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Abstract
The velocity solution of the incompressible Stokes equations is not affected by 
changes of the right hand side data in form of gradient fields. Most mixed meth-
ods do not replicate this property in the discrete formulation due to a relaxation of 
the divergence constraint which means that they are not pressure-robust. A recent 
reconstruction approach for classical methods recovers this invariance property for 
the discrete solution, by mapping discretely divergence-free test functions to exactly 
divergence-free functions in the sense of H(div) . Moreover, the Stokes solution has 
locally singular behavior in three-dimensional domains near concave edges, which 
degrades the convergence rates on quasi-uniform meshes and makes anisotropic 
mesh grading reasonable in order to regain optimal convergence characteristics. 
Finite element error estimates of optimal order on meshes of tensor-product type 
with appropriate anisotropic grading are shown for the pressure-robust modified 
Crouzeix–Raviart method using the reconstruction approach. Numerical examples 
support the theoretical results.

Keywords  Anisotropic finite elements · Incompressible Stokes equations · 
Divergence-free methods · Pressure-robustness · Edge singularity

Mathematics Subject Classification  65N30 · 65N15 · 65N12

1  Introduction

When considering polyhedral domains, the solution of the Stokes equations 
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 shows in general singular behavior near corners and edges. On quasi-uniform 
meshes, this leads to sub-optimal performance of standard numerical methods, 
which can be remedied by local mesh refinement near the singular sections of the 
boundary. Isotropic refinement can compensate the negative effect of the singular 
solution, but also leads to over-refinement near edges and thus a waste of computa-
tional resources. Anisotropic refinement on the other hand can recover the optimal 
convergence rate [6, 11, 12], while the number of elements N in the mesh still satis-
fies N ∼ h−3 , where h is the mesh size parameter.

Unfortunately, many classical mixed methods do not fulfill the discrete inf-sup 
stability condition independently of the aspect ratio of the triangulation, which may 
be unbounded in the case of anisotropic grading. For instance, the standard proof 
of the inf-sup condition for the Taylor–Hood and Mini-element leads to a constant 
that depends on the aspect ratio. While for the lowest order Taylor–Hood pair a new 
proof has been found recently that shows inf-sup stability on a class of anisotropic 
meshes [13], the Mini-element is reported to become unstable with decreasing mini-
mum angle in the triangulation [2].

However, several inf-sup stable methods are known for anisotropic triangula-
tions in two dimensions, e.g. the Bernardi–Raugel and related elements [10] and 
the stabilized Q1∕Q1 , Q1∕Q0 and rotated Q̃1∕P0 elements for quadrilaterals [14, 15]. 
Additionally, results are available for the hp-version finite element method, see e.g. 
[4, 5, 36]. The Crouzeix–Raviart element [18], which we will focus on in this con-
tribution, is inf-sup stable on simplicial triangulations in two and three dimensions, 
without any condition on the mesh [12, Lemma 3.1].

In addition to its low regularity near concave edges, the velocity solution of the 
Stokes problem is not affected by changes in form of gradient fields on the right 
hand side. This property leads to the notion velocity-equivalence of forces, i.e. 
f 1, f 2 ∈ L2(Ω) are velocity-equivalent, f 1 ≃ f 2 , if they lead to the same velocity 
solution of (1), see [23]. That is the case if and only if they differ by a gradient field, 
see e.g. [3, 27, 31]. Reproducing this continuous property on the discrete level poses 
an additional difficulty for discretization schemes, and most classical methods do 
not overcome it. In fact, error estimates for classical H1-conforming methods are in 
general of the form, see e.g. [24, 27],

where ∥ ⋅ ∥k is the standard Hk(Ω)-Sobolev norm and CF is the stability constant 
of the Fortin operator of the mixed method. Some divergence-free H1-conforming 
methods exist, e.g. the Scott–Vogelius element, see [39], and the rational bubble 
enriched methods from [25, 26], where the error estimate does not contain the sec-
ond, pressure-dependent term, for more references see also [27]. For the non-diver-
gence-free methods however, this type of estimate implies that in settings where the 

(1a)−�Δu + ∇p = f ,

(1b)∇ ⋅ u = 0,

(2)∥ u − uh ∥1≤ 2(1 + CF) inf
vh∈Xh

∥ u − vh ∥1 +
1

�
inf

qh∈Qh

∥ p − qh ∥0,
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continuous pressure is more difficult to approximate compared to the velocity, the 
velocity approximation can be highly inaccurate.

Consider for example a hydrostatic case where the exact velocity is given as u ≡ 0 
and the continuous pressure is a polynomial of order k. Then for classical meth-
ods using piecewise polynomials of order less than k for the pressure approxima-
tion, in general inaccurate discrete velocity solutions u ≢ 0 and a locking effect for 
� → 0 can be observed, where the errors may become arbitrarily large. In contrast, 
so called pressure-robust methods, i.e. methods that see the velocity-equivalence of 
forces, yield the exact velocity solution, even for lowest-order mixed methods with 
piecewise constant pressure approximation, see [23, Section 2.5].

Additionally to the naturally pressure-robust class of H(div)-conforming finite 
element methods, see e.g. [16, 37, 38], and the already mentioned divergence-free 
H1-conforming methods from [25, 26, 39], a recent approach using a reconstruction 
operator on the velocity test functions in the linear form showed that most classical 
mixed methods can be made pressure-robust at the cost of an additional consist-
ency error, see e.g. [27, 28, 30]. In [9] the pressure-robust modified Crouzeix–Ravi-
art element was analyzed on anisotropic triangulations, using the assumption of a 
regular solution, i.e. (u, p) ∈ H2(Ω) × H1(Ω) . In this article we extend those results 
to the case of domains with concave edges and low regularity of the exact solu-
tions. Recently in [31], the reconstruction approach was investigated with minimal 
assumptions on the regularity of the solution, but without admitting the use of aniso-
tropic triangulations.

