶ 𝜆

(
L

(n)
)
< 0

}|||.

… ≤ 𝜆
(n)
−j

≤ ⋯ ≤ 𝜆
(n)
−1

< 0 ≤ 𝜆
(n)
1

≤ ⋯ ≤ 𝜆
(n)
k

≤ …

(1.1)E ∶= lim sup
n→∞

En = 0, En ∶= max
k = −d−

n
,… , d+

n

k ≠ 0

||||||
�
(n)
k

�k

− 1

||||||
,
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where 𝜆k
(
̂L
(n)
)
, k = −d−

n
,… ,−1, 1,… , d+

n
 are the eigenvalues of the normalized 

operator ̂L
(n)

 and 𝜔 ∶ D ⊂ ℝd
→ ℂ is referred to as the spectral symbol of the 

sequence 
{

̂L
(n)
}

n
 , see [49, Eq. (3.2)] in relation to Toeplitz matrices. The GLT 

theory allows to compute the spectral symbol � related to L (n) , especially if the 
numerical method employed to produce L (n) belongs to the family of the so-called 
local methods, such as FD methods, FE methods and collocation methods with 
locally supported basis functions.

In several recent papers the sampling of the spectral symbol was suggested to be 
used to approximate the spectrum of the discrete matrix operators ̂L

(n)
 and L (n) . 

Unfortunately, this approach is not always successful in general, as we will show 
with an example. The main reference is the paper by T. J. R. Hughes and coau-
thors [24], which reviews the state-of-the-art of the symbol-based analysis for the 
eigenvalues distribution carried on in the framework of the isogeometric Galerkin 
approximation (IgA). Inspired by the latter work [24], we show that the symbol � 
can measure the maximum spectral relative error E  defined in (1.1) and it suggests a 
suitable (non-uniform) grid such that, if coupled to an increasing refinement of the 
order of accuracy of the scheme, guarantees E = 0.

The paper is organized as follows.

• In Sect. 2, the spectral symbol � and the monotone rearrangement �∗ are intro-
duced.

• In Sect.  3 we present an asymptotic result, Theorem  3.1, which connects the 
eigenvalue distribution of a matrix sequence and the monotone rearrangement 
of its spectral symbol. It is the main tool for the results in Sect. 4. In particular, 
under suitable regularity assumptions on � , thanks to Theorem 3.2 and Theo-
rem 3.3 we prove that 

 where � is the (normalized) Weyl distribution function of the eigenvalues of L  
and � is the spectral symbol associated to the numerical scheme applied to dis-
cretize L .

• Section  4 is devoted entirely to numerical experiments and applications. The 
validity of (1.2) is shown in Table 2 and Fig. 2. Moreover, in Sect. 4.1.1 we pro-
vide an example about the unfeasibility to obtain an accurate approximation of 
the eigenvalues of a differential operator by just uniformly sampling the spectral 
symbol � . In Sects. 4.1.2 and  4.1.3 we generalize the aforementioned results 
to the case of central FD and IgA methods of higher order. By means of a suit-

lim
n→∞

1

dn

d+
n∑

k = −d−
n

k ≠ 0

F
(
𝜆k

(
̂L
(n)
))

=
1

m(D) �D

F(𝜔(y))m(dy),

(1.2)
E = sup

x ∈ (0, 1)
x ∶ �

∗(x) ≠ 0

||||
�
∗(x)

�
∗(x)

− 1
||||,
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able non-uniform grid, suggested by the spectral symbol and combined by an 
increasing order of the approximation, we obtain (1.1), namely E = 0 . Finally, in 
Sect. 4.2, we describe a simple application to the general d-dimensional Lapla-
cian.

• Section 5 is devoted to draw conclusions and set the lines for future research.

Due to the technicalities that involve the results presented in Sects. 3 and  4, all 
the proofs are moved to the appendix to improving the fluency of the reading. The 
appendix is therefore organized as follows.

• Section A collects the proofs of the results presented in Sect. 3.
• Section  B provides rigorous proofs for some numerical evidences observed in 

Sect. 4.
• In Sect.  C is provided the FD numerical scheme used in Sect.  4.1.1 and 

Sect. 4.1.2.
• In Sect. D are listed some known results about the IgA numerical scheme used in 

Sect. 4.1.3.

2  Spectral symbol and monotone rearrangement

In this section we provide the definitions of spectral symbol of a sequence of matri-
ces and its monotone rearrangement, which are the main tools we will use through-
out this paper to study the asymptotic spectral distribution of sequences of discre-
tization matrices. We will use the notation X(n), Y (n) to denote general dn × dn square 
matrices, while T (n) will be used for Toeplitz matrices, i.e., matrices with constant 
elements along their diagonals: 

(
T (n)

)
i,j
= ti−j for all i, j = 1,… , dn , and with

If tk is the k-th Fourier coefficient of a complex integrable function f defined over the 
interval [−�,�] , then T (n) = T (n)(f ) is referred to be the Toeplitz matrix generated by 
f.

With the symbol 
{
X(n)

}
n
 we will denote a sequence of square matrices with 

increasing dimensions dn × dn , i.e., such that dn → ∞ as n → ∞ . When we will con-
front the spectrum of two sequences of matrices, we will assume that they have the 
same dimension. The eigenvalues will be sorted in nondecreasing order, that is,

where d−
n
 is the negative index of inertia and d+

n
 is the sum of the null and positive 

indices of inertia. Clearly, dn = d−
n
+ d+

n
 . If the eigenvalues do not depend on the 

parameter n, then we will omit the superscript (n).
We will consider all the Euclidean spaces equipped with the usual Lebesgue 

measure m(⋅) . We will not specify the dimension of m(⋅) by a subscript since it will 
be clear from the context.

� =
[
t−dn+1,… , t0,… , tdn−1

]
∈ ℂ

2dn−1.

𝜆
(n)
−d−

n

≤ ⋯ ≤ 𝜆
(n)
−j

≤ ⋯ ≤ 𝜆
(n)
−1

< 0 ≤ 𝜆
(n)
1

≤ ⋯ 𝜆
(n)
k

≤ ⋯ ≤ 𝜆
(n)
d+
n

,
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2.1  Spectral symbol

The following definition of spectral symbol has been slightly modified in accord-
ance to our notation and purposes.

Definition 2.1 (Spectral symbol) Let 
{
X(n)

}
n
 be a sequence of matrices and let 

𝜔 ∶ D ⊆ ℝd
→ 𝕂 ( 𝕂 = ℝ or ℂ ) be a measurable function and D a measurable set 

with 0 < m(D) < ∞ , such that the Lebesgue integral

exists, finite or infinite. We say that {X(n)}n is distributed like � in the sense of the 
eigenvalues, in symbols {X(n)}n ∼�

� , if

We will call � the (spectral) symbol of {X(n)}n.

Relation (2.1) is satisfied for example by Hermitian Toeplitz matrices gener-
ated by real-valued functions � ∈ L1([−�,�]) , i.e., 

{
T (n)(�)

}
n
∼
�
� , see [26, 49, 

50]. For a general overview on Toeplitz operators and spectral symbol, see [10, 
11]. What is interesting to highlight is that matrices with a Toeplitz-like struc-
ture naturally arise when discretizing over a uniform grid problems which have a 
translation invariance property, such as linear differential operators with constant 
coefficients.

Remark 1 If D is compact, � continuous, and �k ∈ R
�
= [min�, max�] for every 

k ∈ ℕ , then taking F(t) = t�R
�

(t) , with �R
�

 a C∞ cut-off such that �R
�

(t) ≡ 1 on R
�
 , 

gives

Because the Riemannian sum over equispaced points converges to the integral of 
the right hand side of the above formula, (2.2) could suggest that the eigenvalues 
�k

(
X(n)

)
 can be approximated by a pointwise evaluation of the symbol �(y) over an 

equispaced grid of D, for n → ∞ , except for at most an o(dn) of outliers, see Defini-
tion 2.3. This is mostly the content of [22, Remark 3.2] and [24, Sect. 2.2].

We remark that in the special case of Toeplitz matrices generated by regular 
enough functions �,

∫D

�(y)m(dy)

(2.1)

lim
n→∞

1

dn

d+
n∑

k = −d−
n

k ≠ 0

F
(
�k

(
X(n)

))
=

1

m(D) �D

F(�(y))m(dy), ∀F ∈ Cc(�).

(2.2)
lim
n→∞

1

dn

d+
n∑

k = −d−
n

k ≠ 0

�k

(
X(n)

)
=

1

m(D) �D

�(y)m(dy).



 D. Bianchi 

1 3

38 Page 6 of 47

see [51] and [9]. In some sense, this justifies the informal meaning given above to 
the spectral symbol.

That said, unfortunately the discretization of a linear differential operator does 
not always own a Toeplitz-like structure. Nevertheless, the GLT theory provides 
tools to prove the validity of (2.1) for more general matrix sequences. For a review 
of the GLT theory and its applications we mainly refer to [22, 23], and to [5, 6]. We 
conclude this subsection with two definitions.

Definition 2.2 (Essential range) Let � be a real valued measurable function and 
define the set R

𝜔
⊂ ℝ as

We call R
�
 the essential range of � . Notice that R

�
 is closed.

Definition 2.3 (Outliers) Given a matrix sequence {X(n)} such that 
{
X(n)

}
n
∼
�
� , if 

�k

(
X(n)

)
∉ R

�
 we call it an outlier.

2.2  Monotone rearrangement

Dealing with a univariate and monotone spectral symbol �(y) = �(�) has several 
advantages. Unfortunately, in general � is multivariate or not monotone. Neverthe-
less, it is possible to consider a rearrangement �∗ ∶ (0, 1) → (infR

�
, supR

�
) such 

that �∗ is univariate, monotone nondecreasing and still satisfies the limit relation 
(2.1). This can be achieved in the following way.

Definition 2.4 Let 𝜔 ∶ D ⊂ ℝd
→ ℝ be measurable. Define

where

and where, in case of bounded R
�
 , we consider the extension �∗ ∶ [0, 1] → R

�
.

In analysis, �∗ is called monotone rearrangement (see [44, pg. 189]) while in proba-
bility theory it is called (generalized) inverse distribution function (see [47, pg. 260]). 
For “historical” reasons we will use the analysts’ name; see [18, Definition 3.1 and 
Theorem 3.3] and [39], where the monotone rearrangement was first introduced in the 
context of spectral symbol functions. Clearly, �∗ is a.e. unique, univariate, and mono-
tone increasing, which make it a good choice for an equispaced sampling. On the other 

�k

(
T (n)(�)

)
= �

(
k�

dn + 1

)
+ O(d−1

n
) for every k = 1,… , dn,

t ∈ R
𝜔

⟺ m({y ∈ D ∶ |𝜔(y) − t| < 𝜖}) > 0 ∀𝜖 > 0.

(2.3)𝜔
∗ ∶ (0, 1) → R

𝜔
, 𝜔

∗(x) = inf
{
t ∈ R

𝜔
∶ 𝜙

𝜔
(t) > x

}

(2.4)�
�
∶ ℝ → [0, 1], �

�
(t) ∶=

1

m(D)
m({y ∈ D ∶ �(y) ≤ t}),
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hand, �∗ could not have an analytical expression or it could be not feasible to compute, 
therefore it is often needed an approximation �∗

r
 . In Algorithm 1 we summarize the 

steps presented in [22, Example 10.2] and [24, Sect.  3] in order to approximate the 
eigenvalues �k

(
X(n)

)
 by means of an equispaced sampling of the rearranged symbol �∗ 

(or its approximated version �∗
r
 ). For the sake of clarity and without loss of generality, 

we suppose D = [0, 1] × [−�,�] and � continuous. As standard result in approxima-
tions of monotone rearrangements, it holds that ‖�∗

r(n)
− �

∗‖∞ → 0 as n → ∞ , see [13, 
45]. For a detailed survey about monotone rearrangements we refer to the recent work 
by G. Talenti [46]. 

3  Asymptotic spectral distribution

In this section we present the main results about the asymptotic spectral distribution of 
the eigenvalues of a matrix sequence with given spectral symbol. Since the proofs are 
rather technical, they can be found in Sect. A to not break the flow of the reading.

Theorem 3.1 connects the monotone rearrangement of the symbol function to the 
asymptotic eigenvalues distribution of a matrix sequence. Theorem  3.2 provides an 
analytic way to measure the maximum spectral relative error between two sequences of 
matrices, see Definition 3.1. Finally, Theorem 3.3 exploits the previous results to give 
an effective measure for the maximum spectral relative error that characterizes a discre-
tization scheme, when approximating a linear self-adjoint differential operator.

3.1  Monotone rearrangement and spectral distribution

Let {X(n)}n be a matrix sequence such that {X(n)}n ∼�
� and define the (discrete) eigen-

values counting function N(X(n), ⋅) ∶ ℝ → {0, 1,… , dn},

Since the monotone rearrangement takes as argument values in [0, 1], it is helpful to 
define a new indexing k̂ associated to X(n) such that k̂∕dn ∈ [0, 1] . Let us set

N
(
X(n), t

)
∶=

|||
{
k = −d−

n
,… ,−1, 1,… , d+

n
∶ �k

(
X(n)

)
≤ t

}|||.
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We have the following asymptotic relations.

