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Abstract We consider the Cauchy problem for first order differential-functional
equations. We present finite difference schemes to approximate viscosity solutions of
this problem. The functional dependence in the equation is of the Hale type. It contains,
as a particular case, equation with a retarded and deviated argument, and differential-
integral equation. Numerical examples to illustrate the theory are presented.
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1 Introduction

Let τ > 0, a0, r ∈ R+ = [0,∞] be given constants. Define

� = (0, τ ) × R
m, �0 = [−a0, 0] × R

m, E = �0 ∪ �.

Set D = [−a0, 0] × B(r), where B(r) = {x ∈ R
m : |x | ≤ r} and | · | is the norm

in R
m . For every z : E → R and (t, x) ∈ � we define a function z(t,x) : D → R

by z(t,x)(s, y) = z(t + s, x + y), (s, y) ∈ D. We call the restriction operator z →
z(t,x) Hale’s operator and a functional dependence in the equation “the Hale type”
(see [7,8]).
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330 K. A. Topolski

Throughout the paper C(D) stands for the space of all continuous functions w :
D → R with the supremum norm ‖ · ‖D .

Let f : �̄ × C(D) × R
m → R and ϕ : �0 → R be continuous functions.

We will consider the Cauchy problem for the first order differential-functional
equation in the following form

Dt u = f (t, x, u(t,x), Du) in �, (1)

u = ϕ in �0. (2)

In the above Du denotes a gradient of u with respect to the space variable x . We
write Du, Dt u, u for the values at point (t, x) and u(t,x) for the Hale operator.

Although (1) is formulated in a rather abstract way it contains as a particular case
a large group of differential-functional equations. The most important are: equations
with a retarded and deviated argument, differential-integral equations, and of course
equations without functional dependence on u. All these situations can be derived
from (1), (2) by specializing the function f .

Example 1 Let f̃ : �̄ × R × R × R
n → R. Instead of (1) consider

Dt u = f̃ (t, x, u, u(μ(t, x), β(t, x)), Du) in �, (3)

where μ : �̄ → R, β : �̄ → R
n, t −a0 ≤ μ(t, x) ≤ t, |β(t, x)− x | ≤ r for a0, r ≥

0. It is easy to verify that putting

f (t, x, w, p) = f̃ (t, x, w(0, 0), w(μ(t, x) − t, β(t, x) − x), p),

for (t, x, w, p) ∈ �̄ × C(D) × R
n , we obtain (1) (we replace w with u(t,x) and use

the definition of Hale’s operator).

The next example shows how to transform differential-integral problem to (1), (2).

Example 2 Let h : �̄ × R × R
n → R, K : �̄ × D × R → R are given. Consider the

Cauchy problem for differential-integral equation

Dt u = h

⎛
⎝t, x,

∫

D

K (t, x, s, y, u(t + s, x + y))dsdy, Du

⎞
⎠ in �. (4)

Define f : �̄ × C(D) × R
n → R by

f (t, x, w, p) = h

⎛
⎝t, x,

∫

D

K (t, x, s, y, w(s, y))dsdy, p

⎞
⎠ .

It is evident that, (4), (2) is a particular case of (1), (2).
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On the numerical approximation of viscosity solutions 331

Of course, we can combine these two kinds of functional dependence and treat them
using one model. We can also multiply functional dependence in (3) and (4) by putting
u(μ1(t, x), β1(t, x)), . . . , u(μN (t, x), βN (t, x)) in place of u(μ(t, x), β(t, x)) in (3)
and introducing K1, . . . , KN in (4).

In this paper we will investigate viscosity solutions of (1), (2).

Definition 1 A function u ∈ C(E) is a viscosity subsolution (resp. supersolution) of
(1), (2) provided for all φ ∈ C1(�) if u −φ attains a local maximum (resp. minimum)
at (t, x) ∈ �, then

Dtφ(t, x) ≤ f (t, x, u(t,x), Dφ(t, x))

(resp. Dtφ(t, x) ≥ f (t, x, u(t,x), Dφ(t, x))), (5)

and

u ≤ ϕ in �0 (resp. u ≥ ϕ in �0). (6)

Definition 2 A function u ∈ C(E) is a viscosity solution of (1), (2) if u is both a
viscosity subsolution and supersolution of (1), (2).