The main contribution of this paper is a pressure-robust estimate for the veloc-
ity solution of the modified Crouzeix–Raviart method in low-regularity settings 
due to non-smooth domains. The estimate shows that when appropriate anisotropic 
mesh grading towards a non-convex edge is used, an optimal convergence rate can 
be achieved by the pressure robust method. We provide an estimate on the pressure 
error for the modified method in the anisotropic setting as well. Numerical examples 
support the theoretical results, and show that in cases with low regularity data the 
pressure-robust variants can be superior to the standard method.

The article is structured as follows. Section 2 introduces the problem and basic 
notation. The type of mesh and the modified Crouzeix–Raviart method is described 
in Sect. 3, and Sect. 4 shows some aspects of the Helmholtz–Hodge decomposition 
of vector fields which are important to the analysis. Section 5 contains the a-priori 
error analysis, Sect. 6 shows the performance of the method with the help of two 
numerical examples.

2 � Continuous Stokes problem

Consider a prismatic domain Ω = G × Z , where G is a polygonal shape with one 
concave corner at which the interior angle is � ∈ (�, 2�) , and Z is a bounded inter-
val. To facilitate notation we assume that the non-convex corner of G is placed at 
the origin, i.e. the relevant edge of Ω is located on the z-axis. On the domain Ω , con-
sider the incompressible Stokes equations (1) with homogeneous Dirichlet boundary 
condition
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where � is the kinematic viscosity and vector valued quantities are denoted in bold 
symbols. For f ∈ L2(Ω) , the corresponding weak formulation given by 

 has a unique solution (u, p) ∈ X × Q , see e.g. [24, Section I.5.1], where

and (⋅, ⋅) denotes the L2(Ω) scalar product. With the space of divergence-free 
functions

we can reformulate the problem, see [24, Section I.5.1]: find u ∈ V0 , so that

Additionally to the well known Stokes theory, see e.g. [24], which states the regular-
ity of the solution in the Hilbert space case as above, Theorem 2.1 in [22] classifies 
the solution in a more general setting: for f ∈ W−1,q(Ω) and appropriate regularity 
of the boundary condition we have (u, p) ∈ W1,q(Ω) × L

q

0
(Ω) , with 1 < q < ∞.

For the special case of convex prismatic polyhedral domains, we can assume that 
the solution of problem (3) satisfies (u, p) ∈ H2(Ω) × H1(Ω) , see [19]. This is in 
general not the case for non-convex geometries like the ones we are considering, 
but Theorem 2.1 in [12] gives a regularity result for our case in weighted Sobolev 
spaces. In particular, the derivatives of the solution in the direction parallel to the 
concave edge have the standard regularity, i.e. �zu ∈ H1(Ω) and �zp ∈ L2(Ω) . The 
global regularity of u is however characterized by r� , where r is the distance to the 
singular edge and � is the smallest positive solution of

for which 1∕2 < 𝜆 < 𝜋∕𝜔 holds, see [19].

3 � Discretization

Figure 1 shows the type of anisotropically graded tensor-product mesh used for the 
discretization of the problem, and we briefly describe the process of mesh genera-
tion in the following paragraph. This type of mesh was introduced in [7] for the 
treatment of edge singularities that occur in the Poisson problem, and was used in 
subsequent works also for the Stokes and Maxwell equations [11, 12, 21, 35].

u = 0 on �Ω,

(3a)�(∇u,∇v) − (∇ ⋅ v, p) = (f , v) ∀v ∈ X,

(3b)(∇ ⋅ u, q) = 0 ∀q ∈ Q,

X = H1
0
(Ω) = {v ∈ H1(Ω) ∶ v = 0 on �Ω},

Q = L2
0
(Ω) = {q ∈ L2(Ω) ∶ ∫

Ω
q = 0},

V0 = {v ∈ X ∶ (∇ ⋅ v, q) = 0 ∀q ∈ Q},

�(∇u,∇v) = (f , v) ∀v ∈ V0.

(4)sin(��) = −� sin(�),
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Let Dh be a conforming, shape regular triangulation of the two-dimen-
sional domain G, which has a mesh size parameter h = maxD∈Dh

hD , where 
hD = diam (D) . This mesh is graded towards the non-convex corner, so that the 
size of every element satisfies

where rD = infx∈D{dist(x, 0)} is the distance of an element D ∈ Dh to the concave 
corner, � ∈ (0, 1] is a grading parameter and R > 0 is the radius of the refinement 
zone. The graded two dimensional mesh is extended into the z-direction with uni-
form mesh size h3 ∼ h . The resulting prisms are subdivided into tetrahedra, which 
form the simplicial mesh Th . With rT being the distance of an element T ∈ Th to the 
z-axis and h1,T , h2,T , and h3,T the length of the projection on the x-, y-, and z-axis, 
respectively, the procedure yields a mesh where

and the number of elements satisfies N ∼ h−3 . By F(Th) we denote the set of facets 
of the mesh Th.