Theorem  3.1 (Discrete Weyl’s law) Let {X(n)}n be a matrix sequence such that 
{X(n)}n ∼�

� . Then

and

Suppose now that �
�
 is continuous or, equivalently, that

Let k̂ = k̂(n) as in (3.1) be such that the sequence {k̂(n)∕dn}n converges from the left 
to x0 ∈ (0, 1) , as n → ∞ . Then, there exists the limit for the sequence 

{
𝜆k̂(n)

(
X(n)

)}
n
 

and it holds that

In particular, if �∗ is continuous at x0,

Finally, if 𝜆k̂(n)
(
X(n)

)
≥ inf

(
R
𝜔

)
 ( ≤ sup(R

�
) ) eventually, then (3.5) holds for x0 = 0 

( x0 = 1 ) as well.

Proof See Sect. A.   ◻

In some sense, the limit relation (2.2) can be viewed as the strong law for 
large numbers for specially chosen sequences of dependent complex/real-valued 
random variables 

{
�k(n)

(
X(n)

)}
n
 . See [26] for the link between the spectrum of 

Hermitian matrices and equally distributed sequences (in the sense of Weyl) as 
defined in [31, Definition 7.1], and [34] as a recent survey about equidistributions 
from a probabilistic point of view.

Corollary 3.1 With the same notations of Theorem 3.1 and assuming �
�
 continuous, 

it holds that

(3.1)
𝜗X(n) ∶

{
−d−

n

(
X(n)

)
,… ,−1, 1,… , d+

n

(
X(n)

)}
→ {1,… , dn},

k̂ = 𝜗X(n) (k) ∶=

{
k + d−

n

(
X(n)

)
+ 1 if k < 0,

k + d−
n

(
X(n)

)
if k > 0.

(3.2)
{
X(n)

}
n
∼
�
�
∗(x), x ∈ (0, 1),

(3.3)lim
n→∞

N
(
X(n), t

)
dn

= �
�
(t) for every point of continuity of �

�
.

m({y ∶ �(y) = t}) = 0 ∀ t ∈ ℝ.

(3.4)lim
x→x−

0

𝜔
∗(x) = sup

{
t ∈ R

𝜔
∶ t ≤ lim

n→∞
𝜆k̂(n)

(
X(n)

)}
.

(3.5)𝜔
∗
(
x0
)
= lim

n→∞
𝜆k̂(n)

(
X(n)

)
.
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that is, the number of possible outliers is o(dn) . Moreover,

Proof See Sect. A.   ◻

Corollary 3.2 With the same notations of Theorem 3.1, assume that �
�
 is continuous 

and �∗ is absolutely continuous. Let �∗
n
 be the (pseudo) inverse function of N(X

(n),⋅)
dn

 , 
then ‖‖�∗

n
− �

∗‖‖∞ → 0 as n → ∞ . Let h ∶ ℕ → ∞ be such that

Let g ∶ (infR
�
, supR

�
) → ℝ be a differentiable real function and let {k̂(n)}n be a 

sequence of integers such that

 (i) k̂(n)

dn
→ x0 ∈ [0, 1];

 (ii) 𝜆k̂(n)+1

(
X(n)

)
> 𝜆k̂(n)

(
X(n)

)
∈ (infR

𝜔
, supR

𝜔
) eventually for n → ∞.

Then

almost everywhere.

Proof See Sect. A.   ◻

Corollary 3.3 Let �
�
 and �∗ be continuous, and suppose that R

�
 is bounded. Then, 

in presence of no outliers (eventually), the absolute error between a uniform sam-
pling of �∗ and the eigenvalues of X(n) converges to zero, namely

Proof See Sect. A.   ◻

lim
n→∞

|||
{
k = −d−

n
,… ,−1, 1,… , d+

n
∶ �k

(
X(n)

)
∉ R

�

}|||
dn

= 0,

lim
n→∞

|||
{
k = −d−

n
,… ,−1, 1,… , d+

n
∶ �k

(
X(n)

)
≤ t, �k

(
X(n)

)
∈ R

�

}|||
dn

= �
�
(t).

lim
n→∞

h(dn) = ∞, lim
n→∞

‖‖�∗
n
− �

∗‖‖∞
1

h(dn)

= 0.

lim
n→∞

h(dn)

[
g

(
𝜆
k̂(n)+

⌈
dn

h(dn)

⌉(X(n)
))

− g
(
𝜆k̂(n)

(
X(n)

))]
= lim

x→x0
(g(𝜔∗(x)))�

max
k = −d−

n
,… , d+

n

k ≠ 0

{|||||
𝜆k

(
X(n)

)
− 𝜔

∗

(
k̂

dn + 1

)|||||

}
→ 0 as n → ∞.
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3.2  Local and maximum spectral relative errors

Exploiting the results obtained in the preceding subsection, we can now prescribe a 
way to measure the maximum relative error between two sequences of eigenvalues. 
Given two sequences of matrices {X(n)}n, {Y

(n)}n of the same dimension dn , we will 
use the notation k̂ as in (3.1) to have an index with a common set, k̂ ∈

{
1,… , dn

}
 , 

for both the eigenvalues associated to X(n) and Y (n) . Moreover, we define

where �(⋅) was introduced in (3.1) as well. Let us observe that, if �j
(
Y (n)

)
 is the j-th 

eigenvalue associated to Y (n) and �i
(
X(n)

)
 is the i-th eigenvalue associated to X(n) , 

then �(j) = i if and only if ĵ = î . See Fig. 1.

Definition 3.1 (Local and maximum spectral relative errors) Given two sequences 
of matrices {X(n)}n, {Y

(n)}n of the same dimension dn , define the sequence

where

We call 𝛿(n)
k̂

 the local spectral relative error, and we call

the maximum spectral relative error (MSRE). When both the matrix sequences 
{X(n)}n , {Y (n)}n are well understood from the context, with abuse of notation we will 
just write E  , and this applies in particular when we will compare the eigenvalues 

(3.6)� ∶= �
−1
X(n)◦�Y (n) ,

En

(
X(n), Y (n)

)
∶= max

k̂=1,…,dn

{
𝛿
(n)

k̂

}
,

𝛿
(n)

k̂
∶=

⎧⎪⎨⎪⎩

����
𝜆k̂(X(n))
𝜆k̂(Y (n))

− 1
���� if 𝜆k̂

�
Y (n)

�
≠ 0,

0 if 𝜆k̂
�
Y (n)

�
= 𝜆k̂

�
X(n)

�
= 0,

∞ if 𝜆k̂
�
X(n)

�
≠ 𝜆k̂

�
Y (n)

�
= 0.

E
(
X(n), Y (n)

)
∶= lim sup

n→∞
En

(
X(n), Y (n)

)

Fig. 1  Example of the new index notation used to compare the eigenvalues of two matrices X(n) , Y (n) . In 
this case we set n = 6 and non-null eigenvalues. Observe that the new labeling is made necessary due to 
the fact that, in general, X(n) and Y (n) can have different indices of inertia. In this example, d−

6
(X(6)) = 2 

and d−
6
(Y (6)) = 4 . The function � in (3.6) allows to pass from the original indices of Y (n) to the corre-

sponding indices of X(n)
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of a discretized operator L (n) with the eigenvalues of the continuous operator L  , 
whose first dn eigenvalues can be arranged as the diagonal entries of a diagonal 
matrix.

For brevity, let us set �− ∶= infn
{
d−
n

(
Y (n)

)}
, �+ ∶= supn

{
d+
n

(
Y (n)

)}
 . Moreo-

ver, for any fixed x0 ∈ [0, 1] let us define

Theorem  3.2 Fix two sequences of matrices such that {X(n)}n ∼�
�1 and 

{Y (n)}n ∼�
�2 . If

then

where

If �∗
2
(x0) = 0 and

then

F ∶=
{{

am
}
m
∶ ∃ lim

m→∞
am finite or infinite

}
,

Gx0
∶=

{{
𝛿

(nj)

k̂(nj)

}

nj

∶ lim
nj→∞

k̂(nj)

dnj

= x0 eventually by passing to a subsequence

}
,

Hx0
∶=

{
lim
nj→∞

𝛿

(nj)

k(nj)
∶

{
𝛿

(nj)

k̂(nj)

}

nj

∈ F ∩ Gx0

}
, 𝜎k = lim sup

n→∞

|||||
𝜆
𝜗(k)

(
X(n)

)

𝜆k

(
Y (n)

) − 1
|||||
.

m
({

y ∶ �1(y) = t
})

= m
({

z ∶ �2(z) = t
})

= 0 ∀ t ∈ ℝ,

(3.7)E
�
X(n), Y (n)

�
≥ max

⎧
⎪⎪⎨⎪⎪⎩

sup

x ∈ (0, 1);
x ∶ �

∗
2
(x) ≠ 0

�����
�
∗
1
(x)

�
∗
2
(x)

− 1
�����
;�

⎫
⎪⎪⎬⎪⎪⎭

,

� ∶=

⎧⎪⎨⎪⎩

0 if �∗
2
(x) ≠ 0∀ x ∈ [0, 1],

supHx0
if ∃ x0 ∈ [0, 1] such that �∗

2
(x0) = �

∗
1
(x0) = 0,

+∞ if ∃ x0 ∈ [0, 1] such that �∗
2
(x0) = 0 ≠ �

∗
1
(x0).

lim sup
n→∞

|||||
|||||
�
�(k(n))

(
X(n)

)

�k(n)

(
Y (n)

) − 1
|||||
− �k(n)

|||||
= 0 for every k(n) such that lim

n→∞

k(n)

dn
= 0,

supHx0
= sup

k ∈ [�−, �+]
k ≠ 0

{�k}.
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Moreover, if �∗
1
,�∗

2
 are continuous, R

�1
 and R

�2
 are bounded and both the sequences 

do not have outliers, then equality holds in (3.7).

Proof See Sect. A.   ◻

3.3  Linear self‑adjoint differential operators and eigenvalue distribution

The asymptotic distribution of the eigenvalues for partial differential operators on gen-
eral manifolds has been widely studied and developed, see for example [32, 38] and all 
the references therein. The topic is too vast to cover it properly, therefore we will con-
centrate our examples only on a couple of cases: Sturm-Liouville operators for the one 
dimensional case and elliptic self-adjoint operators for the multi-dimensional case, see 
Sect. 4.1. Nevertheless, the tools presented in this section can be applied to study the 
quality of a discretization scheme to preserve the discrete spectrum of many classes of 
self-adjoint operators. The approach is the following: given an operator L  and its dis-
cretized version L (n) , if {h(dn)L (n)}n ∼�

� for a function h ∶ ℕ → ℝ (which depends 
on the dimension of the underlying space and the higher order of derivatives involved), 
then study the limit of

We have the following result.

Theorem  3.3 Let L  be a self-adjoint linear operator and let L (n) be a dn × dn 
matrix obtained from L  by a discretization scheme. Let d−

n
, d+

n
 be the negative and 

nonnegative indices of inertia of L (n) . Define

Suppose that:

 (i) 
||||
�
�(k)(L(n))
�k(L)

− 1
|||| → 0 as n → ∞ for every k = k(n) such that k(n)

dn
→ 0 , where � is 

defined in (3.6);
 (ii) {h(dn)L

(n)}n ∼�
� for some fixed h ∶ ℕ → ℝ;

 (iii) m({y ∶ �(y) = t}) = 0 for every t ∈ ℝ , and R
�
 bounded;

 (iv) limn→∞ �n(t) = �(t) , where �n is defined in (3.8) and � ∶ ℝ → [0, 1] is continu-
ous and surjective.

Then

(3.8)�n(t) =
N(n)(L, t)

dn
∶=

||k = −d−
n
,… ,−1, 1,… , d+

n
∶ h(dn)�k(L) ≤ t||

dn
.

X(n) ∶= L
(n), Y (n) ∶= diag

k = −d−
n
,… , d+

n

k ≠ 0

{
�k(L)

}
.
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Moreover, if �∗,�∗ are continuous and h(dn)�k
(
L (n)

)
∈ R

�
 eventually, then equality 

holds.

Proof See Sect. A.   ◻

The (normalized) Weyl function � is known for many kind of differential opera-
tors. See the next section for a couple of examples.

4  Numerical experiments

We will write L (n,�) to denote a dn × dn square matrix which is the discretization of a 
linear differential operator L  by means of a numerical scheme of order of approxima-
tion � . In the case where the approximation order � is clear by the context, then we will 
omit it. If the discretized operator L (n) is normalized by a constant depending on the 
fineness mesh parameter n, then we will denote it with ̂L

(n)
 . We will use the subscripts 

dir and BCs to denote a (discretized) linear differential operator characterized with 
Dirichlet or generic boundary conditions, respectively. When it will be necessary to 
highlight the dependency of the differential operator on a variable coefficient p(x) , we 
will write it as subscript. So, for example, the normalized discretization of a diffusion 
operator with Dirichlet BCs by means of the IgA scheme of order � will be denoted by

All the computations are performed on MATLAB R2018b running on a desktop-pc 
with an Intel i5-4460H @3.20 GHz CPU and 8GB of RAM.

