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Abstract The identification of wood species used in the

cultural artifacts is important in terms of their preservation

and inheritance. However, a nondestructive method is

required, and wood samples must be partly cut off in

conventional methods such as microscopy. In this study,

we constructed a novel system for wood identification

using image recognition of X-ray computed tomography

images of eight major species used in Japanese wooden

sculptures. Texture analyses of the computed tomography

images were carried out using the gray-level co-occurrence

matrix, from which 15 textural features were calculated.

The k-nearest-neighbor algorithm combined with cross

validation was applied for classification and evaluation of

the system. Input datasets with a variation in image qual-

ities (resolution, gray level, and image size) were investi-

gated using this novel system, and the accuracy was greater

than 98 % when the input images had a certain quality

level. Although there are still technical problems to be

overcome, progress in the development of automated

identification is extremely encouraging in that such an

approach has the potential to make a valuable contribution

in adding scientific species notion to the artifacts; other-

wise, only the literal documents are available.

Keywords Wood identification � Pattern recognition �
Texture analysis � Gray-level co-occurrence matrix �
X-ray computer tomography

Introduction

Wood identification has been providing useful information

of the origins of heritages and sometimes provided a new

perspective. Although it requires expertise in wood anat-

omy, the technique has increasingly been used by curators

and archeologists owing to the list of anatomical features

published by the IAWA Comittee [1, 2]. Commonly, wood

samples have to be observed from three orthogonal direc-

tions, namely, the transverse, radial, and tangential direc-

tions, to obtain the appropriate information of their

anatomical features. This method becomes routine after

training and experience, but it is not applicable to culturally

important wood works or artifacts, where only nonde-

structive methods are allowed to be used.

Spectroscopy is one example of a nondestructive and

noninvasive method, and several attempts to identify wood

have been successfully reported [3–5]. The prediction

accuracy can be improved by the quality of the spectral

database, but is not sufficient for the classification of a

wide range of wood species. It is more efficient if the target

species for classification are limited. Another nondestruc-

tive technique is X-ray computed tomography (CT). One

example is the use of synchrotron radiation X-ray micro-

tomography, where the three-dimensional (3D) wood

structure has been reconstructed at a resolution of 0.5 lm
[6]. In this technique, wood identification based on the

IAWA list [1, 2] is possible. However, the sample size and

machine time are limited; therefore, the measurement is

limited to selected important materials.
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Kyushu National Museum was the fourth national

museum in Japan, and it is devoted to the scientific

investigation of artwork. Since the installation of a large-

scale X-ray CT instrument, nearly 2000 wooden artifacts

have been inspected. Unfortunately, the images were never

considered as resources for analyzing wood properties.

This is because the resolution of the image was too low to

apply conventional wood identification that relies on the

visual inspection of microscopic anatomical features.

For the last several decades, image recognition tech-

nology, such as an automated face-recognition system and

fingerprint authentication, has been significantly devel-

oped. As a method for the extraction of image information,

which is one of the important processes in image recog-

nition, a texture analysis has been utilized in a variety of

fields such as remote sensing and medical imaging. Several

authors have also reported attempts of the application of

these techniques to wood identification [7–19], which are

particularly active in tropical areas. Tropical timber is an

important biological and economical resource in the

developing world; thus, wood identification is demanded at

trading locations to circulate proper wood in the market as

well as to keep illegally logged timber under observation.

Under such circumstances, an automated wood identifica-

tion system is highly demanded because the development

of human resources is important, but it is not straightfor-

ward to train people to have in-depth anatomical knowl-

edge and experience to cover the large diversity of tropical

hardwood species. Many studies have mostly used optical

micrographs [10, 11, 14, 19] or stereograms [7–9, 12, 13,

15–18], whose resolution was a several micrometers at

worst. Under such conditions, the arrangements of vessels

and axial parenchyma were clearly recorded and used as

image information. Several approaches for the extraction of

image information were tested, such as the segmentation of

specific anatomical features [10, 11], the gray-level co-

occurrence matrix (GLCM) [7–9], Gabor filtering [16],

Gabor filtering followed by the GLCM [12], the Coiflet

discrete wavelet transform [18], the extended higher local

order autocorrelation [15], and local binary patterns [14].

Combinations of multiple extractors were also tested for

further improvement in the systems [13, 17, 19].