Remark 1  By construction, this type of tensor-product mesh satisfies a maximum 
angle condition, i.e. all angles between edges and faces of the triangulation are 
bounded by a constant 𝜓̄ < 𝜋 . The subsequent analysis depends on this regularity 
assumption on the tetrahedra, which means that meshes like the ones used in [29], 
where the maximum angle condition is violated, can not easily be included in the 
theory.

hD ∼

⎧⎪⎨⎪⎩

h
1∕𝜇, if rD = 0,

hr
1−𝜇

D
, if 0 < rD < R,

h, else,

h3,T ∼ h, h1,T ∼ h2,T ∼

⎧⎪⎨⎪⎩

h
1∕𝜇, if rT = 0,

hr
1−𝜇

T
, if 0 < rT < R,

h, else,

Fig. 1   Example mesh with 
anisotropic grading towards the 
concave edge
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Our discretization is nonconforming, thus we need tools to handle potential dis-
continuities at the interfaces. Let [[v]]F be the jump of a function v over a facet F, 
which is defined for an interior facet belonging to two elements T1 and T2 by

see e.g. [20, Section 1.2.3]. On boundary facets we set [[v]]F = v . For the velocity 
approximation we use the Crouzeix–Raviart finite element function space

which was introduced in [18], and where xF is the barycenter of a facet F. The pres-
sure is approximated in the space of piecewise constants

where Pk(T) denotes the space of all polynomials with maximal degree k on the ele-
ment T. We also need the broken gradient ∇h ∶ X⊕ Xh → L2(Ω)d×d and the broken 
divergence ∇h ⋅ (⋅) ∶ X⊕ Xh → L2(Ω) , which define the derivatives elementwise for 
all T ∈ Th by

and which are on X equivalent to the standard operators, see e.g. [20, Sections 1.2.5, 
1.2.6]. The discrete gradient norm for the space X⊕ Xh is defined by

For the next part we need the function spaces

where n denotes the unit outward normal vector on �Ω . Our discretization uses a 
reconstruction operator on the velocity test functions in the linear form, and in order 
to yield a pressure-robust method the operator needs to satisfy some properties, see 
e.g. [17, 30, 31], which we summarize in the following assumption.

Assumption 1  Assume there is a reconstruction operator Ih ∶ X ⊕ Xh → Yh , where 
Yh ⊂ H0(div,Ω) , so that for all vh ∈ Xh

When using the approximation spaces Xh and Qh , the lowest-order Ravi-
art–Thomas and Brezzi–Douglas–Marini interpolation operators satisfy this 
assumption, see [17, 30] for the isotropic and [9] for the anisotropic case. For our 

[[v]]F(x) = v|T1(x) − v|T2(x),

Xh = {vh ∈ L2(Ω) ∶ vh|T ∈ P1(T) ∀T ∈ Th, [[vh]]F(xF) = 0 ∀F ∈ F(Th)},

Qh = {qh ∈ Q ∶ qh|T ∈ P0(T) ∀T ∈ Th},

(∇hvh)|T = ∇(vh|T ),
(∇h ⋅ vh)|T = ∇ ⋅ (vh|T ),

∥ vh ∥1,h=

(
∫Ω

∇hvh ∶ ∇hvh

)1∕2

=∥ ∇hvh ∥0 .

H(div,Ω) = {v ∈ L2(Ω) ∶ ∇ ⋅ v ∈ L2(Ω)},

H0(div,Ω) = {v ∈ H(div,Ω) ∶ v ⋅ n = 0 on �Ω},

(5)
∇ ⋅ (Ihvh) = ∇h ⋅ vh,

∥ vh − Ihvh ∥0 ≤ ch ∥ ∇hvh ∥0 .
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intended use of the method in an anisotropic setting, the constant in estimate (5) 
must be independent of the aspect ratio of the mesh. Under the mild assumption 
of the maximum angle condition which is satisfied for the type of mesh described 
above, see Remark 1, this is the case for both Raviart–Thomas interpolation, see 
[1], and Brezzi–Douglas–Marini interpolation, see [8].

Remark 2  In contrast to our reconstruction operator, that maps into H0(div,Ω) , there 
are approaches to use divergence preserving operators which map into H1

0
(Ω) , see 

e.g. [32], where such an operator is used for theoretical purposes or [40], where the 
operator is used as reconstruction operator like in our case. However, these operators 
do not seem to work for highly anisotropic triangulations. It is an open problem to 
find an operator mapping discretely divergence-free functions to exactly divergence-
free functions in H1

0
(Ω) on anisotropic meshes in a stable way.

Using the discrete bilinear forms

we get the discrete weak formulation 

where f ∈ L2(Ω) and Ih must satisfy Assumption 1. As in the continuous case, using 
the space of discretely divergence constrained functions

we can rewrite the problem, see [17, 24, 33]. Thus uh ∈ V0
h
 is uniquely defined by

To conclude this section, we state the well-known discrete inf-sup stability for the 
Crouzeix–Raviart element, see e.g. [12, Lemma 3.1].

Lemma 1  The pair of function spaces Xh × Qh satisfies the discrete inf-sup 
condition

where the discrete inf-sup constant 𝛽  does not depend on the mesh size parameter h 
or the regularity of the mesh.

ah ∶ Xh × Xh → ℝ, ah(uh, vh) = � ∫Ω

∇huh ∶ ∇hvh,

bh ∶ Xh × Qh → ℝ, bh(vh, qh) = −∫Ω

qh∇h ⋅ vh,

(6a)ah(uh, vh) + bh(vh, ph) = (f , Ihvh) ∀vh ∈ Xh,

(6b)bh(uh, qh) = 0 ∀qh ∈ Qh,

V0
h
=
{
vh ∈ Xh ∶ bh(vh, qh) = 0 ∀qh ∈ Qh

}
= {vh ∈ Xh ∶ ∇h ⋅ vh = 0},

(7)ah(uh, vh) = (f , Ihvh) ∀vh ∈ V0
h
.

(8)inf
qh∈Qh⧵{0}

sup
vh∈Xh⧵{0}

bh(vh, qh)

∥ qh ∥0∥ vh ∥1,h
≥ 𝛽 > 0,
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4 � Helmholtz–Hodge decomposition

This section introduces some aspects of the Helmholtz–Hodge decomposition of 
vector fields, which is needed for overall context and explanation. The main idea of 
this section is from [31, Section 3].