4.1  Application to Euler‑Cauchy differential operator

We begin our analysis with respect to a toy-model example. In this subsection, the main 
objectives are:

• to show numerical evidences of Theorem 3.3, i.e., that the monotone rearrangement 
�
∗(x) of the spectral symbol �(y) measures the maximum spectral relative error E  . 

See Sects. 4.1.1, 4.1.2 and 4.1.3;
• to disprove that, in general, a uniform sampling of the spectral symbol �(y) can pro-

vide an accurate approximation of the eigenvalues of the normalized and unnormal-
ized discrete operators ̂L

(n)
 and L (n) , respectively. See Sect. 4.1.1;

E = E
(
X(n), Y (n)

)
≥ sup

x ∈ [0, 1]
x ∶ �

∗(x) ≠ 0

||||
�
∗(x)

�
∗(x)

− 1
||||.

̂L
(n,𝜂)

dir,p(x)
.
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• to show that a discretization scheme can lead to E = 0 if coupled with a suitable 
(possibly non-uniform) grid and an increasing order of approximation. See Sects. 
4.1.2 and 4.1.3.

Let us fix 𝛼 > 0 and let us consider the following self-adjoint operator with Dirichlet 
BCs,

The formal equation is an Euler-Cauchy differential equation and by means of the 
Liouville transformation

the operator (4.1) has the same spectrum of

which is a self-adjoint operator in Schroedinger form with constant potential 
V(y) ≡ �∕4 . For a general review, see for example [17, 21, 52]. It is clear that

where

For later reference, notice that

namely, the diffusion coefficient p(x) = �x2 produces a constant shift of �∕4 to the 
eigenvalues of the unperturbed Laplacian operator with Dirichlet BCs, i.e., �dir.

We introduce the following definition.

Definition 4.1 (Numerical and analytic spectral relative errors) Let L(n)

dir,�x2
 be the 

discrete differential operator obtained from (4.1) by means of a generic numerical 
discretization method. If

then fix n, n�, r ∈ ℕ , with n′ ≫ n and r = r(n) ≥ n and compute the following 
quantities

(4.1)Ldir,�x2 [u](x) ∶= −
�
�x2u�(x)

��
, dom

�
Ldir,�x2

�
= W

1,2

0
(1, e

√
�).

(4.2)y(x) =
∫

x

1

�√
�t
�−1

dt,

�dir,�[v](y) ∶= −v��(y) +
�

4
v(y), dom

(
�dir,�

)
= W

1,2

0
(0, 1),

�k

(
Ldir,�x2

)
= �k

(
�dir,�

)
= �k

(
�dir

)
+

�

4
= k2�2 +

�

4
for every k ≥ 1,

�dir[v](y) ∶= −v��(y), dom
(
�dir

)
= W

1,2

0
(0, 1).

(4.3)lim
�→0

�k

(
Ldir,�x2

)
= �k

(
�dir

)
= k2�2 for every k ≥ 1,

�
(dn + 1)−2 L

(n)

dir,�x2

�
n
∼
�
�
�
(x, �), (x, �) ∈ [1, e

√
�] × [−�,�],
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for k = 1,⋯ , dn . Specifically, �∗,(n)
�,r,k

= �
∗
�,r

(
k

dn+1

)
 , where �∗

�,r
 is the (approximated) 

monotone rearrangement of the spectral symbol �
�
 obtained by the procedure 

described in Algorithm 1. We call ���(n)
�,k

 the numerical spectral relative error and 
���

∗,(n)
�,r,k

 the analytic spectral relative error. The difference between these definitions 
and Definition 3.1 is that in this case we are using as a comparing sequence the 
eigenvalues of the same discrete operator on a finer mesh, since supposedly we do 
not know the exact eigenvalues of the continuous operator but we do know that 
�k

(
L

(n�)

dir,�x2

)
 converges to the exact eigenvalue �k

(
Ldir,�x2

)
 as n� → ∞ . We say that 

�
�
 spectrally approximates the discrete differential operator L(n)

dir,�x2
 if

4.1.1  Approximation by 3‑points central FD method on uniform grid

In our example, if we apply the standard central 3-points FD scheme, see [43], then 
the sequence of the normalized discretization matrices ̂L

(n)

dir,𝛼x2
= (n + 1)−2L(n)

dir,𝛼x2
 of 

the operator (4.1) has spectral symbol

see [22, Theorem  10.5]. Working with this toy-model problem using the 3-points 
central FD scheme provides us a further advantage, since we can analytically com-
pute the monotone rearrangement �∗

�
 , or at least a finer approximation than �∗

�,r
 

which does not depend on the extra parameter r and is less computationally expen-
sive. Indeed, from Eq. (2.4) we have that

where

After some analytical manipulation, �
�
�

 can be expressed explicitly

���
(n)
�,k

=

|||||||

�k

(
L

(n)

dir,�x2

)

�k

(
L

(n�)

dir,�x2

) − 1

|||||||
, ���

∗,(n)
�,r,k

=

|||||||

(dn + 1)2�∗,(n)
�,r,k

�k

(
L

(n�)

dir,�x2

) − 1

|||||||

lim sup
n→∞

(
���

∗,(n)
�,r,k

)
= 0 for every fixed k.

�
�
(x, �) =

�x2�
e
√
� − 1

�2
4 sin2

�
�

2

�
, with D = [1, e

√
�] × [0,�],

(4.4)�
�
�

∶

⎡⎢⎢⎢⎣
0,

4�e2
√
�

�
e
√
� − 1

�2

⎤⎥⎥⎥⎦
→ [0, 1],

�
�
�

(t) =
1

�

�
e
√
� − 1

�m
⎛⎜⎜⎜⎝

⎧⎪⎨⎪⎩
(x, �) ∈ [1, e

√
�] × [0,�] ∶

4�x2 sin2(�∕2)�
e
√
� − 1

�2
≤ t

⎫⎪⎬⎪⎭

⎞⎟⎟⎟⎠
.
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where

Since we have an analytical expression for �
�
�

(t) , it is then possible to compute a 
numerical approximation of its generalized inverse �∗

�
over the uniform grid {

k

n+1

}n

k=1
 , for example by means of a Newton method. This approximation of the 

monotone rearrangement does not depend on the extra parameter r: therefore, when 
we will compute the analytical spectral relative error with respect to �∗

�
 we will 

write ���∗,(n)
�,k

 without the subscript r.
In Fig.  2 it is possible to check that an equispaced sampling of (n + 1)2�∗

�,r
 

asymptotically distributes exactly as the eigenvalues of the unnormalized discrete 
operator L(n)

dir,�x2
 . Indeed, �

�
�

 is continuous and strictly monotone increasing which 
implies that �∗

�
 is continuous: then relation (3.5) applies. Moreover, according to Eq. 

(4.3), we observe that

�
�
�

(t) =
1

�

�
e
√
� − 1

� ⋅

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�

�
t, e

√
�

�
−�(t, 1) if t ∈

⎡
⎢⎢⎢⎣
0,

4��
e

√
�−1

�2

⎤
⎥⎥⎥⎦
,

�

⎛
⎜⎜⎝

�
e

√
�−1

�√
t

2
√
�

− 1

⎞
⎟⎟⎠
+
⎡
⎢⎢⎣
�

�
t, e

√
�

�
−�

⎛
⎜⎜⎝
t,

�
e

√
�−1

�√
t

2
√
�

⎞
⎟⎟⎠

⎤
⎥⎥⎦

if t ∈

⎡
⎢⎢⎢⎣

4��
e

√
�−1

�2 ,
4�e

2
√
�

�
e

√
�−1

�2

⎤
⎥⎥⎥⎦
,

�(t, x) =

�
e
√
� − 1

�√
t log

⎛
⎜⎜⎝
2�x

⎛
⎜⎜⎝

�
1 −

�
e
√
�−1

�2

4�x2

⎞
⎟⎟⎠
+ 1

⎞
⎟⎟⎠√

�

+ 2x arcsin

⎛⎜⎜⎜⎝

�
e
√
� − 1

�√
t

2
√
�x

⎞⎟⎟⎟⎠
.

Fig. 2  For � = 1 , comparison between the distribution of the first n = 102 eigenvalues of the discrete 
operator L(n)

dir,�x2
 (red-dotted line) and the n-equispaced samples of (n + 1)2�∗

�,r
 with r = 103 (blue-contin-

uous line). On the x-axis is reported the quotient k/n, for k = 1,… , n . The sovrapposition of the graphs is 
explained by Theorem 3.1 and the limit (3.5)
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which means that the monotone rearrangement �∗
�
 converges to the spectral symbol 

� as � → 0 , that is, to the spectral symbol which characterizes the differential opera-
tor �dir discretized by means of a 3-points FD scheme. The eigenvalues of 
(n + 1)−2

(
�
(n)
dir

)
 are the exact sampling of �(�) = 4 sin2 (�∕2) over the uniform grid {

k�

n+1

}n

k=1
 , see [43, p. 154]. This asymptotic behaviour reflects what we already 

observed in (4.3).
All these remarks would suggest that �∗

�
 , or equivalently �∗

�,r
 , spectrally approxi-

mates the normalized discrete operator ̂L
(n)

dir,𝛼x2
 . Unfortunately, this conjecture looks 

to be partially proven wrong by Fig. 3: it shows the comparison between the graphs 
of the numerical spectral relative error ���(n)

�,k
 and the analytic spectral relative error 

���
∗,(n)
�,r,k

 , for several different increasing values of the parameter r. We observe a dis-
crepancy in the analytical prediction of the eigenvalue error ���∗,(n)

�,r,k
 , for small k ≪ n , 

with respect to the numerical relative error ���(n)
�,k

.
In particular, the maximum discrepancy is achieved at k = 1 , for every r. The 

discrepancy apparently decreases as the number of grid points r increases, as well 
observed in [24, Figure 48] for some test-problems in the setting of Galerkin dis-
cretization by linear C0 B-splines. In that same paper, some plausible hypotheses 
and suggestions were advanced:

lim
�→0

�
�
�

(t) =
2

�

arcsin

�√
t

2

�
t ∈ [0, 4],

lim
�→0

�
∗
�
(x) = 4 sin2

�
�x

2

�
x ∈ [0, 1],

Fig. 3  Comparison between the numerical spectral relative error ���(n)
�,k

 and the analytic spectral relative 
error ���∗,(n)

�,k,r
 for increasing r = 102, 5 ⋅ 102, 8 ⋅ 102 . The values of n and n′ are fixed at 102 and 104 , respec-

tively, and � = 1 . The maximum discrepancy between the numerical relative error and the analytical rela-
tive errors is achieved for k = 1 in all the three cases, and apparently it decreases as r increases
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• The discrepancy could depend on the fact that it was used �∗
�,r

 instead of 
�
∗
�
 , and then that discrepancy should tend to zero in the limit r → ∞ , since 

�
∗
�,r

→ �
∗
�
.

• Numerical instability of the analytic relative error ���∗,(n)
�,r,k

 for small eigenval-
ues, [24, Remark 3.1].

• Change the sampling grid into an “almost uniform” grid: see [24, Remark 3.2] 
for details.

The problem is that these hypotheses, which stem from numerical observations, 
cannot be validated: the descent to zero of the observed discrepancy as r increases 
is only apparent. Indeed, what happens is that, for every fixed k it holds

with c
�,k independent of n and n′ . This is the content of Proposition B.1 and Remark 

2 in Sect. B, with p(x) = �x2,w(x) ≡ 1, q(x) ≡ 0 . We then have a lower bound for 
the analytic spectral relative error which can not be avoided by refining the grid 
points. Of course, as n → ∞ , then c

�,k → 0 as k increases. Those remarks are sum-
marized in Table 1.

The problem lies on the wrong informal interpretation given to the limit rela-
tion in Definition 2.1, and suggested by Remark 1. Indeed, the asymptotic equal-
ity (2.1) tells us that

(4.5)|||���
∗,(n)
𝛼,r,k

||| → c
𝛼,k =

𝛼

4

k2𝜋2 + 𝛼

4

> 0 as r, n → ∞,

Table 1  For every fixed k and � , 
the analytic relative error ���∗,(n)

�,k
 

converges to the lower bound 
c
�,k as n increases, where c

�,k is 
given in (4.5)

Observe that ���∗,(n)
�,k

 seems to be monotone decreasing of order 
O(n−2) . The approximation of �∗

�
 is obtained evaluating �−1

�
 from 

(4.4) by means of the fzero() function from Matlab r2018b

|���∗,(n)
�,k

∕c
�,k

− 1|
n = 10

2
n = 10

3
n = 10

4

� = 0.1 c
�,1 = 0.0025 0.0326 3.3223e-04 3.3283e-06
c
�,5 = 1.0131e − 04 20.3811 0.2076 0.0021
c
�,10 = 2.5330e − 05 325.3811 3.3222 0.0333

� = 1 c
�,1 = 0.0247 0.0041 4.1363e-05 4.1438e-07
c
�,5 = 0.0010 2.5395 0.0259 2.5899e-04
c
�,10 = 2.5324e − 04 40.6422 0.4136 0.0041

� = 2 c
�,1 = 0.0482 0.0026 2.6120e-05 2.6167e-07
c
�,5 = 0.0020 1.6056 0.0163 1.6354e-04
c
�,10 = 5.0635e − 04 25.7979 0.2612 0.0026

� = 5 c
�,1 = 0.1124 0.0020 2.0008e-05 2.0044e-07
c
�,5 = 0.0050 1.2389 0.0125 1.2528e-04
c
�,10 = 0.0013 20.4017 0.2002 1.2528e-04
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for every k(n) such that k(n)∕n → x ∈ [0, 1] , see Theorem 3.1. Therefore, since �∗
�
 is 

continuous and R
�
 is bounded, it follows that

by Corollary 3.3 and as observed for example in [22, Example 10.2 p. 198]. On the 
contrary, a uniform sampling of the symbol � does not necessarily provide an accu-
rate approximation of the eigenvalues of the operator ̂L (n)

dir,𝛼x2
 , in the sense of the 

relative error. The uniform sampling of the symbol works perfectly only for specific 
subclasses of discretization schemes and operators, but it fails in general.