It is immediate that,

Remark 1 If u ∈ C(E)∩C1(�), then u is viscosity solution (v. subsolution, v. super-
solution) of (1), (2) if and only if u is a classical solution (subsolution, supersolution)
of (1), (2).

We use the symbol SO L( f, ϕ) for the set of all viscosity solutions of (1), (2).
This notion of solution was first introduced in [2,15] for the first order differential

equations. The second order equations (not considered here) are widely presented in
[1]. The Cauchy problem for differential-functional equations is investigated in [20].

There are numerous papers concerning difference schemes for the first order equa-
tions where nonfunctional dependence and classical solution are investigated. Here we
concentrate on functional problems where generalized solutions are treated. Numer-
ical approximation for generalized solution of first order equation was first investi-
gated in [16] for weak solutions (in distributional sense), and in [11–13] for almost
everywhere solutions. (with a restrictive assumption of convexity in the last vari-
able). Difference methods are used in [18] to prove the existence of weak solu-
tions for quasilinear equations with functional dependence and in [6] for generalized
solutions with entropy uniqueness condition (see [11–13]). The method presented
leads to existence results rather than to practical applications. In the study of vis-
cosity solution the convexity assumption can be released. We also do not need the
additional assumption on the solution (entropy condition). Moreover, the difference
scheme applied in purely theoretical papers [3,17], although giving a slow convergence
(a square root rate), can be useful in practical experiments. In this paper we extend
results obtained in [3,17] into the case of equation with functional dependence on
u. We based our reasoning on the estimations obtained for the nonfunctional case
and on the a priori estimations for the functional case ([19]). We also present some
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numerical experiments where functional dependence leads to many practical difficul-
ties.

Numerical approximation for classical solutions of first order equation with func-
tional dependence was investigated in [4], where explicit method is considered and in
[5,10], where implicit schemes are treated. Convergence of the difference analog of
the first order equation is investigated in [14] via difference inequalities.

2 Finite difference scheme

In this part we present finite difference method to approximate viscosity solution of
(1), (2).

For two vectors a, b ∈ R
k a ≤ b (a < b) means ai ≤ bi (ai < bi ) for i = 1, . . . , k.

Similarly we define ≥ and >.
Put h > 0, k = (k1, . . . , km) > 0 and N0, N ∈ N such that (−N0 − 1)h ≤

−a0 ≤ −N0h, Nh ≤ τ < (N + 1)h. For α = (α1, . . . , αm) ∈ Z
m we write αk =

(α1k1, . . . , αmkm) and α
k = (α1

k1
, . . . , αm

km
). Let xα = αk and tn = nh for n ∈ Z. Define

In = {−N0, . . . , 0, . . . , n},� = {(tn, xα) : α ∈ Z
m, n ∈ IN },�0 = {(tn, xα) : α ∈

Z
m, n ∈ I0}.
Let U : IN × Z

m → R, i.e. U = {U n
α }n∈IN

α∈Zm . Of course, for fixed n we have
U n : Z

m → R and for fixed α, Uα : IN → R. Let ei for i = 0, . . . , m denote
standard versors in R

m . Write �+U = (�+
x1

U, . . . ,�+
xm

U ) where �+
xi

U is defined by

(�+
xi

U )α = Uα+ei − Uα , for α ∈ Z
m, i = 0, . . . , m. Put �+

k U = (
�+

x1
U

k1
, . . . ,

�+
xm U
km

).