Every vector field g ∈ L2(Ω) can be uniquely decomposed into g = ℙ(g) + ∇� , 
where � ∈ H1(Ω)∕ℝ and

The function ℙ(g) is called Helmholtz–Hodge projection of g , see e.g. [24, Corol-
lary I.3.4]. The operator ℙ(⋅) ∶ L2(Ω) → L2

�
(Ω) is an L2-orthogonal projection, i.e.

We can extend the domain of the Helmholtz–Hodge projection operator from L2(Ω) 
to H−1(Ω) with range in (V0)� , the dual space of V0 , by defining the projection for 
every g ∈ H−1(Ω) as the restriction to V0 , i.e.

Note that it holds V0
⊂ L2

𝜎
(Ω) . For a more detailed and technical introduction of 

this extension we refer to [34, Section 2]. A functional g∗ ∈ H−1(Ω) with L2-repre-
sentative g , has the Helmholtz–Hodge projection ℙ(g∗) ∈ (V0)� with representative 
ℙ(g) ∈ L2(Ω) , since by the previous definitions and the Riesz representation theo-
rem it holds for all v ∈ V0

Defining −Δ ∶ H1
0
(Ω) → H−1(Ω) by

according to Lemma 3.1 in [31] the equality

holds for the weak Stokes velocity solution u with data f  . This means that although 
in general −Δu ∈ H−1(Ω) even for data f ∈ L2(Ω) , it holds ℙ(−Δu) ∈ L2(Ω) and

Lemma 2  If (u, p) is the solution of (3) with data f = ℙ(f ) + ∇� , then 
(u, �−1(p − �)) is the solution of the Stokes equations with unit viscosity and data 
�−1ℙ(f ).

Proof  The Stokes equations satisfy a fundamental invariance property, i.e. add-
ing a gradient field to the data only changes the pressure solution, see [27]. Thus 

ℙ(g) ∈ L2
�
(Ω) = {v ∈ L2(Ω) ∶ (∇q, v) = 0 ∀q ∈ H1(Ω)}.

(ℙ(g), v) = (g, v) ∀v ∈ L2
�
(Ω).

⟨ℙ(g), v⟩ = ⟨g, v⟩ ∀v ∈ V0.

⟨ℙ(g∗), v⟩ = ⟨g∗, v⟩ = (g, v) = (ℙ(g), v).

⟨−Δv,�⟩ = (∇v,∇�) ∀� ∈ H1
0
(Ω),

ℙ(−Δu) = �−1ℙ(f )

(9)� ∥ ℙ(−Δu) ∥0=∥ ℙ(f ) ∥0≤∥ f ∥0 .
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(u, p − �) is the solution with data function ℙ(f ) = f − ∇� . Dividing the momentum 
equation by � , we get the statement of the lemma.

5 � A‑priori error estimates

For an estimate on the finite element error, the consistency error of the method 
has to be estimated. For self-containedness we restate [12, Lemma 3.3] which 
estimates the consistency error for the standard method in the case � = 1.

Lemma 3  Let (u, p) be the solution of the Stokes problem with � = 1 and data 
f ∈ L2(Ω) . Then if the mesh is refined according to 𝜇 < 𝜆 , with � from (4), the 
estimate

holds for all vh ∈ Xh . For vh ∈ V0
h
 we have the estimate

Proof  The first inequality is the statement from [12, Lemma 3.3], and the second 
holds since for vh ∈ V0

h
 we have ∇h ⋅ vh = 0 , and thus get

	�  ◻

We can now state the error estimate of the velocity solution of our method. It 
shows that for appropriately refined meshes the method has an optimal order of 
convergence and is pressure-robust, i.e. the estimate does not depend on the vis-
cosity or the pressure approximability.

Theorem 1  Let (u, p) be the solution of (3), (uh, ph) the solution of (6), and let the 
mesh be refined according to 𝜇 < 𝜆 , with � from (4). In addition, let the reconstruc-
tion operator satisfy Assumption 1. Then we have the estimate

Proof  Let wh = uh − vh ∈ V0
h
 , where vh ∈ V0

h
 is the best-approximation of u with 

respect to ∥ ⋅ ∥1,h , then we have wh ⟂1,h u − vh . Due to the Pythagoras theorem we 
get

Using (7) we get

|(∇hu,∇hvh) + bh(vh, p) − (f , vh)| ≤ ch ∥ vh ∥1,h∥ f ∥0

|(∇hu,∇hvh) − (f , vh)| ≤ ch ∥ vh ∥1,h∥ f ∥0 .

bh(vh, p) = −(∇h ⋅ vh, p) = 0.

(10)∥ u − uh ∥1,h≤ inf
vh∈V

0
h

∥ u − vh ∥1,h +ch ∥ ℙ(−Δu) ∥0 .

(11)∥ u − uh ∥
2
1,h
=∥ u − vh ∥

2
1,h

+ ∥ wh ∥
2
1,h

.
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where in the last step we used ah(u − vh,wh) = 0 . Combined with (11) we get

Denote the Helmholtz–Hodge decomposition of the data by f = ℙ(f ) + ∇� and note 
that ∇ ⋅ Ihwh = 0 due to Assumption 1 and wh ∈ V0

h
 . Using (∇�, Ihwh) = 0 , we get

Factoring out � in the first term of (13) we get

and, due to Lemma 2, see that u is also the solution to a Stokes problem with unit 
viscosity and data �−1ℙ(f ) , which means we can now use Lemma 3 and estimate

Using the Cauchy-Schwarz inequality and the interpolation error estimate for the 
operator Ih from Assumption 1 we estimate for the second term of (13)

Combining estimates (14), (15) with (13), inserting the result in (12), using (9) and 
by seeing that vh was chosen as the best-approximation of u in V0

h
 , we get the final 

estimate

	�
◻

The term for the approximation error can be easily bounded using known results:

Corollary 1  With the assumptions from Theorem 1 the estimate

holds.