Inspired by the above-mentioned development of auto-

mated recognition systems, the computer-aided recognition

of low-resolution CT images recorded at Kyushu National

Museum seemed to have a potential to be uncovered.

Although the resolution of the original CT images does not

allow for visualization of individual anatomical features,

the density gradient and fluctuation that are specific to the

species are certainly recorded.

Therefore, the eight most frequently used wood species

in Japanese sculptures were selected and analyzed in this

study. As for the feature extraction procedure, the most

simple and reputable technique, the GLCM that considers

the spatial gray-level distribution [20], was considered to

be the best as the first choice. The detailed procedures and

the applicability of the automated wood identification

technique will be described.

Methods

Wood samples

Ten types of wood blocks were selected by Mr. Yano

Ken’ichiro at the Tokyo University of the Arts, Institute of

Ancient Art Research, Nara from critical/practical view-

points as a professional sculptor. They are Cinnamomum

camphora (Cc), Cercidiphyllum japonicum (Ce), Cryp-

tomeria japonica* (Cj), Chamaecyparis obtusa* (Co),

Magnolia obovata (Mo), Pawlounia tomentosa (Pt), Tor-

reya nucifera (Tn), and Zelkova serrata (Zs). Species with

asterisk have two variations—one from a plantation forest

(Cj1, Co1) and the other from a natural forest (Cj2, Co2).

X-ray computed tomography

X-ray CT experiments of the wood samples were per-

formed using the large-scale X-ray CT instrument (Y.CT

Modular, YXLON International GmbH, Germany) at the

Kyushu National Museum. Al-filtered X-rays were gener-

ated at 225 kV and 30 mA. A total of 1080 projections

were recorded on a flat-panel detector and reconstructed by

employing the filtered back-projection procedure. The

sample-source distance was set to achieve a voxel resolu-

tion of 0.05 mm.

Initial image dataset

From the reconstructed 3D dataset of the wood blocks,

two-dimensional (2D) images were precisely cropped in

the direction that provides a transverse section using vol-

ume graphics software (VGStudio MAX 2.1, Volume

Graphics GmbH, Germany). The images have dimensions

of 300 pixels 9 300 pixels that correspond to

1.5 cm 9 1.5 cm in actual size and a 256-level gray scale.

Forty images were randomly collected for each wood

block, and a total of 400 images in the TIFF file format

were used as an initial dataset.

Computational approaches

An outline of the analysis procedure is shown in Fig. 1.

From the initial dataset, datasets with a variety of qualities

were created, and each dataset was then input into the

recognition system. The system consists of two steps:
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feature extraction and classification. Statistical processing

of all of the following images was carried out using R

version 3.1.1 [21] and its packages.

Preprocessing images

In addition to the initial dataset, a number of datasets

was created by reductions in the resolution, the number

of gray levels, and the image size. The resolution and

image size, which were originally 0.05 mm and

1.5 cm 9 1.5 cm, respectively, were changed using a

function in the ‘‘biOps’’ package [22]. The resolution

was reduced to 0.1, 0.15, 0.2, and 0.25 mm, and the

image size was reduced to 1 cm 9 1 cm and

0.5 cm 9 0.5 cm. The number of gray levels, which was

initially 256 (=28), was reduced, and images with 2n

(n = 3–7) gray levels were generated. In total, 90 data-

sets with five resolutions, six different numbers of gray

levels, and three image sizes were used for further

analysis.

Feature extraction

The GLCM from an image with 2n gray levels is a matrix

with dimensions of 2n 9 2n. The matrix P(i, j) represents

the probability of occurrence of the pair of gray levels i and

j at a separation distance d. In our study, d was fixed to 1,

and the GLCMs were calculated from four directions,

which are horizontal (‘‘0�’’), vertical (‘‘90�’’), and diagonal

(‘‘45�’’ and ‘‘135�’’). In addition to the four GLCMs, one

new matrix was added, which is the ‘‘average’’ of those of

the four directions.