Let A ⊆ Z
k . We will use the symbol l∞(A) for the space of all discrete real

functions bounded on A with the norm |U |∞ = sup {|Uβ | : β ∈ A}. (In the following
we write U n

α instead of Uβ = U(n,α) for A = IN × Z
m .) For U, V ∈ l∞(A) we write

U ≤ V if Uβ ≤ Vβ for every β ∈ A.
We write BC(X) for the space of all continuous and bounded real functions on

X ⊆ R
k and BC(X; L) for the space of all u ∈ BC(X) Lipschitz with a fixed

constant L > 0.
For X ⊆ R

1+m we define Xt = {(s, z) ∈ R1+m : s ≤ t} and write for short
‖ ·‖t = ‖·‖Xt if the set X is known. Similarly we define a norm | · |n∞ in l∞(In ×Z

m).
Define T ∗ : BC(E) → l∞(IN ×Z

m) by (T ∗u)(n, α) = u(tn, xα) and an operator
T : l∞(Z × Z

m) → C(R × R
m) such that:

(T ∗T )U = U, (7)

‖T U‖tn = |U |n∞, (8)

‖T T ∗u − u‖tN ≤ L(|h| + |k1| + · · · |km |) for u ∈ BC(E; L). (9)

In view of the standard construction of T (see [9]) we can assume that T : l∞(In ×
Z

m) → C(Etn ) for every n.
Put γ, β ∈ Z

m such that γ, β ≥ 0. Let p be a number of δ ∈ Z
m satisfying

inequalities α − γ ≤ δ ≤ α +β. For given g : �̄× C(D)× R
mp → R and � = ϕ|�0

we define a finite difference scheme:
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On the numerical approximation of viscosity solutions 333

U n+1
α = U n

α + hg

(
tn, xα, (T U )(tn ,xα),

�+

k
U n

α−γ · · · �+

k
U n

α+β

)

for n = 0, . . . , N − 1 (10)

and

U n = �n for n = −N0, . . . , 0. (11)

Of course, the above scheme always has a solution. We will write U ∈ AP(g,�)

if U solves (10), (11) nevertheless AP(g,�) admits only one element.
Assume now that g is independent of w. We will write for short U = U n

α , V = V n
α .

Let l∞(Zm; L) = {U ∈ l∞(Zm) : |�+U |∞ ≤ Lk}.
Define G : {0, 1, . . . , N } × l∞(Zm) → l∞(Zm) by

G(s, U )α = Uα + hg

(
ts, xα,

�+

k
Uα−γ · · · �+

k
Uα+β

)
. (12)

Scheme (10), (11) takes now the form

U n+1 = G(n, U n) for n = 0, . . . , N , (13)

U 0 = �0. (14)

In this paper we will consider only the monotone schemes, i.e. such that G(s, U ) is
nondecreasing function of U (the exact definition will be given in the next section).
This property of G is justified by the following,

Proposition 1 Let G be defined by (12) and s = 0, 1, . . . , N. Then,

(1) G(s, U + λ) = G(s, U ) + λ for λ ∈ R,
(2) if G(s, ·) is nondecreasing in l∞(Zm; Ls), then |G(s, U ) − G(s, V )|∞ ≤ |U −

V |∞ for U, V ∈ l∞(Zm; Ls),
(3) if G(s, ·) is nondecreasing in l∞(Zm; Ls) and g is Lipschitz continuous in x with

a constant Lx [g], then

|�+G(s, U )|∞ ≤ |�+U |∞ + Lx [g]hk on l∞(Zm; Ls). (15)

Proof As (1) is immediate we begin with (2). Since U ≤ V + |U − V |∞ putting
λ = |U − V |∞ we get by (1) and by monotonicity of G(s, ·), G(s, U ) − G(s, V ) ≤
G(s, V + λ) − G(s, V ) = λ. By changing the role of U and V we obtain the desired
estimation.

Now we will demonstrate (3). Let τi : l∞(Zm) → l∞(Zm) be defined by (τiU )α =
Uα+ei for i = 1, . . . , m. Fix s ∈ {0, 1, . . . , N }. First we estimate |G(s, τiU ) −
τi G(s, U )|∞. Since

G(s, τiU )α = (τiU )α + hg

(
ts, xα,

�+

k
(τiU )α−γ · · · �+

k
(τiU )α+β

)

and
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334 K. A. Topolski

[τi G(s, U )]α = (τiU )α + hg

(
ts, xα+ei ,

�+

k
(τiU )α−γ · · · �+

k
(τiU )α+β

)
,

we get

|G(s, τiU ) − τi G(s, U )|∞ ≤ Lx [g]ki h.