Proof  Using Lemma 3.5 from [9] we get

� ∥ wh ∥
2
1,h

= ah(wh,wh) = ah(uh − vh,wh)

= ah(u − vh,wh) − ah(u,wh) + ah(uh,wh)

≤ |ah(u,wh) − (f , Ihwh)|,

(12)∥ u − uh ∥1,h≤∥ u − vh ∥1,h +�
−1
|ah(u,wh) − (f , Ihwh)|

∥ wh ∥1,h
.

(13)

|ah(u,wh) − (f , Ihwh)| = |ah(u,wh) − (ℙ(f ), Ihwh)|
= |ah(u,wh) − (ℙ(f ),wh) + (ℙ(f ),wh − Ihwh)|
≤ |ah(u,wh) − (ℙ(f ),wh)| + |(ℙ(f ),wh − Ihwh)|.

|ah(u,wh) − (ℙ(f ),wh)| = �|(∇hu,∇hwh) − (�−1ℙ(f ),wh)|,

(14)
|ah(u,wh) − (ℙ(f ),wh)| ≤ ch� ∥ wh ∥1,h∥ �−1ℙ(f ) ∥0= ch ∥ wh ∥1,h∥ ℙ(f ) ∥0 .

(15)|(ℙ(f ),wh − Ihwh)| ≤ ch ∥ wh ∥1,h∥ ℙ(f ) ∥0 .

∥ u − uh ∥1,h≤ inf
vh∈V

0
h

∥ u − vh ∥1,h +ch ∥ ℙ(−Δu) ∥0 .

∥ u − uh ∥1,h≤ ch ∥ ℙ(−Δu) ∥0 .
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By Lemma 2 u is also the velocity solution of the Stokes problem with unit viscosity 
and right hand side data �−1ℙ(f ) , and thus using Lemma 3.2 from [12] and (9) we 
get

which combined with (10) proves the statement. 	�  ◻

Remark 3  Considering Lemma 2, the relationship between the data f  and the veloc-
ity solution u with regard to the viscosity parameter � can be looked at from dif-
ferent points of view. On the one hand, in Theorem 1 we establish a velocity error 
estimate in terms of the divergence-free part of the Laplacian of the exact velocity 
ℙ(−Δu) . In this form, the estimate is pressure-robust, i.e. it does not depend on the 
irrotational part of the data, and it does not have an apparent dependence on the 
viscosity. If on the other hand by using (9) we would put the estimate in terms of the 
Helmholtz–Hodge projection ℙ(f ) of the data, it would still be pressure-robust, but 
we would see a dependence on �−1.

The difference is of interest for numerical examples and the information we want 
to extract from them. Consider e.g. the examples from [30, Section 5]. Here the exact 
velocity and pressure solutions are fixed, and the data function f  changes when the 
viscosity parameter is adjusted due to the factor � in front of the Laplacian. This 
can nicely show the effect of pressure-robustness, since non-pressure-robust meth-
ods show a viscosity induced locking effect, i.e. the velocity error scales with �−1 , 
while pressure-robust methods do not, as the discrete velocity solution is the same 
for all values of � . If however the data function f  is fixed, we also see a dependence 
on the viscosity in the error for pressure-robust methods, since the velocity solution 
now scales with �−1 . When altering the viscosity parameter while using fixed data, 
pressure-robustness can still be observed by changing the irrotational part of f  , i.e. 
adding a gradient field, which has no effect on the numerical velocity solution of 
pressure-robust methods.

For the pressure error we get the following estimate.

Proposition 1  With the assumptions of Theorem 1 we have the estimate

Proof  Let �h ∶ L2
0
(Ω) → Qh be the L2-orthogonal projection onto the discrete pres-

sure space. We start with a triangle inequality, which gives

inf
vh∈V

0
h

∥ u − vh ∥1,h≤ 2 inf
vh∈Xh

∥ u − vh ∥1,h .

(16)inf
vh∈V

0
h

∥ u − vh ∥1,h≤ 2 inf
vh∈Xh

∥ u − vh ∥1,h≤ ch ∥ ℙ(−Δu) ∥0,

(17)∥ p − ph ∥0≤ inf
qh∈Qh

∥ p − qh ∥0 +
2𝜈

𝛽
inf

vh∈V
0
h

∥ u − vh ∥1,h +
ch

𝛽
∥ f ∥0 .

∥ p − ph ∥0≤∥ p − �hp ∥0 + ∥ �hp − ph ∥0,
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where we see that for the first term it holds ∥ p − �hp ∥0= infqh∈Qh
∥ p − qh ∥0 . 

Because of �hp − ph ∈ Qh , we can use the inf-sup condition (8) and estimate

where bh(vh,�hp − p) = 0 , as ∇h ⋅ vh ∈ Qh and �hp − p ∈ Q
⟂
L2

h
 . Since ph is the dis-

crete pressure solution of (6) we can further calculate

where in the last step we used Lemma 3, the Cauchy-Schwarz inequality and the 
interpolation error estimate (5) for the reconstruction operator. Now combining the 
estimates, using Theorem 1 and (9) yields the desired inequality. 	�  ◻

Corollary 2  With the assumptions of Theorem 1 we have the estimate

Proof  The estimate is obtained from (17) by using [12, Lemma 3.2] for the first term 
and (16) in combination with (9) for the second term. 	� ◻

Remark 4  We consider only the three dimensional case, since the focus of this paper 
is on anisotropic elements. The main results are nevertheless valid for the corre-
sponding two-dimensional problem in a domain with a re-entrant corner, as long as 
adequate local mesh grading near the corner, as described in the first part of Sec-
tion 3, is applied.