As a last remark, there does not exist an “almost” uniform grid as well, nor in an 
asymptotic sense as described in [24, Remark 3.2]. Knowing the exact sampling grid 
which guarantees �∗

�
 to spectrally approximate the discrete differential operator is 

equivalent to know the eigenvalue distribution of the original differential operator.
What we can do instead is to apply Theorem 3.3. With reference to (3.8), it is 

easy to prove that

(
k(n)

n
, 𝜆k(n)

(
̂L
(n)

dir,𝛼x2

))
→

(
x,𝜔∗

𝛼
(x)

)
as n → ∞

‖‖‖‖𝜔
∗,(n)
𝛼,r,k

− 𝜆k

(
̂L

(n)

dir,𝛼x2

)‖‖‖‖∞ → 0 as n → ∞,

Table 2  In this table we check 
numerically the validity of 
Theorem 3.3 for different values 
of � and n 

It can be seen that for every � , as n increases then the relative error between 
max

k=1,…,n

||||�k
(
L

(n)

dir,�x2

)
∕�

k

(
Ldir,�x2

)|||| and max
x∈[0,1]

||�∗
�
(x)∕x2�2|| 

decreases, validating (4.7). In the table it is reported as well the ratio k0∕n , 
where k0 is the k0-th eigenvalue which achieves the maximum relative error 
between �

k

(
L

(n)

dir,�x2

)
 and �

k

(
Ldir,�x2

)
 . We can notice that k0∕n tends to a 

fixed value in (0, 1] as n increases. The approximation of �∗
�
 is obtained 

evaluating �−1
�

 from (4.4) by means of the fzero() function from Mat-
lab r2018b

n = 10
2

n = 10
3

n = 5 ⋅ 10
3

� = 0.5 | max |�(n)
k
∕�

k
|

max |�∗
�
(x)∕x2�2| − 1| 0.0104 0.0010 2.0853e-04

k0∕n 0.7900 0.7880 0.7878
� = 1 | max |�(n)

k
∕�

k
|

max |�∗
�
(x)∕x2�2| − 1| 0.0158 0.0016 3.1754e-04

k0∕n 0.6700 0.6680 0.6676
� = 1.2 | max |�(n)

k
∕�

k
|

max |�∗
�
(x)∕x2�2| − 1| 0.0180 0.0018 3.6226e-04

k0∕n 0.64 0.6310 0.6302
� = 3 | max |�(n)

k
∕�

k
|

max |�∗
�
(x)∕x2�2| − 1| 0.0518 0.0097 0.0032

k0∕n 1 1 1
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that is,

For every fixed k it holds that 𝜆k
(
̂L
(n)

dir,𝛼x2

)
 converges to 𝜆k

(
̂Ldir,𝛼x2

)
 , see [43], and 

by the continuity of �
�
�

 and by Eq. (4.6), then items (i)–(iv) of Theorem 3.3 are sat-
isfied. Finally, since it holds that ̂L

(n)

dir,𝛼𝜏(x)2 does not have outliers by [40, Theo-
rem 2.2], we conclude that

In Fig. 4 and Table 2 it is numerically checked the validity of (4.7).

4.1.2  Discretization by (2� + 1)‑points central FD method on non‑uniform grid

Clearly, everything said in the preceding Sect.  4.1.1 remains valid even if we 
increase the order of accuracy of the FD method. Within this subsection we will 
make use of the FD scheme presented in Appendix C. The theoretical analysis 
of the scheme requires a proper standalone treatment, therefore we leave it to an 
upcoming future work and some of its properties are listed as conjectures in Con-
jecture C.1. Nevertheless, we introduce it now since it is helpful to the flow of our 
discussion and to provide (numerical) evidence to our conclusions.

�n(t) =

����
�
k = 1,… , n ∶

�k(Ldir,�x2)
n2

≤ t
�����

n
→ �(t) =

√
t

�

,

(4.6)�
∗(x) = �

2x2.

(4.7)E = max
x∈[0,1]

|||||
𝜔
∗
𝛼
(x)

x2𝜋2
− 1

|||||
> 0.

Fig. 4  For � = 1.2 and n = 5 ⋅ 103 , comparison between the eigenvalues distribution of the normalized 
discrete differential operator ̂L

(n)

dir,𝛼x2
 and the exact eigenvalues of the differential operator Ldir,�x2 , nor-

malized by (n + 1)2 . The maximum spectral relative error E  is obtained for k0 ≈ 3151 , which corresponds 
to the maximum of |�∗

�
(x)∕x2�2 − 1| , achieved at x̄ ≈ 0.6301 ≈ k0∕n . See Table 2
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First of all, we can say that the spectral symbol �
�,� in (C.2) does not spectrally 

approximate the discrete differential operator L(n,�)

dir,�x2
 , in the sense of the relative 

error, for any � ≥ 1 , as we have already seen in the previous subsection for � = 1.
What is interesting instead is to change the sampling grid and to increase the 

order of accuracy � of the FD discretization method. Indeed, as it was observed in 
(4.7), it is not possible to achieve E = 0 if �∗

�,�
(x) ≠ x2�2 . From (C.2), for every 

� ≥ 1 it is easy to check that max(x,�)∈[a,b]×[0,�] ��,�(x, �) = �
∗
�,�
(1) ≠ �

2 , and so we 
do not have any improvement by just increasing the order of accuracy � . On the 
other hand, observe that if we fix a new sampling grid 

{
x̄j
}n

j=1
=
{
𝜏(xj)

}n

j=1
 , with 

� ∶ [1, e
√
�] → [1, e

√
�] a diffeomorphism, then

• from Corollary C.1 and (C.2), 

• defining �2(y) = e
√
�y , then ��2(y)

2

(��2(y))
2 ≡ 1.

In some sense, the spectral symbol �
�,� suggests us to change the uniform grid �

xj
�n

j=1
⊂ [1, e

√
𝛼] by means of the diffeomorphism induced by the Liouville trans-

formation. Indeed, from (4.2) we have that

and therefore we can compose a C∞-diffeomorphism � ∶ [1, e
√
�] → [1, e

√
�] such 

that

The new non-uniform grid is then given by

and it holds that

that is exactly (4.6). Since the discretization scheme is convergent, for every fixed k 
the local spectral relative error �(n)

k
 (see Definition 3.1) converges to zero as n → ∞ , 

and by [40, Theorem 2.2] it would hold that �k
(
L

(n,�)

dir,��(x)2

)
∈ R

�
�,�

 for every k,… , n , 
and for every fixed � ≥ 1 . From these remarks, if the validity of Conjecture C.1 
would be proved right, then we would be able to apply Theorem 3.3 and it would 
follow that

lim
�→∞

�
�,�(x, �) =

��(x)2

(��(x))2
�
e
√
� − 1

�2
�
2 for every (x, �) ∈ [1, e

√
�] × [0,�];

y(x) =
log(x)√

�

for x ∈ [1, e
√
�], x(y) = e

√
�y for y ∈ [0, 1],

(4.8)

� ∶ [1, e
√
�]

�1

��������→ [0, 1]
�2

��������→ [1, e
√
�], �1(x) =

1

e
√
� − 1

(x − 1), �2(y) = e
√
�y.

(4.9)
{
x̄j
}n

j=1
=
{
𝜏(xj)

}n

j=1
,

lim
�→∞

�
∗
�,�
(x) = �

2x2 x ∈ [0, 1],
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E = E(�) =
|||||
�
∗
�,�
(x)

�
2x2

− 1
|||||
→ 0 as � → ∞.

(a)

(c) (d)

(b)

Fig. 5  Graphic comparison between the eigenvalues distribution of the normalized discrete differential 
operators ̂L

(n,𝜂)

dir,𝛼𝜏(x)2
 obtained by means of (2� + 1)-points central FD discretization on uniform ( �(x) = x ) 

and non-uniform grids ( � as in (4.8)). The parameters � and n are fixed, with � = 1 and n = 103 , while � 
changes. Let us observe that in Fig. 5c,d, i.e., in the case of central FD discretization on the non-uniform 
grid given by (4.9), the graph of the eigenvalue distribution seems to converge uniformly to the graph of 
the exact eigenvalues (n + 1)−2�

k
 , as � increases. The same phenomenon does not happen in the case of 

central FD discretization on uniform grid, as it is clear from Fig. 5a,b. See Table 3 for a numerical com-
parison of the maximum spectral relative errors

Table 3  Comparison between the maximum spectral relative errors of the discrete differential operators 
L

(n,�)

dir,��(x)2
 obtained by means of (2� + 1)-points central FD discretization on uniform ( �(x) = x ) and non-

uniform grids ( � as in (4.8)), for increasing values of n and �

The parameter � is fixed, with � = 1 . We observe that in the uniform grid case, as n and � increase the 
maximum increases as well. On the contrary, in the non-uniform grid case given by (4.9), the maximum 
decreases as both n and � increase

E
n
= E

n
(�)

� = 1 � = 10 � = 15

n = 10
2

n = 10
3

n = 15 ⋅ 10
2

Uniform grid 0.3155 0.9057 1.0101
Non-uniform grid 0.5867 0.2210 0.1819
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See Fig. 5 and Table 3.

Table 4  Comparison between the maximum spectral relative errors of the discrete differential opera-
tors L(n,�)

dir,��(x)2
 obtained by means of IgA discretization of order � on uniform ( �(x) = x ) and non-uniform 

grids ( � as in (4.8)), for increasing values of � and n 

The parameter � is fixed, with � = 1 . We observe that in the non-uniform grid case given by (4.9), the 
maximum spectral relative error decreases as n and � increase. Let us notice that we did not take in con-
sideration the outliers, see Definition 2.3

E
n
= E

n
(�)

� = 1 � = 5 � = 10

n = 10
2

n = 5 ⋅ 10
2

n = 10
3

Uniform grid 1.7653 1.1971 1.2005
Non-uniform grid 0.4433 0.0513 0.0268

(a) (b)

(d)(c)

Fig. 6  Graphic comparison between the eigenvalues distribution of the normalized discrete differential 
operators ̂L

(n,𝜂)

dir,𝛼𝜏(x)2
 obtained by means of IgA discretization of order � on uniform ( �(x) = x ) and non-

uniform grids ( � as in (4.8)). The parameters � and n are fixed, with � = 1 and n = 102 , while � changes. 
Let us observe that in Fig. 6c, d, i.e., in the case of IgA discretization on the non-uniform grid given 
by (4.9), the graph of the eigenvalue distribution seems to converge uniformly to the graph of the exact 
eigenvalues (n + 1)−2�

k
 , as � increases. The same phenomenon does not happen in the case of IgA dis-

cretization on uniform grid, as it is clear from Fig. 6a, b. Let us notice that we did not take in considera-
tion the outliers, see Definition 2.3



 D. Bianchi 

1 3

38 Page 24 of 47

4.1.3  IgA discretization by B‑spline of degree � and smoothness C�−1

In this subsection we continue our analysis in the IgA framework, see Appendix D 
where we present some known results that are useful for our analysis. Here we just 
collect all the numerical results of the tests, which confirm again what observed in 
Sects. 4.1.1 and 4.1.2. The only difference relies on the fact that we took out the 
largest eigenvalues of the discrete operator L(n,�)

dir,��(x)2
 . This is due to the fact that the 

IgA discretization suffers of a fixed number of outliers which depends on the degree 
� and it is independent of n, see [15, Chapter 5.1.2 p. 153]. So, we consider only the 
eigenvalues �k

(
L

(n,�)

dir,��(x)2

)
 which belong to R

�
�,�

.
In Fig. 6 we compare the graphs of the eigenvalue distributions between the dis-

crete eigenvalues �k
(
L

(n,�)

dir,��(x)2

)
 and the exact eigenvalues �k

(
Ldir,�x2

)
 , for different 

values of � on uniform ( �(x) = x ) and non-uniform grids ( � as in (4.8)). They line up 
with the numerics of Table 4: if the sampling grid is given by (4.9), the maximum 
spectral relative error E  decreases as the order of approximation increases.

4.2  d‑dimensional Dirichlet Laplacian

The results of Sect.  3 can be generalized to study the maximum spectral rela-
tive error between more general linear self-adjoint differential operators and the 
numerical scheme implemented for their discretization. Let us sketch the ideas 
with a plain example.