This and (2) imply

|�+
xi

G(s, U )|∞ = |τi G(s, U ) − G(s, U )|∞ ≤ |τi G(s, U ) − G(s, τiU )|∞
+|G(s, τiU ) − G(s, U )|∞ ≤ Lx [g]ki h + |�+

xi
U |∞

and (3) is proved. �
Lemma 1 Let V ∈ AP(G,�), Ṽ ∈ AP(G̃, �̃) and �, �̃ ∈ l∞(Zm; L0). Suppose
that g is Lipschitz continuous in x, G(s, ·) is nondecreasing in l∞(Zm; Ls) where
Ls = L0 + Lx [g]sh, and s ∈ {0, 1, . . . , N − 1}. If there exists F(s) such that

|G(s, ·) − G̃(s, ·)|∞ ≤ F(s),

then

|V n+1 − Ṽ n+1|∞ ≤
n∑

s=0

F(s) + |� − �̃|∞ for every n ∈ {0, 1, . . . , N − 1}.

(16)

Proof In view of Proposition 1 (2) we have

|V n+1 − Ṽ n+1|∞ = |G(n, V n) − G̃(n, Ṽ n)|∞
≤ |G(n, V n) − G(n, Ṽ n)|∞ + |G(n, Ṽ n) − G̃(n, Ṽ n)|∞ ≤ |V n − Ṽ n|∞ + F(n).

By repeating this n-times we obtain the desired inequality.
Notice that if �, �̃ ∈ l∞(Zm; L0), then in view of Proposition 1 (3) V s, Ṽ s ∈

l∞(Zm; L0 + sLx [g]h). Indeed, we use induction method. V 0 = � ∈ l∞(Zm; L0).
Suppose that V s ∈ l∞(Zm; L0 + sLx [g]h). Then by (15) and (12)

|�+U s+1|∞ ≤ |�+U s |∞ + Lx [g]hk ≤ (L0 + (s + 1)Lx [g]h)k.

This completes the proof. �

3 Convergence of the scheme

In this section we will consider a general situation when f depends on w. Particularly
interesting is the case when this dependence is functional. Our results can be applied to
a large class of differential-integral equations and equations with a retarded argument
(see Examples 1 and 2).
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Assumption 1 (A) Suppose that,

(1) there exists γ > 0 such that | f (t, x, 0, 0)| ≤ γ in �̄,
(2) f (t, x, u, p) is global Lipschitz continuous in u and local Lipschitz continuous

in p,
(3) there exists C > 0 such that

| f (t, x, u, p) − f (t, x̄, u, p)| ≤ C(1 + Lx [u] + p)|x − x̄ |

in �̄ × CL(D) × R
n,

(4) there exists  : R
n → [0,∞) such that

| f (t, x, u, p) − f (t̄, x, u, p)| ≤ (p)(1 + Lt [u])|t − t̄ |

in �̄ × CL(D) × R
n .

Here CL(D) stands for the space of all Lipschitz functions on D.
Since we use the space CL(D) in (3) and (4) we can apply our results to equations

with a retarded and deviated argument under restriction that α depends on t and
β depends on x . It would be impossible if we considered the space C(D) leaving
out Lx [u], Lt [u]. Of course, the assumption would be stronger in this case, general
enough to cover only differential-integral equation and constant retarded and deviated
argument.

Assumption A can be formulated in more general form (see [19]) which gives a
priori estimations on the solution and its Lipschitz constant in x (with a natural assump-
tion on ϕ). Such general formulation can be reduced, however, to our formulation by
a standard argument.

Now we will investigate the finite difference scheme (10), (11).

Definition 3 We say that g is consistent with f if for every a ∈ R
m g(t, x, u, a, . . . , a)

= f (t, x, u, a) in �̄ × C(D).

In the following we will assume that g is consistent with f , and ki/h for i = 1, . . . , m
are constant. Put λxi = ki/h.