The proofs for the intermediate results from [11] can be adapted to fit the two-
dimensional setting. With them, the consistency error for the standard method, see 
Lemma 3, can be proved analogously to the first part of the proof of Lemma 3.2 
in [12], without the additional difficulty for the third component. From there, our 
proofs in this section apply analogously.

∥ 𝜋hp − ph ∥0 ≤ 1

𝛽
sup
vh∈Xh

bh(vh,𝜋hp − ph)

∥ vh ∥1,h

=
1

𝛽
sup
vh∈Xh

bh(vh,𝜋hp − p) + bh(vh, p − ph)

∥ vh ∥1,h
,

∥ 𝜋hp − ph ∥0 ≤ 1

𝛽
sup
vh∈Xh

bh(vh, p) + ah(uh, vh) − (f , Ihvh)

∥ vh ∥1,h

=
𝜈

𝛽

(
sup
vh∈Xh

(∇hu,∇hvh) + bh(vh, 𝜈
−1p) − (𝜈−1f , vh)

∥ vh ∥1,h

+ sup
vh∈Xh

(∇h(uh − u),∇hvh) + (𝜈−1f , vh − Ihvh)

∥ vh ∥1,h

)

≤ 𝜈

𝛽

(
∥ u − uh ∥1,h +ch ∥ 𝜈−1f ∥0

)
,

∥ p − ph ∥0≤ ch

(
1 +

1

𝛽

)
∥ f ∥0 .
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6 � Numerical examples

With the following two examples we show the performance of the pressure-
robust modified Crouzeix–Raviart method with Raviart–Thomas (CR-RT) and 
Brezzi–Douglas–Marini (CR-BDM) reconstruction compared to the standard 
Crouzeix–Raviart (CR) method on anisotropically graded meshes. Considering 
Remark 3, we first choose the approach of fixing an exact solution, where the data 
changes when altering the viscosity. However, for our specified exact solution we 
get f ∉ L2(Ω) for � ≠ 1 , which does not comply with the assumptions of our theory. 
Thus for the second example we use the other approach, where the divergence-free 
part ℙ(f ) of the data is fixed and only the irrotational part of f  is changed in order to 
show pressure-robustness.

6.1 � Example with fixed exact solution

Consider the inhomogeneous Stokes problem, i.e. problem (1) with boundary condi-
tion u = g on �Ω , on the domain

where � =
3�

2
 . The results below show that the change to inhomogeneous boundary 

conditions does not impact the performance of the numerical method. We use the 
exact velocity and exact pressure solutions defined by

where we use

From (4) we get � ≈ 0.54448 . The velocity solution and the singular nature of the 
exact pressure along the edge at r = 0 are illustrated in Figure 2.

The data function f  for the numerical calculations is obtained by evaluating (1a), 
from which we get

where f1 = f2 = 0 for � = 1.
In [9] this example was used to show that the modified Crouzeix–Raviart method 

can be used for anisotropic meshes. However, no theoretical foundation for the 

Ω = {(r cos(𝜑), r sin(𝜑), z) ∈ ℝ
3 ∶ 0 < r < 1, 0 < 𝜑 < 𝜔, 0 < z < 1},

u =

⎛⎜⎜⎜⎝

zr�u1(�)

zr�u2(�)

r
2∕3 sin

�
2

3
�

�
⎞⎟⎟⎟⎠
, p = zr�−1Φ(�),

(18)

u1(�) = sin(�(� − �)) − � sin(�) cos(�(� − �) + �) + � sin(� − �) cos(�� − �),

u2(�) = sin(��) − � sin(�) sin(�(� − �) + �) − � sin(� − �) sin(�� − �),

Φ(�) = 2�[sin(� + (� − 1)�) − sin(�� − (� − 1)�)].

(19)f =

⎛⎜⎜⎝

2�(� − 1)(� − 1)zr�−2[sin(�� − (� − 2)�) − sin(� + (� − 2)�)]

2�(� − 1)(1 − �)zr�−2[cos(�� − (� − 2)�) + cos(� + (� − 2)�)]

r�−1Φ(�)

⎞⎟⎟⎠
,
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numerical results was given, since due to the low regularity of the solution in this 
example, i.e. (u, p) ∉ H2(Ω) × H1(Ω) , Δu ∉ L2(Ω) , the results from [9] are not 
directly applicable. This gap in the theory is closed by this contribution, at least for 
the case � = 1 where f ∈ L2(Ω).

As mentioned in Sect. 4 we know that ℙ(−Δu) ∈ L2(Ω) , since for � = 1 by [12, 
Theorem  2.1] it holds �zp ∈ L2(Ω) and thus the data function f = (0, 0, �zp) is in 
L2(Ω) . As u is fixed, this does not change for other values of � , even though f  is no 
longer in L2(Ω) for � ≠ 1.

The calculations were performed with parameter values � ∈ {10−1, 1} and 
� ∈ {0.4, 1} . Tables 1 and 2 contain the computed errors. Comparing the estimated 
order of convergence (eoc) for meshes without grading, � = 1 , and with grading 
towards the edge, � = 0.4 , shows that anisotropic grading recovers the optimal con-
vergence rate for all methods. The results with viscosity � = 10−1 show the pres-
sure-robustness of the modified method, as the absolute value of the velocity error 
does not depend on � , contrary to the standard method. The modified method seems 
to perform optimally in the anisotropic setting even with the low regularity data in 
the case � ≠ 1 , where the optimal convergence rate could not be observed with the 
standard method.