Let � ∶ W
1,2

0

(
[0, 1]d

)
→ L2

(
[0, 1]d

)
 be the second order elliptic operator 

defined by the formal equation

It is well-known that it has empty essential spectrum and that

where cd is the volume of the unit ball in ℝd , see [32]. Define

Then it holds that 
{
Y (n)

}
n
∼
�
�
∗(x) = 4�2

(
x

cd

)2∕d

 , x ∈ [0, 1].
On the other hand, a discretization of the operator � by means of separation of 

variables and the classic equispaced (2d + 1)-points FD scheme, leads to

𝛥[u](x) ∶= −

d∑
j=1

𝜕
2u

𝜕x2
j

(x), [0, 1]d ⊂ ℝ
d.

�k(�) = �k1⋯kd
(�) =

d∑
j=1

�
2k2

j
for k1,… , kd ≥ 1,

�(t) = lim
n→∞

|||k = 1,… , nd ∶
�k(�)

(n+1)2
≤ t

|||
nd

= cd

(
t

4�2

) d

2

, t ∈ [0, 4�2∕(cd)
2∕d],

Y (n) ∶= (n + 1)−2 diag
k=1,…,nd

{
�k(�)

}
.
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for �k ∈ [0,�] , where I(n) is the identity matrix and ⊗ is the Kronecker product, and 
all the matrices are of dimension dn = nd . It holds that

where

see [23, Chapter 7.3]. Since the discretization scheme is convergent, for every fixed k 
the local spectral relative error �(n)

k
 (see Definition 3.1) converges to zero as n → ∞ , 

and by [40, Theorem 2.2] it holds that �k
(
�
(n)
)
∈ R

�
 for every k, n. Moreover, it is 

immediate to check that both �∗, �∗ are continuous, therefore we can apply Theo-
rem 3.3 to get the maximum spectral relative error:

5  Conclusions

Given a differential operator L  discretized by means of a numerical scheme, the 
knowledge of the spectral symbol � provides a way to measure how far the spectrum 
of the discretized operator is from a uniform approximation of all the spectrum of 
the original differential operator L  . Moreover, the symbol itself gives insights about 
how to build a discretization scheme such that the discrete operator could benefit of 
a spectrum that converges uniformly to the spectrum of the continuous operator, i.e., 
such that E = 0 , see (1.1). This is crucial in some engineering applications and our 
results improve those in the recent review paper by T. J. R. Hughes and coauthors.

In light of the proposed analysis, it becomes a priority to devise new specific dis-
cretization schemes with mesh-dependent order of approximation which guarantee 
a good balance between convergence to zero of the maximum spectral relative error 
and computational costs.

Finally, other applications of the spectral symbol related to the computation of 
the maximum spectral relative error have been recently addressed in the graphs set-
ting, for PDEs approximation, see [1].

𝛥
(n) = (n + 1)2

d∑
k=1

I(n) ⊗⋯⊗ I(n)

���������������

k−1

⊗T (n)
(
2 − 2 cos(𝜃k)

)
⊗ I(n) ⊗⋯⊗ I(n)

���������������

d−k

,

{
(n + 1)−2𝛥(n)

}
n
=
{
𝛥
(n)
}
n
∼
𝜆
𝜔(�) =

d∑
k=1

(2 − 2 cos(𝜃k))

� = (�1,… , �d) ∈ [0,�]d,

E = sup
x∈(0,1]

||||
𝜔
∗(x)

𝜁
∗(x)

− 1
|||| ≥

||||
𝜔
∗(1)

𝜁
∗(1)

− 1
|||| =

|||||||
4d
4𝜋2

(cd)
2∕d

− 1

|||||||
> 0.
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Proofs of Section 3

In this section we provide the rigorous proofs of the results that we presented in 
Sect. 3. Before going further in the details, we need some preliminary definitions 
and notations from measure theory, see [29].

Given a probability space (S,S, �) and a measurable function g ∶ S → ℝ , the dis-
tribution function �g ∶ ℝ → [0, 1] associated to g is defined by

It holds that �g is right-continuous, proper and with nonnegative increments. More-
over, any function � ∶ ℝ → [0, 1] satisfying those stated properties determines a 
probability measure � on ℝ such that

and vice-versa, see [29, Theorem 4.25]. In this case, we call � the distribution asso-
ciated to �.

Definition A.1 (Vague convergence) A sequence {�n}n of locally-finite measures on 
ℝ is said to converge vaguely to a measure � if and only if

In this case, we write �n

v
�����→ �.

If {�n}n and � are probability measures, that is, if �n(ℝ) = �(ℝ) = 1 , and {�n}n 
and � are their distributions, respectively, then

for every t ∈ ℝ which is a point of continuity of � , see [14, Theorem 4.4.1].
Definition A.1 and Definition 2.1 are connected. Let us set the atomic measure 

�x ∶ B → {0, 1} from the Borel sets B of ℝ such that

and define

Clearly, �n(⋅) is a probability measure and for every measurable function F ∶ ℝ → ℝ 
it holds that

�g(t) ∶= �({s ∈ S ∶ g(s) ≤ t}).

�((−∞, t]) = �(t),

(A.1)lim
n→∞∫

F(t)�n(dt) =
∫

F(t)�(dt), ∀F ∈ Cc(ℝ).

(A.2)�n

v
�����→ � if and only if �n(t) → �(t)

�x(B) ∶=

{
1 if x ∈ B,

0 if x ∉ B,

(A.3)
�n(⋅) ∶=

1

dn

d+
n∑

k = −d−
n

k ≠ 0

�
�k(X(n))(⋅).
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Lemma A.1 Let {X(n)}n be a matrix sequence and 𝜔 ∶ D ⊂ ℝM
→ ℝ be a meas-

urable function, D a measurable set with 0 < m(D) < ∞ , and such that the Leb-
esgue integral ∫

D
�(y)m(dy) exists, finite or infinite. Then {X(n)}n ∼�

� if and only 
if �n

v
�����→ � , where � is the measure on ℝ determined by the distribution function �

�
 

associated to � and defined in (2.4), i.e., such that �((−∞, t]) = �
�
(t).

Proof It is an immediate consequence of (A.1) and (2.1), and the fact that

for every measurable function F, see (2.4) and [29, Lemma 1.24].   ◻

The next lemma is a slight generalization of a well know result by Pólya, [36, 
Satz I] (see also [47, Exercise 6.4.1]).

Lemma A.2 Let 𝜙n,𝜙 ∶ (a, b) ⊆ ℝ → ℝ , where −∞ ≤ a < b ≤ +∞ . Suppose that �n 
and � are nonnegative, monotone nondecreasing and that

 (i) limt→a �n(t) = an and limn→∞ an = limt→a �(t) = 0;
 (ii) limt→b �n(t) = bn and limn→∞ bn = limt→b �(t) = c ∈ (0,+∞);
 (iii) limn→∞ �n(t) = �(t) for every t in a dense subset I of [a, b].

If � is continuous then �n converges uniformly to �.

Proof For the convenience of the reader we report here the proof. Fix 𝜖 > 0 . 
Clearly, there exists 𝛿1 = 𝛿1(𝜖) > 0 such that 0 ≤ 𝜙(t) < 𝜖 and c − 𝜖 < 𝜙(t) ≤ c 
for every t ∈ (a, a + �1) and (b − �1, b) , respectively, with a + 𝛿1 < b − 𝛿1 . Choose 
t� ∈ (a, a + �1) ∩ I , t�� ∈ (b − �1, b) ∩ I . For the continuity of � and the compactness 
of [t�, t��] , there exists 𝛿2 = 𝛿2(𝜖) > 0 such that 0 ≤ 𝜙(ti) − 𝜙(tj) < 𝜖 for every ti, tj in 
[t�, t��] such that 0 < ti − tj < 𝛿2 . Choose k = k(�) and a set of points {ti}k+1i=0

 such that 
t0 = t� , tk+1 = t�� , ti ∈ (t�, t��) ∩ I for i = 1,… , k and

By hypothesis, limn→∞ an = 0 , limn→∞ bn = c and limn→∞ �n(ti) = �(ti) for every 
i = 0,… , k + 1 , and therefore there exists N = N(�) such that

�
F(t)�n(dt) =

1

dn

d+
n∑

k = −d−
n

k ≠ 0

F
(
�k

(
X(n)

))
.

∫
F(t)�(dt) =

1

m(D) ∫D

F(�(y))m(dy)

0 < ti+1 − ti < 𝛿2 for i = 0,… , k.

0 ≤ an < 𝜖, 0 ≤ |bn − c| < 𝜖, 0 ≤ |𝜙n(ti) − 𝜙(ti)| < 𝜖
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for every n > N and for every i = 0,… , k + 1 . By monotonicity, for every t ∈ (a, b) 
it holds that

for every n > N . By a symmetric argument it can be shown that 𝜙(t) − 𝜙n(t) < 2𝜖 , 
and therefore

  ◻

We are ready to provide the proofs of Theorem 3.1, Corollary 3.1 and Corollary 3.2.

Theorem 3.1.

Proof Let us observe that �∗ is monotone increasing, right continuous and the possi-
bly non-empty set of its point of discontinuity (jumps) is at most countable. Moreo-
ver, the function �

�
 defined in (2.4) is the distribution function associated to both � 

and �∗ , that is,

The proof of the last statement follows immediately by adapting [47, Lemma 6.3.10] 
to our definition of nondecreasing monotone rearrangement. Therefore, if we indi-
cate with � the measure determined by �

�
 , by [29, Lemma 1.24] it holds that

for every measurable function F. The above identity plus (2.1) gives (3.2). Define 
now

Clearly, �n(t) = �n((−∞, t]) for every t ∈ ℝ , where �n is the probability meas-
ure defined in (A.3). By Lemma A.1 we have that �n

v
�����→ � , and by the equivalence 

(A.2) we get (3.3). Suppose now that �
�
 is continuous. Without loss of general-

ity and for the sake of simplicity, let now d−
n

(
X(n)

)
= 0 , such that k̂ = k , and define 

�k(n) ∶= �k(n)

(
X(n)

)
 . Applying Lemma A.2 it holds that �n → �

�
 uniformly. On the 

other hand, it holds that

𝜙n(t) − 𝜙(t)

≤

⎧
⎪⎨⎪⎩

(𝜙n(t0) − 𝜙(t0)) + 𝜙(t0) < 2𝜖 if t ∈ (a, t0),�
𝜙n(ti+1) − 𝜙(ti+1)

�
−
�
𝜙(ti+1) − 𝜙(ti)

�
< 2𝜖 if t ∈ [ti, ti+1], i = 0,… , k,

bn − 𝜙(tk+1) < c + 𝜖 − 𝜙(tk+1) < 2𝜖 if t ∈ (tk+1, b),

sup
t∈[a,b]

|𝜙n(t) − 𝜙(t)| < 2𝜖 ∀ n > N.

1

m(D)
m({y ∈ D ∶ �(y) ≤ t}) = �

�
(t) = �

�
∗ (t) = m({x ∈ (0, 1) ∶ �

∗(x) ≤ t}).

1

m(D) ∬D

F(�(y))m(dy) =
∫

F(t)�(dt) =
∫

1

0

F(�∗(x))m(dx)

�n(t) ∶=
N
(
X(n), t

)
dn

.
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Therefore, for every 𝜖 > 0 there exist N1 = N1(�),N2 = N2(�) ∈ ℕ such that

It follows easily that

Since x0 ∈ (0, 1) , then by (2.4) it holds that

Finally, by the above relation and by (2.3), we can conclude that

which is (3.4). Let us observe now that x0 is a jump discontinuity point for �∗ if 
and only if there exist t1 < t2 ∈ R

𝜔
 such that R

𝜔
⊆ (infR

𝜔
, t1] ∪ [t2, supR𝜔

) , 
and �

�
(t) = x0 if and only if t ∈ [t1, t2] . Therefore, if �∗ is continuous in x0 , then 

t0 = t1 = t2 ∈ R
�
 and we have (3.5).   ◻

Corollary 3.1.

Proof It is immediate from (3.3). Let us observe that

Moreover, since

x0 = lim
n→∞

k(n)

dn
= lim

n→∞

N
(
X(n), �k(n)

)
dn

= lim
n→∞

�n

(
�k(n)

)
.

sup
t∈ℝ

||𝜙n(t) − 𝜙
𝜔
(t)|| < 𝜖 ∀ n > N1,

|||𝜙n

(
𝜆k(n)

)
− x0

||| < 𝜖 ∀ n > N2.

lim
n→∞

�
�

(
�k(n)

)
= �

�

(
lim
n→∞

�k(n)

)
= x0.

lim
n→∞

�k(n) = t0 ∈ (infR
�
, supR

�
).

lim
x→x−

0

�
∗(x) = lim

n→∞
�
∗

(
k(n)

dn

)
= sup

t∈R
�

{
t ≤ t0

}
,

0 ≤ lim
n→∞

|||
{
k ∶ 𝜆k

(
X(n)

)
< infR

𝜔

}|||
dn

≤ lim
n→∞

N(X(n), infR
𝜔
)

dn
= 𝜙

𝜔

(
infR

𝜔

)
= 0.

|||
{
k ∶ 𝜆k

(
X(n)

)
∉ R

𝜔

}|||
dn

=

|||
{
k ∶ 𝜆k

(
X(n)

)
∈ ℝ

}|||
dn

−

|||
{
k ∶ 𝜆k

(
X(n)

)
∈ R

𝜔

}|||
dn

= 1 −

|||
{
k ∶ 𝜆k

(
X(n)

)
∈ R

𝜔

}|||
dn

= 1 −
N(X(n), supR

𝜔
)

dn
+

|||
{
k ∶ 𝜆k

(
X(n)

)
< infR

𝜔

}|||
dn

,
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then passing to the limit we get

The second part of the thesis follows instead by (3.3) and the easy fact that

where

  ◻

Corollary 3.2.