A total of 15 textural features were extracted from each

GLCM, including the 13 textural features proposed by

Haralick et al. [20] and the two textural features added by

Albregtsen [23], which are given as follows:

Classification
 k-NN algorithm

for 7 sets of textural features ( “0°,” “45°,” “90°,”
“135°,” “average,” “range,” “average + range”)

Feature Extraction
 Construction of GLCMs

for 4 bearing angles ( “0°,” “45°,” “90°,” “135°”) 
and their “average”

 15 Haralick textural features
for 5 GLCMs ( “0°,” “45°,” “90°,” “135°,” “average”) 
and their “range”

Input

Output

Image Processing
 Resolution reduction

    (0.05, 0.1, 0.15, 0.2, 0.25 mm)

 Gray-level reduction
    (256, 128, 64, 32, 16, 8)

 Cropping
    (1.5 × 1.5, 1 × 1, 0.5 × 0.5 cm)

* Bold types indicate the qualities of the 
initial dataset.

X-ray CT
3D dataset
(10 wood samples)

2D images of transverse section
( 40 images for each wood)

90
datasets R e c o g n i t i o n

S y s t e m
R e c o g n i t i o n

S y s t e m

400 images
in initial dataset

Fig. 1 Schematic diagram of

the analysis procedure
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Pði; jÞ is the ði; jÞth element of a GLCM, and

G is the number of gray levels:
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:

In addition to the five sets of 15 features extracted from

the GLCMs, one more set was added, which is the

‘‘range’’ of the textural features of the GLCM in the four

directions.

Verification and classification

A principal component analysis (PCA) using the ‘‘stats’’

package [21] was carried out to evaluate the textural

features suitable for the recognition procedure. From one

image, six sets of 15 features were already obtained.

Then, one more set was included, which is a linear

combination of ‘‘average ? range’’ [20], consisting of 30

textural features. A total of seven sets of features, ‘‘0�’’,
‘‘90�’’, ‘‘45�’’, ‘‘135�’’, ‘‘average’’, ‘‘range’’ and ‘‘aver-

age ? range’’ were tested and evaluated in terms of

species-specific clustering.

The k-nearest-neighbor (k-NN) algorithm was used for

discrimination combined with leave-one-out cross vali-

dation (LOOCV) using the ‘‘class’’ package [24]. In the

LOOCV method, one object is drawn from the entire

dataset as a test set, which is classified according to a

model built by the rest of the objects. On the basis of

the results obtained by repeating this process for all

objects, the performance of the discrimination model is

estimated.

The rate of correctly classified objects was calculated

when the value of k is an odd number, and the capability of

the recognition was evaluated by the average of the accu-

racy with k = 1, 3, 5, 7, and 9. In total, 90 image datasets

with five resolutions, six different numbers of gray levels,

and three image sizes were subjected to the classification

procedure using seven sets of GLCM-related textural

features.
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Results and discussion

Extraction of features from CT images

Figure 2 shows the representative CT images of transverse

sections without any image processing, where a darker area

corresponds to an area of lower density. The images were

cropped so that the annual rings are arranged in the vertical

direction, although some images from Cryptomeria

japonica from the plantation forest (Cj1) were difficult to

arrange in this manner because its wood block had smaller

annual rings in diameter. The microscopic anatomical

features were not well observed in these images as

expected, but they obviously showed some differences

among the species. In particular, features related to the

annual rings, such as their widths and the gradient from a

darker area to a lighter area that corresponds to earlywood

to latewood in an annual ring, were readily recognized. The

annual ring boundaries in softwood such as Cj and Co, for

instance, were quite sharp, whereas diffuse-porous hard-

wood such as Ce and Mo exhibited blurred images. In

addition, large pores were also observed as dark dots or

lines in ring-porous hardwoods, Pt and Zs, and diffuse-

porous hardwoods with large vessels, Cc.

These CT images were subsequently converted into

GLCMs, which represent the probabilities of each combi-

nation of gray levels of neighboring pairs occurring in an

image. Figure 3 shows the GLCMs obtained from some of

the images in Fig. 2 after a reduction in the number of gray

levels to 64; thus, the GLCMs consist of 64 columns and 64

rows. Comparing the GLCMs of Zs among the four bearing

angles (Fig. 3a), the elements in the GLCM of ‘‘90�,’’
which corresponded to the direction along the annual rings,