Remark 5  The data function (19) is not in L2(Ω) for � ≠ 1 , but the right hand side 
integrals for our methods are still finite. However, in order to produce the shown 
results in Table  2 the numerical quadrature for the linear form had to be highly 
accurate. For our CR-BDM calculations, additionally to choosing a high quadrature 
degree as for the other methods, we used local mesh refinement near the singular 
axis.

Neither the quadrature procedure described in Remark 5 nor changing the grad-
ing parameter improved the convergence results of the standard method on graded 
meshes with � ≠ 1 , where the optimal rate could not be observed. We do not have 
a proof, and irregular data do not fit our theory, as for Lemma 2 and Theorem 1 we 
assume f ∈ L2(Ω) , but the differing behavior of the methods seems to be a result of 
f ∉ L2(Ω):

−1
0

1 −1
0

1
0

1

x y

z

−1
0

1 −1
0

1

−20

0

20
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Fig. 2   Plot of exact velocity u(x, y, z) and exact pressure p(x, y, 1)
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The velocity error estimate from [12] for the standard method, which is shown 
for f ∈ L2(Ω) , comprises the consistency error and the best approximation error, 
the latter being bounded in terms of the interpolation error of the Crouzeix–Ravi-
art interpolation. While we could see the interpolation error in this test converg-
ing optimally on the graded meshes, the consistency error does not seem to con-
verge for irregular data. In contrast to the standard Crouzeix–Raviart method, the 
proof of our pressure robust estimate from Sect. 5 only needs to bound the con-
sistency error for the Helmholtz–Hodge projection of the data, which, for this 
example, are in L2(Ω) . This is the reason why the modified methods work for this 
example.

Since the consistency error estimate from [12] was prepared in [11] with a similar 
estimate for the Poisson equation, we did a further test computation for the Poisson 
problem with exact solution u = r

1∕2 sin(2∕3�) on the same meshes. For this exact 
solution the data are not in L2(Ω) as in the Stokes case, and the results showed a 
similar convergence behavior as the Stokes example. This is another indication that 
the consistency error of the Crouzeix–Raviart method causes the bad numerical 
performance.

The discussion in the previous paragraphs shows that the modified, pressure-
robust Crouzeix–Raviart method, in addition to the advantages of the robust behav-
ior concerning small viscosities and irrotational forces, also seems to perform better 
in certain cases with low regularity data and anisotropic mesh grading.

Table 1   Errors and experimental convergence orders of the standard and modified Crouzeix–Raviart 
methods on uniform and graded meshes, � = 1

ndof ∥ u − uh ∥1,h eoc ∥ p − ph ∥0 eoc ∥ u − uh ∥1,h eoc ∥ p − ph ∥0 eoc
CR � = 1 � = 1 � = 1 � = 1 � = 0.4 � = 0.4 � = 0.4 � = 0.4

894 6.8435e–01 7.5632e–01 6.9908e–01 7.1907e–01
4137 5.1119e–01 0.68 5.8913e–01 0.58 4.8222e–01 0.73 4.3157e–01 1.00
25650 3.5956e–01 0.58 3.6946e–01 0.77 2.9154e–01 0.83 2.1233e–01 1.17
155364 2.3669e–01 0.69 2.0833e–01 0.95 1.6660e–01 0.93 9.9137e–02 1.27
1376733 1.6167e–01 0.52 1.3838e–01 0.56 8.2279e–02 0.97 4.4658e–02 1.10

 CR-RT � = 1 � = 1 � = 1 � = 1 � = 0.4 � = 0.4 � = 0.4 � = 0.4

894 6.6119e–01 6.9348e–01 6.6847e–01 6.8824e–01
4137 4.9119e–01 0.69 5.4644e–01 0.56 4.5698e–01 0.74 4.0627e–01 1.03
25650 3.4653e–01 0.57 3.5565e–01 0.71 2.7329e–01 0.85 1.9630e–01 1.20
155364 2.3041e–01 0.68 2.0405e–01 0.92 1.5591e–01 0.93 9.3436e–02 1.24
1376733 1.5921e–01 0.51 1.3745e–01 0.54 7.6745e–02 0.97 4.3269e–02 1.06

 CR-BDM � = 1 � = 1 � = 1 � = 1 � = 0.4 � = 0.4 � = 0.4 � = 0.4

894 6.6057e–01 6.8820e–01 6.6909e–01 7.0451e–01
4137 4.9002e–01 0.70 5.4862e–01 0.53 4.5764e–01 0.74 4.1090e–01 1.06
25650 3.4568e–01 0.57 3.5646e–01 0.71 2.7437e–01 0.84 1.9731e–01 1.21
155364 2.3000e–01 0.68 2.0450e–01 0.92 1.5679e–01 0.93 9.3566e–02 1.24
1376733 1.5905e–01 0.50 1.3758e–01 0.54 7.7344e–02 0.97 4.3282e–02 1.06
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6.2 � Example with fixed data

Consider the same general setting as in the previous example. We now use the 
data

where f 0 and �i are chosen as

with Φ(�) from (18). The function f 0 is aquired by setting � = 1 in (19) and the func-
tions �i are used to show the pressure-robustness in the case of a scaled exact veloc-
ity solution: the errors for the CR-RT and CR-BDM methods do not change when 
adding gradient fields to the data. The exact solutions for the convergence analysis 
can be deduced from the first example using the considerations from Lemma 2 and 
Remark 3.

f = f 0 + ∇�i, i ∈ {1, 2},

f 0 =

⎛⎜⎜⎝

0

0

r�−1Φ(�)