Proof Since �∗ is absolutely continuous then it is differentiable almost everywhere. 
Let x0 ∈ [0, 1] such that (�∗)�|x=x0 exists finite. It is clear that �∗

n
 is monotone (piece-

wise constant) and right-continuous for any n, that 𝜔∗
n
(m̂∕dn) = 𝜆m̂

(
X(n)

)
 for any 

m̂ ∈ {1,… , dn} , and that �∗
n
→ �

∗ uniformly as n → ∞ , because of (3.5) and 
Lemma A.2. Therefore, by hypothesis we have that

Since m
({

x ∈ [0, 1] ∶ ∄(�∗)�(x) or �∗(x) = 0
})

= 0 , we conclude.

Corollary 3.3.

Proof Let us observe that since there are no outliers, then eventually 
min(R

�
) ≤ �k

(
X(n)

)
≤ max(R

�
) for every k. Without loss of generality and for 

the sake of simplicity, let d−
n
= 0 . Suppose the thesis is false. Then there exists 

lim
n→∞

|||
{
k ∶ �k

(
X(n)

)
∉ R

�

}|||
dn

= 1 − �
�

(
supR

�

)
= 0.

|||
{
k ∶ �k

(
X(n)

)
≤ t, �k

(
X(n)

)
∈ R

�

}||| =
|||
{
k ∶ �k

(
X(n)

)
≤ t

}|||
−
|||
{
k ∶ �k

(
X(n)

)
≤ t, �k

(
X(n)

)
∉ R

�

}|||,

|||
{
k ∶ �k

(
X(n)

)
≤ t, �k

(
X(n)

)
∉ R

�

}||| ≤
|||
{
k ∶ �k

(
X(n)

)
∉ R

�

}||| = o(dn).

lim
n→∞

g

(
𝜆

k̂(n)+

⌈
dn

h(dn )

⌉(X(n)
))

− g
(
𝜆k̂(n)

(
X(n)

))

1

h(dn )

= lim
n→∞

g
(
𝜔
∗
n

(
k̂(n)

dn
+ 1

h(dn )

))
− g

(
𝜔
∗
n

(
k̂(n)

dn

))

1

h(dn )

= g�(𝜔∗(x0)) lim
n→∞

𝜔
∗
n

(
k̂(n)

dn
+ 1

h(dn )

)
− 𝜔

∗
n

(
k̂(n)

dn

)

1

h(dn )

= g�(𝜔∗(x0)) lim
n→∞

𝜔
∗
(

k̂(n)

dn
+ 1

h(dn )

)
− 𝜔

∗
(

k̂(n)

dn

)

1

h(dn )

= g�(𝜔∗(x0)) lim
n→∞

𝜔
�
(
𝜉n

)
, 𝜉n ∈

[
k̂(n)

dn
,
k̂(n)

dn
+

1

h(dn)

]

= g�(𝜔∗(x0))(𝜔
∗)�(x0).
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a sequence k = k(n) such that |𝜆k(n)
(
X(n)

)
− 𝜔

∗
(
k(n)∕(dn + 1)

)| > 𝜖 for some 
𝜖 > 0 . On the other hand, by the boundedness of k(n)∕(dn + 1) and by Theo-
rem 3.1, passing to a subsequence we can assume that k(n)∕(dn + 1) converges to 
a point x0 in [0, 1] and that (3.5) holds. If �∗

(
k(n)∕(dn + 1)

)
= 0 eventually, then 

|�k(n)
(
X(n)

)
− �

∗
(
k(n)∕(dn + 1)

)| → 0 , which is a contradiction. At the same time, if 
�
∗
(
k(n)∕(dn + 1)

)
 is not eventually identical to zero, then by passing again to a sub-

sequence we can assume that �∗
(
k(n)∕(dn + 1)

)
≠ 0 , and by the boundedness of R

�

which is again a contradiction.   ◻

Before introducing the proofs of Theorem  3.2 and Theorem  3.3, we need a 
couple of lemmas.

Lemma A.3 With the same notations of Theorem 3.2, if �
�2

 is continuous and 
�
∗
2
(x0) = 0 then

Proof Notice that

where �n is the probability measure defined in (A.3). Since �
�2

 is continuous, apply-
ing [14, Theorem 4.3.2]

By definition, �
�2

 is the inverse of �∗
2
 and therefore �∗

2
(x0) = 0 implies �

�2
(0) = x0 . 

From this result and (3.1) we get that

and we conclude.   ◻

Lemma A.4 With the same hypotheses and notations of Theorem 3.2, it holds that

|||||
�k(n)

(
X(n)

)
− �

∗

(
k(n)

dn + 1

)|||||
≤ c

|||||||

�k(n)

(
X(n)

)

�
∗
(

k(n)

dn+1

) − 1

|||||||
→ 0,

k̂(n)

dn
→ x0 if and only if

k(n)

dn
→ 0.

d−
n

(
Y (n)

)
dn

= �n((−∞, 0))

lim
n→∞

d−
n

(
Y (n)

)
dn

= �
�2
(0).

lim
n→∞

k̂(n)

dn
= lim

n→∞

k(n)

dn
+ lim

n→∞

d−
n
(Y (n))

dn
+ lim

n→∞

�(−∞,0)(k(n))

dn

= lim
n→∞

k(n)

dn
+ 𝜙

𝜔2
(0) = lim

n→∞

k(n)

dn
+ x0,
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or equivalently

In particular, if �∗
2
(x0) = 0 , then we have that

and if

then

Proof The first part follows from the definition. Indeed,

If we call B ∶=

{
limnj→∞ 𝛿

(nj)

k̂(nj)
∶

{
𝛿

(nj)

k̂(nj)

}

nj

∈ F

}
 , then it is easy to check that 

A ⊂ B , and then sup(A) ≤ sup(B) . On the other hand, for every element b ∈ B there 
exists an increasing sequence of indices {njm} ⊂ {nj} such that

(A.4)E = sup

{
lim
nj→∞

𝛿

(nj)

k̂(nj)
∶

{
𝛿

(nj)

k̂(nj)

}

nj

∈ F

}
,

(A.5)

E = max

{
sup

{
lim
nj→∞

𝛿

(nj)

k̂(nj)
∶

{
𝛿

(nj)

k̂(nj)

}

nj

∈ F ∩ Gc
x0

}
;

sup

{
lim
nj→∞

𝛿

(nj)

k̂(nj)
∶

{
𝛿

(nj)

k̂(nj)

}

nj

∈ F ∩ Gx0

}}

= max

{
sup

{
lim
nj→∞

𝛿

(nj)

k̂(nj)
∶

{
𝛿

(nj)

k̂(nj)

}

nj

∈ F ∩ Gc
x0

}
; supHx0

}
.

supHx0
≥ sup

k ∈ [�−, �+]
k ≠ 0

{
�k

}
,

lim sup
n→∞

|||||
|||||
�
�(k(n))

(
X(n)

)

�k(n)

(
Y (n)

) − 1
|||||
− �k(n)

|||||
= 0 for every k(n) such that lim

n→∞

k(n)

dn
= 0,

(A.6)
supHx0

= sup

k ∈ [�−, �+]
k ≠ 0

{�k}.

E = lim sup
n

En = lim sup
n

max
k̂=1,…,dn

�
𝛿
(n)

k̂

�

= sup

⎧⎪⎨⎪⎩
lim
nj→∞

max
k̂=1,…,dnj

�
𝛿

(nj)

k̂

�
∶

�
max

k̂=1,…,dnj

�
𝛿

(nj)

k̂

��

nj

∈ F

⎫⎪⎬⎪⎭
= sup(A).
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Therefore, for every b ∈ B there exists a ∈ A such that b ≤ a , and then it follows 
that sup(B) ≤ sup(A) , that is, sup(B) = sup(A) which is exactly (A.4). Identity (A.5) 
follows trivially by the definition of Hx0

 . By Lemma A.3, if �∗
2
(x0) = 0 we have that

where k(n) is the sub-index associated to 𝜆k̂(n)
(
Y (n)

)
 , that is, k(n) = 𝜗

−1
Y (n)

(k̂(n)) . With-
out loosing the generality of the proof, we will suppose hereafter that 
limnj→∞

k(nj)

dnj

= 0 without passing to a subsequence, and that d−
n

(
Y (n)

)
= d−

n

(
X(n)

)
 , 

that is, �(k) = k and then we can avoid to pass to the index k̂ . Because of this last 
assumption, we have that

Let us define now

Then there exists a subsequence {nj} such that

So, 
{
�

(nj)

k

}
∈ F and clearly k

dnj

→ 0 , consequently �k ∈ Hx0
 . Therefore 

sup
k ∈ [�−, �+]

k ≠ 0

{�k} ≤ supHx0
 . On the other hand, assuming that

then, given an element �(n)
k(n)

∈ Hx0
 , there exists a subsequence such that

Therefore,

b = lim
nj→∞

𝛿

(nj)

k̂(nj)
≤ lim sup

nj→∞
max

k̂=1,…,dnj

{
𝛿

(nj)

k̂

}
= lim

njm→∞
max

k̂=1,…,dnjm

{
𝛿

(njm )

k̂

}
.

Gx0
=

{{
𝛿

(nj)

k̂(nj)

}

nj

∶ lim
nj→∞

k(nj)

dnj

= 0 eventually by passing to a subsequence

}
,

|||||
�
�Y→X (k)

(
X(n)

)

�k

(
Y (n)

) − 1
|||||
=
|||||
�k

(
X(n)

)

�k

(
Y (n)

) − 1
|||||
= �

(n)
k
, k ∈

{
d−
n

(
Y (n)

)
,… , d+

n

(
Y (n)

)}
.

lim sup
n→∞

�
(n)
k

= �k ∈ [0,∞].

�k = lim
nj→∞

�

(nj)

k
.

lim sup
n→∞

|||�
(n)

k(n)
− �k(n)

||| = 0 for every k(n) such that lim
n→∞

k(n)

dn
= 0,

lim
j→∞

||||�
(nj)

k(nj)
− �k(nj)

|||| = 0.
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and it follows that supHx0
≤ sup

k ∈ [�−, �+]
k ≠ 0

{�k}.

Theorem 3.2.

Proof Let us begin observing that, by (A.4),

and that the set J of points such that �∗
1
 or �∗

2
 are discontinuous is at most countable, 

and the possible discontinuity points can be only jumps. Moreover, due to the strict 
monotonicity of �∗

2
 , there can exists only one point x0 ∈ (0, 1) such that �∗

2
(x0) = 0 . 

Fix x0 ∈ (0, 1) such that both �∗
1
 and �∗

2
 are continuous in x0 , and such that 

�
∗
2
(x0) ≠ 0 . Let 

{
k̂(nj)

}
 be a sequence such that k̂(nj)∕dnj → x−

0
 as nj → ∞ . Then

due to (3.4). This proves that

Let now assume that there exists x0 ∈ [0, 1] such that �2(x0) = 0 . If there exists 
x0 ∈ [0, 1] such that �2(x0) = 0 ≠ �1(x0) , then by the right-continuity of �∗

2
,

On the contrary, if there exists x0 ∈ [0, 1] such that �2(x0) = 0 = �1(x0) , then by 
(A.5) it holds that

lim
n→∞

�
(n)

k(n)
≤ lim

j→∞

||||�
(nj)

k(nj)
− �k(nj)

|||| + �k(nj)

≤ lim
j→∞

||||�
(nj)

k(nj)
− �k(nj)

|||| + sup

k ∈ [�−, �+]
k ≠ 0

{�k}

= sup

k ∈ [�−, �+]
k ≠ 0

{�k},

E = sup

{
lim
nj→∞

𝛿

(nj)

k̂(nj)
∶

{
𝛿

(nj)

k̂(nj)

}

nj

∈ F

}
,

lim
nj→∞

𝛿

(nj)

k̂(nj)
=
|||||
𝜔
∗
1
(x0)

𝜔
∗
2
(x0)

− 1
|||||
< ∞

E ≥ sup

x ∈ (0, 1) ⧵ J;

x ∶ �
∗
2
(x) ≠ 0

�����
�
∗
1
(x)

�
∗
2
(x)

− 1

�����
= sup

x ∈ (0, 1);

x ∶ �
∗
2
(x) ≠ 0

�����
�
∗
1
(x)

�
∗
2
(x)

− 1

�����
= max

⎧⎪⎪⎪⎨⎪⎪⎪⎩

sup

x ∈ (0, 1);

x ∶ �
∗
2
(x) ≠ 0

�����
�
∗
1
(x)

�
∗
2
(x)

− 1

�����
;0

⎫⎪⎪⎪⎬⎪⎪⎪⎭

.

sup

x ∈ (0, 1);
x ∶ �

∗
2
(x) ≠ 0

|||||
�
∗
1
(x)

�
∗
2
(x)

− 1
|||||
= +∞ = �.
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Therefore, we can conclude that

which is exactly (3.7).
Let us now suppose that both �∗

1
,�∗

2
 are continuous, that {X(n)}n, {Y

(n)}n do not 
have outliers and that R

�1
,R

�2
 are bounded, that is, compact. If we prove the reverse 

inequality in (3.7), then we can conclude. By our assumptions it follows easily that

for every n and k̂ = 1,… , dn , that is, for every n and for every k̂ there exist 
x1, x2 ∈ [0, 1] such that

Notice that if there exists x0 ∈ [0, 1] such that �∗
2
(x0) = 0 ≠ �

∗
1
(x0) then

Therefore, hereafter we will suppose that either �∗
2
(x) ≠ 0 for every x ∈ [0, 1] or that 

there exists x0 ∈ [0, 1] such that �∗
2
(x0) = 0 = �

∗
1
(x0) . Fix a sequence 

{
𝛿

(nj)

k̂(nj)

}

nj

∈ F . 