In view of [19] we know that if f satisfies Assumption A, ϕ ∈ BC(�0; L0), ũ ∈
SO L( f, ϕ), then there exists L > 0 independent of ũ such that ũ ∈ BC(E; L). Let L
be such a constant.

For u ∈ C(E) we define

f [u](t, x, p) = f (t, x, u(t,x), p) and g[u](t, x, p) = g(t, x, u(t,x), a, . . . , a).

Let G[u] be defined by (12) with g replaced by g[u].
Definition 4 We say that scheme (10), (11) is monotone on [−L , L] if G[u](s, ·) is
nondecreasing in l∞(Zm, L) for every u ∈ C(D).

The main result of our paper is
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Theorem 1 Suppose that f satisfies Assumption A and scheme (10), (11) is monotone
on [−L , L]. Let ũ ∈ SO L( f, ϕ) and Ũ ∈ AP(G,�) where ϕ ∈ BC(�0; L0) and
� = ϕ|�0 . Then there exists K̃ > 0 independent of ũ such that if h ≤ 1, then

|Ũ − T ∗ũ|∞ ≤ K̃
√

h. (17)

Proof Put ϕ0(x) = ϕ(0, x) and �0(α) = �(0, α) = φ(0, α) for α ∈ Z
m . Sup-

pose that ũ ∈ SO L( f, ϕ), Ũ ∈ AP(G,�). Of course ũ ∈ SO L( f [ũ], ϕ0), Ũ ∈
AP(G[T Ũ ],�0). Obviously, it is clear that if f is consistent with g, then f [ũ] is
consistent with g[ũ].

Let V ∈ AP(G[ũ],�0). We have

|Ũ − T ∗ũ|n+1∞ ≤ |Ũ − V |n+1∞ + |V − T ∗ũ|n+1∞ .

Based on the result obtained for the equation with no functional dependence (see
[3,17]) we can write that |V − T ∗ũ|n+1∞ ≤ K

√
h where K is independent of ũ. This

gives

|Ũ − T ∗ũ|n+1∞ ≤ |Ũ − V |n+1∞ + K
√

h.

It remains to estimate |Ũ − V |n+1∞ . Since

|G[T Ũ ](n, U ) − G[ũ](n, U )|∞ ≤ hC‖T Ũ − ũ‖tn

≤ hC(‖T Ũ − T T ∗ũ‖tn + ‖T T ∗ũ − ũ‖tn )

≤ hC[|Ũ − T ∗ũ|n∞ + L(h + k1 + · · · + km)]

by the property of T , we obtain in view of Lemma 1

|Ũ − V |n+1∞ ≤ hC
n∑

s=0

[|Ũ − T ∗ũ|s∞ + hL(1 + λx1 + · · · + λxm )]

and consequently,

|Ũ − T ∗ũ|n+1∞ ≤ hC
n∑

s=0

[|Ũ − T ∗ũ|s∞ + Ah + K
√

h

where A = τC L(1 + λx1 + · · · + λxm ). Finally, we have for h ≤ 1

|Ũ − T ∗ũ|(n+1)∞ ≤ (h A + K
√

h)eChn ≤ √
h(A + K )eCτ .

This completes the proof. �
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4 Numerical examples

Put m = 1. Let us consider the following Lax scheme:

U n+1
j = U n

j+1 + U n
j−1

2
+ h f

(
tn, x j , (T U )(tn ,x j ),

U n
j+1 − U n

j−1

2k

)

for n = 0, . . . , N − 1. (18)

Here we have γ = 1, β = 0, p = 2, α = j . Since (18) can be written in the form

U n+1
j = U n

j + hλ

2

(
�+U n

j

k
− �+U n

j−1

k

)

+ h f

(
tn, x j , (T U )(tn ,x j ),

�+U n
j

2k
+ �+U n

j−1

2k

)
(19)

we define

g(t, x, w, a1, a2) = λ

2
(a2 − a1) + f

(
t, x, w,

a1 + a2

2

)

where λ = k
h . It is easily seen that g is consistent with f . Now we will describe what

it means that our scheme is monotone on [−L , L]. Let U, V ∈ l∞(Zm; L), U ≥ V
and w ∈ C(E). We have