were more concentrated along the diagonal than those of

Fig. 2 Typical cross-sectional 2D images from CT datasets obtained

from 10 types of woods, with arrows indicating the directions of the

bearing angles for the construction of GLCMs. Cc, Cinnamomum

camphora; Ce, Cercidiphyllum japonica; Cj1, Cryptomeria japonica

(from a plantation forest); Cj2, Cryptomeria japonica (from a natural

forest); Co1, Chamaecyparis obtusa (from a plantation forest); Co2,

Chamaecyparis obtusa (from a natural forest); Mo, Magnolia

obovata; Pt, Paulownia tomentosa; Tn, Torreya nucifera; and Zs,

Zelkova serrata. The images have a resolution of 0.05 mm, 256 gray

levels, and an actual size of 1.5 cm 9 1.5 cm

634 J Wood Sci (2015) 61:630–640
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the other directions, indicating that more neighboring

pixels have the same or nearly the same gray level. On the

other hand, the elements were slightly dispersed from the

diagonal in the GLCM of ‘‘0�,’’ which resulted from the

transition of gray levels across the annual rings. The

GLCMs of ‘‘45�’’ and ‘‘135�,’’ consisting of neighboring

pairs in the direction diagonally across the annual rings,

exhibited more dispersed patterns.

The GLCMs of Cj2, Mo, and Zs obtained with the

‘‘average’’ among the four bearing angles are shown in

Fig. 3b. In the GLCM of Cj2, many elements gathered at

the left lower side, but a small quantity of elements also

spread to the right upper side for a wide range (Fig. 3b-1).

This is because the image of Cj2 mainly consists of large

dark areas corresponding to earlywood, but they gradually

transition to small light areas corresponding to latewood.

From the blurred image of Mo, on the other hand, the

GLCM consisted of fewer elements, and they were con-

centrated on the diagonal (Fig. 3b-2). In the GLCM of Zs

(Fig. 3b-3), there are also many elements along the diag-

onal, and some of them are dispersed from the diagonal.

Some neighboring pairs in the image of Zs have large

differences in gray levels due to the large pores.

From the GLCMs obtained from the images, 15 textural

features were calculated. Here, the meanings of the features

are specifically explained using three of them calculated

from the GLCMs shown in Fig. 3b as concrete examples

(Fig. 4). ASM is the sum of the squares of all elements, as

expressed by Eq. 1; thus, a GLCM consisting of fewer

elements makes ASM larger, representing a measure of

homogeneity. Comparing the values of ASM among the

three wood species, the value for Mo was much greater

than those for Co2 and Zs, which is consistent with the

visual appearances of the images. Because contrast, which

becomes larger if there are more elements in the GLCM far

from the diagonal of i = j (Eq. 2), represents the amount of

the local density variation, Co2 and Zs exhibited larger

values. Variance is the degree of variability from the

average of all elements (Eq. 3), resulting in the largest

value for Co2 among the three because the difference in

gray levels is extreme in its image.

Classification and evaluation of the recognition

system

Before classification using the extracted textural features,

they were analyzed by a PCA for testing the clustering of

objects and the dispersion of the textural features in the

feature space. Figure 5 shows examples of the results of the

PCA, which were obtained using the features calculated

from ‘‘average,’’ ‘‘range,’’ and ‘‘average ? range’’ of

images with 64 gray levels. In most cases, the 15 textural

features pointed in diverse directions in the score plot, as

shown in Fig. 5a, indicating that every feature has mean-

ingful information for discrimination. As a result, the

objects were well dispersed and clustered for each class. In

contrast, in some cases shown in Fig. 5b, many textural

features exhibited similar directions, and several clusters
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Fig. 3 Gray-level co-occurrence matrices (GLCMs) calculated from

some of the images in Fig. 2 with a reduction of the number of gray

levels to 64. Elements with higher values are indicated by darker

colors. a Comparison of the GLCMs obtained from Zs with different

bearing angles of ‘‘0�’’, ‘‘45�’’, ‘‘90�’’ and ‘‘135�’’. b Comparison of

GLCMs obtained from different wood species: Co2, Mo, and Zs. The

parameter used for the calculation is ‘‘average’’
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for each class overlapped with each other. Using the

combined 30 features of ‘‘average ? range’’ (Fig. 5c), the

objects seemed to be discriminated as well as or better than

the case in which only the 15 features of ‘‘average’’ were

used, even though some of the features pointed in similar

directions.