By the boundedness of k̂(nj)∕dnj , there exists a subsequence {njm} such that

Then by Theorem 3.1 it happens that

If �∗
2
(x0) ≠ 0 , then limnj→∞ 𝛿

(nj)

k̂(nj)
 is finite, in particular

E ≥ sup

{
lim
nj→∞

𝛿

(nj)

k̂(nj)
∶

{
𝛿

(nj)

k̂(nj)

}

nj

∈ F ∩ Gx0

}
= supHx0

= 𝜎.

E ≥ max

⎧
⎪⎪⎨⎪⎪⎩

sup

x ∈ (0, 1);
x ∶ �

∗
2
(x) ≠ 0

�����
�
∗
1
(x)

�
∗
2
(x)

− 1
�����
;�

⎫
⎪⎪⎬⎪⎪⎭

,

𝜆k̂

(
x(n)

)
∈ R

𝜔1
= 𝜔

∗
1
([0, 1]), 𝜆k̂

(
Y (n)

)
∈ R

𝜔2
= 𝜔

∗
2
([0, 1])

𝜆k̂

(
X(n)

)
= 𝜔

∗
1
(x1), 𝜆k̂

(
Y (n)

)
= 𝜔

∗
2
(x2).

E = +∞ = sup

x ∈ (0, 1);
x ∶ �

∗
2
(x) ≠ 0

|||||
�
∗
1
(x)

�
∗
2
(x)

− 1
|||||
= �.

lim
njm→∞

k̂(njm)

dnjm

= x0 ∈ [0, 1].

{
limnjm→∞ 𝜆k̂(njm )

(
X(njm )

)
= 𝜔

∗
1
(x0) ∈ (−∞,+∞),

limnjm→∞ 𝜆k̂(njm )

(
Y (njm )

)
= 𝜔

∗
2
(x0) ∈ (−∞,+∞).
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If, instead, x0 is such that �∗
2
(x0) = 0 = �

∗
1
(x0) , then by (A.6) it holds that

Combining all the results obtained till now, we can conclude that

  ◻

Theorem 3.3.

Proof Clearly, if we set

then

By Item (iv), Lemma A.1 and Theorem 3.1, it follows immediately that 
{
Ŷ (n)

}
∼
𝜆
𝜁
∗ , 

that 𝜆k
(
Ŷ (n)

)
∈ R

𝜁
∗ = 𝜁

∗([0, 1]) for every k = −d−
n
,… ,−1, 1,… , d+

n
 , and that there-

fore the sequence 
{
Ŷ (n)

}
 satisfies the hypotheses of Theorem  3.2. By items (ii)-

(iii), we have that 
{
X̂(n)

}
∼
𝜆
𝜔 and it also satisfies the hypotheses of Theorem 3.2. 

Therefore,

By Item (i), it follows that � = 0 and we conclude.   ◻

lim
nj→∞

𝛿

(nj)

k̂(nj)
= lim

njm→∞

||||||

𝜆k̂(njm )

(
X(njm )

)

𝜆k̂(njm )

(
Y (njm )

) − 1

||||||
=
|||||
𝜔
∗
1
(x0)

𝜔
∗
2
(x0)

− 1
|||||
.

lim
nj→∞

𝛿

(nj)

k̂(nj)
≤ sup

k ∈ [𝜅−, 𝜅+]
k ≠ 0

{
lim sup
n→∞

|||||
𝜆
𝜗(k)

(
X(n)

)

𝜆k

(
Y (n)

) − 1
|||||

}
= 𝜎.

E ≤ max

⎧
⎪⎪⎨⎪⎪⎩

sup

x ∈ (0, 1);
x ∶ �

∗
2
(x) ≠ 0

�����
�
∗
1
(x)

�
∗
2
(x)

− 1
�����
;�

⎫
⎪⎪⎬⎪⎪⎭

.

X̂(n) ∶= h(dn)X
(n), Ŷ (n) ∶= h(dn)Y

(n),

E
(
X(n), Y (n)

)
= E

(
X̂(n), Ŷ (n)

)
.

E
�
X̂(n), Ŷ (n)

�
≥ max

⎧
⎪⎪⎨⎪⎪⎩

sup

x ∈ [0, 1]
x ∶ 𝜁

∗(x) ≠ 0

����
𝜔
∗(x)

𝜁
∗(x)

− 1
����;𝜎

⎫
⎪⎪⎬⎪⎪⎭

.
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Proofs of Section 4

Proposition B.1 Let us consider a Sturm-Liouville operator defined by the formal 
equation

such that

 (i) p, p�,w,w�, q, (pw)�, (pw)�� ∈ C([a, b]);
 (ii) p,w > 0;
 (iii) regular BCs.

Discretize the above self-adjoint linear differential operator LBCs,p(x),q(x),w(x) by 
means of a numerical scheme, and let L(n,�)

BCs,p(x),q(x),w(x)
 be the correspondent dis-

crete operator, where n is the mesh fineness parameter and � is the order of 
approximation of the numerical scheme. Define B = ∫

b

a

√
w(x)

p(x)
m(dx) . If:

(a) for every fixed k ∈ ℕ , 

(b) there exists � ∶ [a, b] × [−�,�] → ℝ , � ∈ L1([a, b] × [−�,�]) such that

(c) for every � , the monotone rearrangement �∗
�
 , as defined in (2.3), is such that

Then, for every fixed k ∈ ℕ

LBCs,p(x),q(x),w(x)[u](x) ∶=
1

w(x)

[
−𝜕x

(
p(x)𝜕xu(x)

)
+ q(x)u(x)

]
, x ∈ (a, b) ⊂ ℝ,

lim
n→∞

�k

(
L

(n,�)

BCs,p(x),q(x),w(x)

)
= �k

(
LBCs,p(x),q(x),w(x)

)
;

{
(dn + 1)−2L(n,𝜂)

BCs,p(x),q(x),w(x)

}
n

=
{
̂L
(n,𝜂)

BCs,p(x),q(x),w(x)

}
n
∼
𝜆
𝜔(x, 𝜃) (x, 𝜃) ∈ [a, b] × [−𝜋,𝜋];

�
∗
�
(x) ∼

x2�2

B2
, as x → 0.

lim
n→∞

|||||||

(dn + 1)2�∗
�

(
k

dn+1

)

�k

(
L

(n,�)

BCs,p(x),q(x),w(x)

) − 1

|||||||

= lim
n→∞

|||||||

(dn + 1)2�∗
�

(
k

dn+1

)

�k

(
LBCs,V

) − 1

|||||||
= ck ≥ 0, lim

k→∞
ck = 0,
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with ck independent of � , and where LBCs,V is the differential operator associated to 
the normal form of LBCs,p(x),q(x),w(x) by the Liouville transform y(x) ∶= ∫

x

a

√
w(t)

p(t)
m(dt) . 

In particular,

where ���∗,(n)
�,r,k

 is the analytic spectral relative error of Definition 4.1.

Proof By standard theory it holds that

Therefore, from item (c)

Then it is immediate to prove that if

then

Moreover,

and then ck → 0 as k → ∞ .   ◻

Corollary B.1 If

lim
n→∞

���
∗,(n)
�,r,k

= ck,

�k

(
LBCs,p(x),q(x),w(x)

)
= �k

(
LBCs,V(y)

)
and �k

(
Ldir,V≡0

)
= �k

(
�dir

)
=

k2�2

B2
.

(B.1)lim
n→∞

(dn + 1)2�∗
�

(
k

dn + 1

)
=

k2�2

B2
= �k

(
�dir

)
.

�k

(
LBCs,V(y)

)
≠

k2�2

B2
= �k

(
�dir

)
,

lim
n→∞

|||||||

(dn + 1)2𝜔∗
𝜂

(
k

dn+1

)

𝜆k

(
L

(n,𝜂)

BCs,p(x),q(x),w(x)

) − 1

|||||||
= lim

n→∞

|||||||

(dn + 1)2𝜔∗
𝜂

(
k

dn+1

)

𝜆k

(
LBCs,p(x),q(x),w(x)

) − 1

|||||||

= lim
n→∞

||||||

k2𝜋2

B2

𝜆k

(
LBCs,V(y)

) − 1

||||||
= ck > 0.

lim
n→∞

�k

(
L

(n,�)

BCs,p(x),q(x),w(x)

)
=�k

(
LBCs,p(x),q(x),w(x)

)

=�k
(
LBCs,V(y)

)
∼

k2�2

B2
for k → ∞,

�
�
(x, �) =

p(x)

w(x)(b − a)2
f
�
(�), (x, �) ∈ [a, b] × [0,�],
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with f
�
(�) nonnegative, nondecreasing and such that f

�
(�) ∼ �

2 as � → 0 , then item 
(c) of Proposition B.1 is satisfied.

Proof From (2.4) and (2.3), for all t ∈
[
0, t0

]
 , with

we have that

where

By the monotonicity of f
�
 , it holds that �y(t) = [0, �y(t)] , 

�y(t) ∶= sup{� ∈ [0,�] ∶ f
�
(�) ≤ (b−a)2w(y)

p(y)
t} , and then �y(t) → 0 as t → 0 . So, by 

the boundedness of w(y)/p(y), for every 𝜖 > 0 there exists 𝛿
𝜖
> 0 independent of y 

such that for every t ∈ [0,min{t0;��}] then (1 − 𝜖)𝜃2 < f
𝜂
(𝜃) < (1 + 𝜖)𝜃2 , and

where

Then it holds that

By definition (2.3), t → 0 as x → 0 and then

and the thesis follows.   ◻

Remark 2 The matrix methods of Sects. C, D satisfy the hypotheses of Proposition 
B.1, see Conjecture C.1 and Theorem D.1, and Corollary C.1 and Corollary D.1. 
Therefore, in general, a uniform sampling of their spectral symbols does not provide 

t0 = (b − a)−2 max
[a,b]

(p(y)∕w(y)) sup
[0,�]

(
f
�
(�)

)
,

�
�
�

(t) =
1

�(b − a) ∫

b

a

(
∫

�

0

�
�y(t)

(�)d�

)
dy,

�y(t) ∶=

{
� ∈ [0,�] ∶ 0 ≤ f

�
(�) ≤

(b − a)2w(y)

p(y)
t

}
.

1

�(b − a) �

b

a

m
(
�

+
y
(t)
)
m(dy) ≤ �

�
�

(t) ≤
1

�(b − a) �

b

a

m
(
�

−
y
(t)
)
m(dy),

�
+
y
(t) ∶=

{
� ∈ [0,�] ∶ �

2
≤

(b − a)2

1 + �

w(y)

p(y)
t

}
,

�
−
y
(t) ∶=

{
� ∈ [0,�] ∶ �

2
≤

(b − a)2

1 − �

w(y)

p(y)
t

}
.

B

�

√
1 + �

√
t ≤ �

�
�

(t) ≤
B

�

√
1 − �

√
t, B =

�

b

a

�
w(y)

p(y)
dy.

(1 − �)
x2�2

B2
≤ �

∗
�
(x) ≤ (1 + �)

x2�2

B2
for x small enough ,
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an accurate approximation of the eigenvalues �k

(
L

(n,�)

BCs,p(x),q(x),w(x)

)
 and 

�k

(
LBCs,p(x),q(x),w(x)

)
 , in the sense of the relative error. See Sects. 4.1.1, 4.1.2 and 

4.1.3 for numerical examples. On the other hand,

if we exclude the outliers, see Corollary 3.3 and Fig. 2.

(2� + 1)‑points central FD discretization

In this section we present an high-order central FD discretization scheme which is 
a slight modification of the standard ones available in the literature. Since it is used 
only in the numerical Sect. 4.1.2 and since the main focus of this paper is to ana-
lytically calculate the MSRE, see Theorem 3.2 and Theorem 3.3, we will not provide 
proofs of the main properties of this scheme, in order to keep the length of the paper 
contained. Even if the main properties will be stated as conjectures and the rigor-
ous theoretic analysis will be left for a possible future work, we will give some hints 
and comment about how to prove them. Nevertheless, we wish to point out that in 
Sect. 4.1.2 there are consistent numerical evidences of the validity of Conjecture C.1.