⎞⎟⎟⎠
, �1 = 0, �2 = 10r�Φ(�),

Table 2   Errors and experimental convergence orders of the standard and modified Crouzeix–Raviart 
methods on uniform and graded meshes, � = 10

−1

ndof ∥ u − uh ∥1,h eoc ∥ p − ph ∥0 eoc ∥ u − uh ∥1,h eoc ∥ p − ph ∥0 eoc
CR � = 1 � = 1 � = 1 � = 1 � = 0.4 � = 0.4 � = 0.4 � = 0.4

894 3.2893e+00 4.7738e–01 3.2855e+00 4.6523e–01
4137 2.6582e+00 0.50 3.7183e–01 0.58 2.6933e+00 0.39 3.2386e–01 0.71
25650 1.8748e+00 0.57 2.4716e–01 0.67 1.8576e+00 0.61 1.7577e–01 1.00
155364 1.3170e+00 0.59 1.4109e–01 0.93 1.4685e+00 0.39 8.6913e–02 1.17
1376733 8.5362e–01 0.59 9.9609e–02 0.48 1.6304e+00 –0.14 3.9505e–02 1.08

 CR-RT � = 1 � = 1 � = 1 � = 1 � = 0.4 � = 0.4 � = 0.4 � = 0.4

894 6.6352e–01 3.7503e–01 6.6805e–01 3.7467e–01
4137 4.9366e–01 0.69 2.8017e–01 0.68 4.5699e–01 0.74 2.4133e–01 0.86
25650 3.5092e–01 0.56 1.9315e–01 0.61 2.7355e–01 0.84 1.3218e–01 0.99
155364 2.3511e–01 0.67 1.2179e–01 0.77 1.5605e–01 0.93 7.0937e–02 1.04
1376733 1.6308e–01 0.50 8.3975e–02 0.51 7.6794e–02 0.97 3.4700e–02 0.98

 CR-BDM � = 1 � = 1 � = 1 � = 1 � = 0.4 � = 0.4 � = 0.4 � = 0.4

894 6.6720e–01 3.7487e–01 6.6963e–01 3.7481e–01
4137 4.9503e–01 0.70 2.8009e–01 0.68 4.5775e–01 0.74 2.4137e–01 0.86
25650 3.5253e–01 0.56 1.9308e–01 0.61 2.7426e–01 0.84 1.3218e–01 0.99
155364 2.3649e–01 0.66 1.2175e–01 0.77 1.5646e–01 0.93 7.0934e–02 1.04
1376733 1.6359e–01 0.50 8.3949e–02 0.51 7.8260e–02 0.95 3.4699e–02 0.98
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As before we have −Δu ∉ L2(Ω) , but due to our choice of the functions f 0 and 
�i we now get f ∈ L2(Ω) for all calculations.

The calculations were performed with viscosity parameter � ∈ {10−3, 1} and, 
since the difference in convergence orders was already demonstrated in the previous 
example, we only use anisotropic meshes with grading parameter � = 0.4.

Tables  3 and 4 show the errors for both choices of �i . We see that while the 
asymptotic convergence rates are optimal for all methods, the additional gradient 
part ∇�2 in the data has a significant influence on the value of the velocity error of 
the standard method. In contrast, the modified methods show their pressure-robust-
ness by yielding the same velocity solution, and thus unchanged velocity errors. The 
scaling of the velocity solution with �−1 for fixed f  is clearly visible when compar-
ing the two tables.

Table 3   Errors and experimental convergence orders of the standard and modified Crouzeix–Raviart 
methods on graded meshes with � = 0.4 , � = 1

ndof ∥ u − uh ∥1,h eoc ∥ p − ph ∥0 eoc ∥ u − uh ∥1,h eoc ∥ p − ph ∥0 eoc
CR �

1

�
1

�
1

�
1

�
2

�
2

�
2

�
2

894 6.9908e–01 7.1907e–01 1.6311e+00 4.7159e+00
4137 4.8222e–01 0.73 4.3157e–01 1.00 1.2720e+00 0.49 2.8249e+00 1.00
25650 2.9154e–01 0.83 2.1233e–01 1.17 8.3565e–01 0.69 1.2864e+00 1.29
155364 1.6660e–01 0.93 9.9137e–02 1.27 5.3725e–01 0.74 5.8967e–01 1.30
1376733 8.2279e–02 0.97 4.4658e–02 1.10 2.6864e–01 0.95 2.1364e–01 1.40

 CR-RT �
1

�
1

�
1

�
1

�
2

�
2

�
2

�
2

894 6.6847e–01 6.8824e–01 6.6846e–01 2.0599e+00
4137 4.5698e–01 0.74 4.0628e–01 1.03 4.5698e–01 0.74 1.2274e+00 1.01
25650 2.7329e–01 0.75 1.9630e–01 1.20 2.7329e–01 0.85 6.5688e–01 1.03
155364 1.5591e–01 0.93 9.3437e–02 1.24 1.5591e–01 0.93 3.6601e–01 0.97
1376733 7.6745e–02 0.97 4.3269e–02 1.06 7.6745e–02 0.97 1.6909e–01 1.06

 CR-BDM �
1

�
1

�
1

�
1

�
2

�
2

�
2

�
2

894 6.6909e–01 7.0451e–01 6.6909e–01 2.0654e+00
4137 4.5764e–01 0.74 4.1090e–01 1.06 4.5763e–01 0.74 1.2290e+00 1.02
25650 2.7437e–01 0.84 1.9731e–01 1.21 2.7437e–01 0.84 6.5718e–01 1.03
155364 1.5679e–01 0.93 9.3566e–02 1.24 1.5679e–01 0.93 3.6604e–01 0.97
1376733 7.7344e–02 0.97 4.3282e–02 1.06 7.7344e–02 0.97 1.6909e–01 1.06
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