The k-NN algorithm was adopted for classification, and

the accuracy of the recognition system was estimated by

LOOCV for each value of k. Figure 6 shows the changes in

the accuracy depending on k when using the same dataset

and parameters as in Fig. 5. The accuracy remained almost

constant with the increase in k when ‘‘average’’ and ‘‘av-

erage ? range’’ were used (Fig. 6a, c), whereas it gradu-

ally decreased in the case of ‘‘range’’ (Fig. 6b). This is

because an object is misclassified into the wrong class with

a higher probability with increasing k if there is an object

located between its true cluster and the other ones. These

results were consistent with the PCA analysis, where

0

20

40

60

80

100

variance
0

5

10

15

20

25

30

contrast
0.000

0.002

0.004

0.006

0.008

0.010

ASM

Co2

Mo

Zs

Fig. 4 Comparison of three

selected textural features for

Co2, Mo, and Zs calculated

from the GLCMs in Fig. 3b

−0.10 −0.05 0.00 0.05 0.10

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

PC1

P
C

2

Cc

Cc

Cc
Cc

Cc
Cc

Cc

Cc
CcCc

Cc
CcCc
CcCc

Cc

Cc

Cc

Cc

Cc

CcCc
CcCc

Cc

CcCc
Cc

Cc

Cc

CcCc
Cc
CcCc
Cc
CcCc
Cc

Cc

Ce

Ce

CeCe

CeCe

Ce

CeCe

Ce

Ce
Ce

Ce

Ce
CeCe

CeCe

Ce
Ce

Ce

Ce
Ce

Ce
Ce

Ce

Ce

CeCeCe

CeCe

CeCe
Ce

CeCe

Ce
Ce

Ce

Cj1

Cj1

Cj1

Cj1

Cj1

Cj1
Cj1

Cj1

Cj1

Cj1

Cj1

Cj1

Cj1
Cj1

Cj1

Cj1Cj1

Cj1

Cj1

Cj1

Cj1
Cj1

Cj1

Cj1

Cj1

Cj1
Cj1Cj1

Cj1

Cj1

Cj1

Cj1
Cj1

Cj1
Cj1

Cj1
Cj1

Cj1

Cj1

Cj1

Cj2

Cj2Cj2
Cj2

Cj2

Cj2

Cj2
Cj2Cj2

Cj2

Cj2

Cj2Cj2Cj2

Cj2
Cj2

Cj2
Cj2

Cj2

Cj2

Cj2
Cj2Cj2Cj2

Cj2

Cj2

Cj2

Cj2

Cj2
Cj2

Cj2

Cj2

Cj2
Cj2
Cj2

Cj2 Cj2Cj2
Cj2

Cj2

Co1
Co1Co1
Co1Co1

Co1

Co1
Co1 Co1

Co1

Co1

Co1

Co1Co1

Co1
Co1

Co1
Co1Co1

Co1

Co1

Co1
Co1

Co1

Co1Co1

Co1
Co1
Co1

Co1

Co1

Co1
Co1Co1

Co1
Co1

Co1

Co1

Co1
Co1

Co2

Co2

Co2

Co2
Co2

Co2

Co2

Co2

Co2
Co2

Co2Co2
Co2

Co2

Co2

Co2Co2Co2

Co2
Co2Co2Co2
Co2

Co2Co2

Co2

Co2Co2
Co2

Co2

Co2
Co2

Co2

Co2

Co2

Co2

Co2

Co2

Co2Co2

Mo
MoMoMoMoMo

MoMoMoMo
Mo

Mo
MoMo

Mo
MoMoMo
Mo
MoMo

MoMo
Mo
Mo
MoMoMo

MoMoMo

Mo
Mo Mo

Mo
Mo
MoMoMoMo

Pt
PtPt

PtPtPtPtPt PtPtPtPt
PtPtPtPtPt