Let us consider the following one dimensional self-adjoint operator

with p ∈ C2([a, b]) and p > 0 (see [17, 21]). For a general review of FD methods we 
refer to [43]. Fix �, n ∈ ℕ and � ≥ 1 . Given a standard equispaced grid 
� =

{
xj
}n+𝜂

j=1−𝜂
⊆

[
ā, b̄

]
 , with

let us consider a C1-diffeomorphism � ∶ [a, b] → [a, b] such that �
�(x) ≠ 0 , 

�(a) = a, �(b) = b and let us consider its piecewise C1-extension 𝜏 ∶
[
ā, b̄

]
→

[
ā, b̄

]
 

such that

By means of the piecewise C1-diffeomorphism 𝜏 we have a new (extended) grid 
�̄ =

{
x̄j
}n+𝜂

j=1−𝜂
⊂ [ā, b̄] , non necessarily uniformly equispaced, with x̄j = 𝜏(xj) . Com-

bining together the high-order central FD schemes presented in [2, 3, 33], we obtain 
the following matrix operator as approximation of (C.1):

‖‖‖‖𝜔
∗
𝜂

(
k

n + 1

)
− 𝜆k

(
̂L
(n,𝜂)

BCs,p(x),q(x),w(x)

)‖‖‖‖∞ → 0 as n → ∞,

(C.1)Ldir,p(x)[u](x) ∶= −
(
p(x)u�(x)

)�
, dom

(
Ldir,p(x)

)
= W

1,2

0
((a, b)),

ā = a − (b − a)
𝜂 − 1

n + 1
< a, b̄ = b + (b − a)

n + 𝜂

n + 1
> b, xj = a + (b − a)

j

n + 1
,

𝜏(x) =

⎧⎪⎨⎪⎩

x if x ≤ a,

𝜏(x) if x ∈ (a, b)
x if x ≥ b.
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where, if we define the C0-extension of p(x) to [ā, b̄] as

and the element li,j as

then the generic matrix element of L(n,𝜂)

dir,p(x̄)
 is given by

The extended functions 𝜏, p̄ on [ā, b̄] ⊃ [a, b] serve to implement correctly the BCs. 
With abuse of notation, we will call � the order of approximation of the central FD 
method. We conjecture now some of the properties of this scheme, providing then a 
sketch of the proofs.

Conjecture C.1 In the above assumptions, for � ≥ 1 it holds that 

 (i) the eigenvalues 𝜆k
(
L

(n,𝜂)

dir,p(x̄)

)
 are real for every k and 

L
(n,𝜂)

dir,p(x̄)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l1,1 ⋯ l1,1+𝜂 0 ⋯ 0

l2,1 l2,2 ⋯ l2,2+𝜂 0 ⋯ 0

⋱ ⋱

⋱ ⋱ ⋱

0 ⋯ 0 lk,k−𝜂 ⋯ lk,k ⋯ lk,k+𝜂 0 ⋯ 0

⋱ ⋱ ⋱

⋯ ln,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ ℝ
n×n,

p̄(x) =

⎧
⎪⎨⎪⎩

p(a) for x ≤ a,

p(x) for x ∈ (a, b)
p(b) for x ≥ b,

li,j =

2p̄
�

x̄j+x̄i

2

�∑i+𝜂

m = i − 𝜂

m ≠ i, j

∏i+𝜂

k = i − 𝜂

k ≠ i, j,m

�
x̄k − x̄i

�

�
x̄j − x̄i

�∏i+𝜂

k = i − 𝜂

k ≠ i, j

�
x̄k − x̄j

� , for i ≠ j,

�
i = 1,… , n,

j = i − 𝜂,… , i + 𝜂,

�
L

(n,𝜂)

dir,p(x̄)

�
i,j
=

⎧
⎪⎪⎨⎪⎪⎩

li,j for i ≠ j, �i − j� ≤ 𝜂, i, j = 1,… , n,

−
∑i+𝜂

k = i − 𝜂

k ≠ i

li,k for i = j, i = 1,… , n,

0 for i ≠ j, �i − j� > 𝜂, i, j = 1,… , n.
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 (ii) 
 where 

 and 

 (iii) 𝜆k

(
̂L
(n,𝜂)

dir,p(x̄)

)
∈ R

𝜔
𝜂

 for every k, n.

Item (i) can be proved by a straightforward generalization of standard tech-
niques, see [12, Theorem 1] and [16, 25]. About item (ii), we recall that the “hat” 
means that the matrix operator has been normalized by (n + 1)2 . Let us prelimi-
narily observe that in the case of �(x) = x and p(x) ≡ 1 then ̂L

(n,𝜂)

dir
 is a symmetric 

Toeplitz matrix defined by

where d
�,k are the coefficients of the trigonometric polynomial f

�
 in (C.3), see [33, 

Corollary 2.2] and [30, Eq. (27)]. By standard results on the eigenvalues distribution 
of Toeplitz matrices (see for example [22, item T 4 p. 168]) it holds that

The strategy to prove (ii) is the following:

• show that ̂L
(n,𝜂)

dir,p(x̄)
= Xn + Yn , with Xn symmetric and such that ‖Xn‖, ‖Yn‖ ≤ C , 

n−1‖Yn‖1 → 0 as n → ∞ , where ‖ ⋅ ‖ and ‖ ⋅ ‖1 are the spectral norm and the 
Schatten 1-norm, respectively;

• show that {Xn}n ∼GLT �
�
(x, �) , see [22, Definition 8.1];

• Conclude that { ̂L
(n,𝜂)

dir,p(x̄)
}n ∼𝜆

𝜔
𝜂
(x, 𝜃) by [22, item GLT 2 p. 170].

Finally, item (iii) can be recovered from [40, Theorem 2.2].

lim
n→∞

𝜆k

(
L

(n,𝜂)

dir,p(x̄)

)
= 𝜆k

(
Ldir,p(x)

)
for every fixed k.

(C.2)
{
(n + 1)−2L(n,𝜂)

dir,p(x̄)

}
n
=
{
̂L
(n,𝜂)

dir,p(x̄)

}
n
∼
𝜆
𝜔
𝜂
(x, 𝜃) (x, 𝜃) ∈ [a, b] × [0,𝜋],

�
�
(x, �) =

p(�(x))

(��(x))2(b − a)2
f
�
(�),

(C.3)

f
�
(�) = d

�,0 + 2

��
k=1

d
�,k cos(k�), d

�,k =

�
(−1)k �!�!

(�−k)!(�+k)!

2

k2
for k = 1,⋯ �,

−2
∑

�

j=1
d
�,j for k = 0.

(
̂L
(n,𝜂)

dir

)
i,j
=

d
𝜂,|i−j|

(b − a)2
or equivalently L

(n,𝜂)
dir

= (b − a)−2Tn
(
f
𝜂

)
,

(C.4)
{
̂L
(n,𝜂)

dir

}
n
∼
𝜆

f
𝜂
(𝜃)

(b − a)2
, 𝜃 ∈ [0,𝜋].
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Remark 3 Notice that the spectral symbol �
�
(x, �) consists of the product of two 

functions:

• the function p(�(x))

(��(x))2(b−a)2
 which consists of the diffusion coefficient p(x) and the 

diffeomorphism �(x) , which are all intrinsic to the differential operator (C.1) 
itself and depend on the spatial variable x;

• f
�
(�) , which is intrinsic to the discretization method and depends on the spec-

tral variable �.

Let us now state some analytical properties of the symbol function f
�
 in (C.3). 

We want to highlight that it shares the same properties of the symbol function 
associated to the IgA scheme, see Corollary D.1. This is pretty interesting, since 
it seems to suggest that, whatever is the (consistent) numerical approximating 
scheme, the limit symbol converges to the inverse Weyl distribution function of 
the continuous operator, as the order of approximation increases.

Corollary C.1 For every fixed � , the function f
�
 is differentiable, nonnegative, mono-

tone increasing on [0,�] and it holds that

Proof f
�
(�) is obviously C∞([0,�]) . Let us begin to prove that f

�
(�) ∼ �

2 as � → 0 
for every fixed � , and that it is monotone nonnegative on [0,�] . By the Taylor expan-
sion at � = 0 we get

f
�
(�) ∼ �

2 as � → 0, lim
�→∞

sup
�∈[0,�]

|||f�(�) − �
2||| = 0.

f
�
(�) = d

�,0 +

��
k = −�
k ≠ 0

d
�,k cos(k�)

= d
�,0 +

��
k = −�
k ≠ 0

d
�,k

�
1 −

(k�)2

2

�
+ o(�3)

= −�2
��

k = −�
k ≠ 0

(−1)k
�!�!

(� − k)!(� + k)!
+ o(�3)

= −�2

⎡⎢⎢⎢⎢⎢⎣

(−1)�
�!�!

(2�)!

2��
m = 0

m ≠ �

(−1)m
�
2�

m

�
⎤⎥⎥⎥⎥⎥⎦

+ o(�3)

= �
2 + o(�3).
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Moreover, let us observe that

Define then

It is immediate to check that a1 ≥ a2 ≥ … ≥ an > 0 and that

By [4, Theorem 1] we can conclude that g(𝜓) > 0 on (0,�) and then f �
𝜂
(𝜃) > 0 on 

(0,�) . Since f
�
(0) = 0 , we deduce that f

�
(�) ≥ 0 on [0,�] . The second part of the 

thesis is an immediate consequence of identities (C.3). Indeed,

and then, by dominate convergence, it is easy to prove that for every fixed � ∈ [0,�] 
it holds that

since 
{
�
2∕3

}
∪
{
(−1)k4∕k2

}
k≥1

 are the Fourier coefficients of �2 on [0,�] . The con-
vergence is uniform by Lemma A.2.   ◻

Isogeometric Galerkin discretization by B‑splines of degree � 
and smoothness C�−1

For a general review of the IgA discretization method we refer the reader to [15, 27], 
so we skip all the introductions and we present directly some known results.

Theorem D.1 Let (a,  b) be discretized by a uniform mesh 
{
xj
}n

j=1
 of step-size 

(n + 1)−1 and let � ∶ [a, b] → [a, b] a C1-diffeomorphism such that �(a) = a, �(b) = b 
and ��(x) ≠ 0 for every x ∈ [a, b] . Let x̄ ∶= 𝜏(x) , � ≥ 1 , and let us indicate with 
L

(n,𝜂)

dir,p(x̄)
 the discrete operator obtained from (C.1) by an IgA discretization scheme 

with B-splines of degree � and smoothness C�−1 . Then

f
�
(�) = d

�,0 + 2

�∑
k=1

|||d�,k
||| cos(k(−� + �)), f �

�
(�) = 2

�∑
k=1

k
|||d�,k

||| sin(k(−� + �)).

g(�) =

�∑
k=1

ak sin(k�), with � = −� + � ∈ [0,�], and ak = 2k
|||d�,k

|||.

(2k)a2k ≤ (2k − 1)a2k−1 ∀k ≥ 1.

|d
𝜂,k| ≤ 2

k2
,

∞∑
k=1

2

k2
< ∞,

lim
�→∞

f
�
(�) = lim

�→∞

(
−2

�∑
k=1

d
�,k

)
+ 2 lim

�→∞

(
�∑

k=1

d
�,k cos(k�)

)

=
�
2

3
+ 4

∞∑
k=1

(−1)k

k2
cos(k�)

= �
2,
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 (i) the eigenvalues 𝜆k
(
L

(n,𝜂)

dir,p(x̄)

)
 are real for every fixed k and

 (ii) it holds that

where

For example, for � = 1, 2 , f
�
(�) has the following analytical expressions

Proof For item (i) see [7, 37]. For item (ii), see [22, Theorem 10.15].   ◻

About the spectral symbol �
�
 see again Remark 3. We have an analogue of Corol-

lary C.1.

Corollary D.1 For every fixed � , the function f
�
 is differentiable, nonnegative, mono-

tone increasing on [0,�] and it holds that

Proof See [21, Theorem 1, Theorem 2 and Lemma 1].   ◻
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lim
n→∞

𝜆k

(
L

(n,𝜂)

dir,p(x̄)

)
= 𝜆k

(
Ldir,p(x)

)
;

{
(n + 1)−2L(n,𝜂)

dir,p(x̄)

}
n
=
{
̂L
(n,𝜂)

dir,p(x̄)

}
n
∼
𝜆
𝜔
𝜂
(x, 𝜃), (x, 𝜃) ∈ [a, b] × [0,𝜋],

�
�
(x, �) =

p(�(x))

(��(x))2(b − a)2
f
�
(�),

f1(�) =
6(1 − cos �)

2 + cos �
, f2(�) =

20(3 − 2 cos � − cos(2�))

33 + 26 cos � + cos(2�)
.

f
�
(�) ∼ �

2 as � → 0, lim
�→∞

sup
�∈[0,�]

|||f�(�) − �
2||| = 0.
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