G[w](s, U ) j = U j+1 + U j−1

2
+ h f

(
ts, x j , w,

U n
j+1 − U n

j−1

2k

)
,

G[w](s, U ) j − G[w](s, V ) j ≥ 1

2
(U j+1 − Vj+1 + U j−1 − Vj−1)

− h

2k
L p[ f ](U j+1 − Vj+1 − U j−1 + Vj−1)

=
(

1

2
− L p[ f ]

2λ

)
(U j+1 − Vj+1) +

(
1

2
+ L p[ f ]

2λ

)
(U j−1 − Vj−1)

where L p[ f ] is a Lipschitz constant of f with respect to p ∈ [−L , L].
The above estimation shows that λ = k/h ≥ L p[ f ] is a sufficient condition for

(18) to be monotone on [−L , L].
Example 3 Consider the Lax scheme for the following problem

Dt u = − arctan

⎛
⎝

t∫

0

1∫

−1

u(s, x + y)dyds

⎞
⎠

+ arctan (g(t, x)) − h(t, x) + |Dx u|, (t, x) ∈ [0, 3] × R, (20)

u(0, x) = cos 2x, x ∈ R (21)
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where

g(t, x) =
{

2 sin2 (t/2) − sin (t/2 − 2) cos 2x if |x | ≤ 1
2 sin (t/2) sin 2 cos (t/2 − 2|x |) if |x | > 1

and

h(t, x) = |2 sin(t − 2|x |)| + sin(t − 2|x |).

We set a0 = τ = 3, D = [−τ, 0] × [−1, 1], φ(t, x) = cos 2x in �0 = [−3, 0] × R

and K (t, x, s, y, u) = ρ(s, t)u where ρ(s, t) = 0 if s ∈ [−τ,−t] and ρ(s, t) = 1 if
s ∈ [−t, 0] (see Example 2).

It is not difficult to verify that ũ(t, x) = cos (t − 2|x |) for (t, x) ∈ [0, π ] × R is a
viscosity solution of the above problem. The monotonicity condition for the scheme
(18) holds if h ≤ k (L p[ f ] = 1 is global).

A numerical experiment was made for h = 0.01 with different k. The approximate
values were obtained in the set [0, 3] × [−B, B] where B ≈ 298. Maximal errors δ

for given t are presented in Table (a) below. The last two columns represent the case
of non-monotonic scheme. From Table (b) we can see that errors (in monotonic case)
satisfy a theoretical estimation given in Theorem 1. (K1 = AeCτ ≤ K̃ ). In fact the
theoretical error can be quite large for a large time interval. It is due to the fact that it
grows exponentially in time and depends on a priori estimates. For instance an a priori
Lipschitz constant L for the solution is much greater here than the real one.

δ h = 0.01 h = 0.01 h = 0.01 h = 0.01 K1
√

h h = 0.01 h = 0.01
t k = 0.015 k = 0.01 k = 0.009 k = 0.007 t k = 0.015 k = 0.01

(a) (b)
0.0 0.0000 0.0000 0.0000 0.0000 0.0 0.0000 0.0000
0.3 0.0121 0.0044 0.0039 0.0030 0.3 0.0539 0.0431
0.6 0.0237 0.0085 0.0073 0.8469 0.6 0.3698 0.2958
0.9 0.0338 0.0119 0.0100 290.14 0.9 2.0465 1.6372
1.2 0.0419 0.0148 0.0247 98231 1.2 12.826 10.261
1.5 0.0479 0.0171 0.1192 3.D + 07 1.5 101.27 81.015
1.8 0.0514 0.0185 0.4689 1.D + 10 1.8 1056.2 844.95
2.1 0.0520 0.0188 2.4524 4.D + 12 2.1 14924 11939
2.4 0.0493 0.0177 12.020 1.D + 15 2.4 3.D + 05 2.D + 05
2.7 0.0516 0.0187 58.000 4.D + 17 2.7 8.D + 06 6.D + 06
3.0 0.0657 0.0246 278.49 1.D + 20 3.0 3.D + 08 2.D + 08