Pt Pt
PtPt

PtPtPtPtPt
Pt

Pt
Pt Pt

PtPt

Pt

Pt
PtPtPtPtPtPt

TnTn

TnTn

Tn
Tn

Tn
Tn
Tn

Tn
Tn

Tn
Tn Tn

Tn
Tn

Tn
Tn

Tn
Tn

Tn

TnTn

Tn
Tn
Tn

Tn

Tn

Tn

TnTn
Tn

Tn

TnTn

Tn
TnTn

Tn
Tn

Zs

ZsZs

Zs Zs

ZsZs
Zs
Zs

ZsZsZs Zs

Zs
Zs

Zs
ZsZsZs

Zs ZsZs ZsZs
ZsZs

ZsZs
ZsZs

Zs

Zs
ZsZs

Zs

Zs

Zs
Zs

Zs

Zs

−20 −10 0 10 20

−
20

−
10

0
10

20

asm

con

idm

ent

cor

var

sav

sen

den

dva

sva

f12

f13

sha
pro

−0.10 −0.05 0.00 0.05 0.10

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

PC1

P
C

2

CcCcCc

Cc

Cc
CcCcCc
Cc

CcCc

Cc

CcCc
Cc

Cc
CcCcCc

Cc

Cc
CcCcCc
Cc

Cc
Cc
CcCcCcCc
Cc
CcCcCc

Cc
Cc
CcCc

Cc

CeCe
Ce
Ce

Ce
Ce

Ce

Ce

Ce
Ce
Ce

Ce

Ce
Ce

Ce
Ce

Ce

Ce

Ce

CeCe
Ce
Ce

CeCeCeCe

Ce

Ce
CeCeCe

Ce
CeCe

Ce

Ce
CeCeCe

Cj1

Cj1

Cj1Cj1

Cj1
Cj1

Cj1

Cj1

Cj1

Cj1

Cj1

Cj1

Cj1
Cj1

Cj1

Cj1
Cj1

Cj1

Cj1

Cj1

Cj1
Cj1

Cj1

Cj1

Cj1 Cj1Cj1

Cj1

Cj1

Cj1

Cj1

Cj1 Cj1

Cj1

Cj1 Cj1

Cj1
Cj1

Cj1

Cj1

Cj2

Cj2Cj2Cj2
Cj2

Cj2

Cj2
Cj2Cj2Cj2

Cj2

Cj2Cj2Cj2Cj2

Cj2Cj2
Cj2

Cj2

Cj2
Cj2
Cj2

Cj2
Cj2

Cj2

Cj2

Cj2

Cj2

Cj2

Cj2

Cj2

Cj2

Cj2
Cj2 Cj2
Cj2

Cj2
Cj2Cj2

Cj2

Co1

Co1

Co1

Co1
Co1

Co1

Co1Co1

Co1Co1Co1

Co1
Co1Co1

Co1Co1Co1
Co1
Co1

Co1

Co1Co1

Co1
Co1

Co1Co1Co1Co1Co1
Co1
Co1

Co1
Co1
Co1

Co1

Co1
Co1

Co1
Co1

Co1

Co2Co2

Co2

Co2
Co2

Co2

Co2

Co2

Co2

Co2Co2Co2
Co2

Co2

Co2

Co2Co2

Co2

Co2

Co2Co2Co2Co2Co2
Co2

Co2
Co2

Co2

Co2

Co2

Co2Co2

Co2
Co2

Co2
Co2

Co2

Co2

Co2Co2

Mo

MoMo

Mo
MoMoMoMoMo

MoMoMoMoMoMo
MoMo
MoMo

Mo
Mo

Mo

Mo
Mo

MoMoMoMo
MoMo

Mo
Mo
Mo

MoMo
MoMo

MoMo
Mo

PtPt
Pt

PtPt
Pt

PtPt
PtPtPtPtPt
Pt
Pt

Pt
PtPtPtPt
PtPtPtPt

Pt

PtPtPt

Pt

Pt
Pt
PtPtPtPtPt

Pt
Pt
Pt

Pt

Tn
Tn
Tn

TnTn
TnTn

Tn
TnTnTn

TnTn
TnTnTnTn
Tn

Tn
TnTn
TnTnTnTn

TnTn
TnTnTn
Tn

Tn
TnTn

Tn

TnTn

Tn
TnTn

Zs

Zs
Zs

ZsZs

Zs

Zs

Zs

Zs
Zs
Zs
Zs

Zs

Zs
ZsZs

Zs

ZsZs
Zs
ZsZs
ZsZs

ZsZs
Zs
Zs

ZsZs
Zs

Zs
Zs
ZsZsZsZs

Zs
Zs

Zs

−20 −10 0 10 20

−
20

−
10

0
10

20

asm_a

con_a

idm_a

ent_a

cor_a

var_a
sav_a

sen_a

den_a dva_a

sva_a

f12_a
f13_a

sha_a
pro_a

asm_r

con_r

idm_r ent_r

cor_r

var_r
sav_r

sen_r

den_r

dva_r
sva_r

f12_r

f13_r

sha_rpro_r