An interesting effect can be observed if we prolong the time interval beyond π .
The error estimate is growing up. It is due to the fact that ũ(t, x) = cos (t − 2|x |) is
no longer a viscosity solution for t > π . (it is still a.e. solution). Our method gives
an approximation of viscosity solution which exists and is unique globally. It is rather
difficult to find an explicit formula for such solution if t > π . Maximal errors in the set
[3, 5]×[−B, B] where B ≈ 150 are given in the table below (monotonicity condition
holds).
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δ h = 0.01 h = 0.01

t k = 0.015 k = 0.01

3.0 0.0657 0.0246
3.2 0.0800 0.0303
3.4 0.0963 0.0475
3.6 0.1341 0.1373
3.8 0.2620 0.2738
4.0 0.4284 0.4507
4.2 0.6241 0.6590
4.4 0.8368 0.8869
4.6 1.0507 1.1177
4.8 1.2491 1.3289
5.0 1.4228 1.5083

Example 4 Consider the Lax scheme for the following problem

Dt u = 1

1+u2(t2, x+sin x)
−g(t, x)+h(t, x)−|Dx u|, (t, x)∈[0, 1] × R (22)

u(0, x) = − sin |x |, x ∈ R. (23)

where

g(t, x) = 1

1 + sin2 (t2 − |x + sin x |) , h(t, x) = max {2 cos (t − |u|), 0)}.

We can verify that ũ(t, x) = sin (t − |x |) is a viscosity solution of the problem. The
monotonicity condition for (18) has the form h ≤ k (L p[ f ] = 1 is global). Here
D = [− 1

4 , 0] × [−1, 1] and φ(t, x) = − sin |x | in �0 = [− 1
4 , 0] × R.

A numerical experiment was made for h = 0.005 with different k. The approximate
values were obtained in the set [0, 2] × [−B, B] where B ≈ 200. Maximal errors are
given in Table (a) below. The last two columns represent the case of non-monotonic
scheme. Numerical errors can be compared with the theoretical results by using Table
(b) (see Example 3).

δ h = 0.005 h = 0.005 h = 0.005 h = 0.005 K1
√

h h = 0.005 h = 0.005
t k = 0.007 k = 0.005 k = 0.003 k = 0.004 t k = 0.007 k = 0.005

(a) (b)
0.0 0.0000 0.0000 0.0000 0.0000 0.0 0.0000 0.0000
0.1 0.0140 0.0022 0.0169 0.0054 0.1 0.0188 0.0156
0.2 0.0130 0.0045 1.1045 0.0055 0.2 0.0415 0.0345
0.3 0.0155 0.0068 329.48 0.0258 0.3 0.0687 0.0573
0.4 0.0207 0.0091 94870. 0.4337 0.4 0.1013 0.0844
0.5 0.0261 0.0115 3.D + 07 4.6522 0.5 0.1399 0.1166
0.6 0.0317 0.0139 9.D + 09 39.357 0.6 0.1855 0.1546
0.7 0.0376 0.0165 3.D + 12 312.76 0.7 0.2392 0.1994
0.8 0.0437 0.0192 8.D + 14 3142.3 0.8 0.3021 0.2518
0.9 0.0501 0.0221 3.D + 17 32585 0.9 0.3757 0.3131
1.0 0.0567 0.0251 8.D + 19 3.D + 05 1.0 0.4613 0.3844
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Example 5 Consider the Lax scheme for the following problem

Dt u = cos u

(
t − t2, x + 2

π
arctan x

)
− g(t, x)

+ h(t, x) + 1

10 + 10|Dx u| − 19

10
|Dx u|, (t, x) ∈ [0, 2] × R (24)

u(t, x) = − cos t arctan |x |, (t, x) ∈ [−2, 0] × R. (25)

where

g(t, x) = cos

[
arctan

(
|x + 2

π
arctan x |

)
− (t − t2)2

]
,

h(t, x) = 2t

1 + (|x | − t2)2 − 1

10 + 10
1+(|x |−t2)2

+ 19

10 + 10(|x | − t2)2 .

We verify that ũ such that ũ(t, x) = − arctan (|x | − t2) in [0, 2] × R and satisfying
(25) is a viscosity solution of the problem. The monotonicity condition for the scheme
(18) has the form 2h ≤ k (L p[ f ] = 2 is global). Here D = [−2, 0] × [−1, 1].

A numerical experiment was made for h = 0.005 with different k. The approximate
values were obtained in the set [0, 2] × [−B, B] where B ≈ 202. Maximal errors are
given in Table (a) below. The last two columns represent the case of non-monotonic
scheme. The errors can be compared with the theoretical results by using Table (b)
(see Example 3).

δ h = 0.005 h = 0.005 h = 0.005 h = 0.005 K1
√

h h = 0.005 h = 0.005
t k = 0.015 k = 0.01 k = 0.009 k = 0.008 t k = 0.015 k = 0.01

(a) (b)
0.0 0.0000 0.0000 0.0000 0.0000 0.0 0.0000 0.0000
0.2 0.0112 0.0048 0.0038 0.0055 0.2 0.1382 0.1036
0.4 0.0171 0.0073 0.0060 0.2883 0.4 0.3376 0.2532
0.6 0.0186 0.0077 0.0156 8.9333 0.6 0.6184 0.4638
0.8 0.0175 0.0070 0.0575 199.64 0.8 1.0072 0.7554
1.0 0.0154 0.0057 0.2425 3839.4 1.0 1.5377 1.1533
1.2 0.0133 0.0045 0.7090 1.D + 05 1.2 2.2538 1.6903
1.4 0.0116 0.0034 1.0670 4.D + 06 1.4 3.2116 2.4087
1.6 0.0100 0.0023 3.1155 1.D + 08 1.6 4.4830 3.3622
1.8 0.0084 0.0012 8.4006 5.D + 09 1.8 6.1600 4.6200
2.0 0.0069 0.0007 22.910 2.D + 11 2.0 8.3598 6.2698

Example 6 Now we will give a numerical solution to the problem for which the exact
solution is not known. Consider the Lax scheme for:

Dt u =
3u

(
t3, x3

1+x2

)

1 + |u
(

t3, x3

1+x2

)
|
− 5 sin

( |Dx u|
5

)
, (t, x) ∈ [0, 1] × R (26)
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Fig. 1 h = k = 0.01 and h = 0.005, k = 0.01

Fig. 2 h = 0.01, k = 0.005
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u(0, x) = 1 + 1

2
| sin x |, x ∈ R. (27)

The monotonicity condition for the scheme (18) has the form h ≤ k (L p[ f ] = 1
is global). Here D = [− 2

3
√

3
, 0] × [− 1

2 , 1
2 ] and φ(t, x) = 1 + 1

2 | sin x | in �0 =
[− 2

3
√

3
, 0] × R.

We compare approximate solutions in the set [0, 1]× [−10, 10] for different h and
k with that obtained for h = k = 0.002 (it may be treated as the exact solution). The
errors are given in the table:

t h = 0.01 h = 0.005 h = 0.01

k = 0.01 k = 0.01 k = 0.005

0.0 0.0000 0.0000 0.0000
0.1 0.0041 0.0091 0.0259
0.2 0.0042 0.0124 0.1094
0.3 0.0043 0.0152 0.2517
0.4 0.0043 0.0176 0.4118
0.5 0.0042 0.0199 0.5324
0.6 0.0041 0.0220 0.6468
0.7 0.0039 0.0238 0.7819
0.8 0.0037 0.0255 0.9344
0.9 0.0034 0.0270 1.0616
1.0 0.0031 0.0284 1.2198

It is easily seen that violation of the monotonicity condition (the last column) leads
to significant errors. It could also be seen from the graph of approximate solution.
In Fig. 1 graphs of two solutions for which the monotonicity condition holds, are
displayed. These graphs are very similar (we see both as almost one graph). Figure 2
represents the case for which the optimal link is not satisfied.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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