a c

−0.10 −0.05 0.00 0.05 0.10

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

PC1

P
C

2

Cc
Cc

Cc
Cc CcCc

Cc
CcCcCc

Cc
CcCc

CcCcCcCcCc

Cc
CcCc

Cc

Cc
Cc

Cc
Cc
Cc
Cc
Cc

CcCcCc

Cc
Cc

CcCc

Cc
CcCcCc

Ce

Ce

Ce
CeCe

Ce

Ce

CeCeCe
Ce

Ce
Ce Ce

CeCe

Ce
Ce

Ce

Ce
Ce

Ce

CeCe

Ce

CeCe

CeCe
Ce

Ce

CeCe
Ce

Ce

Ce

Ce
Ce

CeCe

Cj1

Cj1
Cj1Cj1

Cj1
Cj1

Cj1

Cj1

Cj1

Cj1

Cj1

Cj1

Cj1

Cj1Cj1

Cj1
Cj1

Cj1

Cj1

Cj1

Cj1

Cj1

Cj1
Cj1

Cj1 Cj1
Cj1

Cj1

Cj1

Cj1

Cj1

Cj1

Cj1

Cj1

Cj1
Cj1

Cj1Cj1

Cj1

Cj1
Cj2

Cj2
Cj2Cj2Cj2 Cj2

Cj2

Cj2
Cj2

Cj2

Cj2 Cj2
Cj2Cj2Cj2

Cj2Cj2

Cj2

Cj2

Cj2
Cj2Cj2
Cj2

Cj2

Cj2
Cj2

Cj2
Cj2

Cj2
Cj2

Cj2
Cj2

Cj2

Cj2

Cj2

Cj2
Cj2

Cj2

Cj2

Cj2

Co1

Co1
Co1

Co1

Co1
Co1

Co1Co1

Co1

Co1

Co1

Co1

Co1Co1
Co1Co1

Co1
Co1Co1

Co1Co1

Co1
Co1

Co1
Co1

Co1

Co1
Co1

Co1Co1

Co1

Co1

Co1Co1

Co1

Co1
Co1

Co1
Co1

Co1

Co2Co2

Co2

Co2

Co2

Co2
Co2

Co2
Co2 Co2

Co2
Co2

Co2Co2Co2 Co2Co2

Co2

Co2

Co2
Co2

Co2
Co2
Co2

Co2

Co2

Co2Co2Co2

Co2
Co2

Co2

Co2Co2
Co2

Co2
Co2

Co2

Co2

Co2

Mo

Mo
Mo
MoMo

Mo

MoMo

MoMoMo
MoMoMoMo

Mo
Mo

Mo

MoMo
Mo

Mo
Mo

Mo

MoMoMoMo

MoMo

Mo

MoMoMoMo
Mo

Mo
Mo
Mo

Mo

Pt
PtPt
Pt
PtPtPtPt
Pt
Pt

Pt

PtPt
Pt
Pt

Pt

Pt

Pt

PtPt
Pt
Pt

Pt

PtPt
PtPt

Pt
PtPt

Pt

Pt
Pt
Pt
Pt

Pt
Pt
Pt

Pt

Pt

TnTn

Tn
Tn

Tn

Tn

Tn
Tn

Tn

Tn

Tn

Tn

Tn

Tn
Tn

Tn

TnTn
Tn

Tn

Tn

Tn

Tn
Tn

Tn

Tn

Tn
TnTn

Tn

Tn

Tn

Tn

Tn
Tn

Tn

Tn

Tn

Tn

Tn

Zs
Zs
Zs

Zs Zs
Zs

Zs

Zs
ZsZsZs

ZsZsZsZs

Zs

Zs
ZsZsZs

Zs
Zs Zs

Zs

ZsZsZsZs

Zs
Zs

ZsZs

ZsZs
ZsZsZs

Zs

Zs
Zs

−20 −10 0 10 20

−
20

−
10

0
10

20

asm

con

idm

ent

cor

varsav

sen

den

dva
sva

f12

f13

shapro

b

Fig. 5 Biplots of the first and second principal components (PC1 and

PC2) with parameters of a ‘‘average’’, b ‘‘range’’, and c ‘‘aver-

age ? range’’ when the resolution, the number of gray levels, and the

image size are 0.05 mm, 64, and 1.5 9 1.5 cm, respectively. The
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83, 70, and 72 %, respectively
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when the resolution, the number of gray levels, and the image size are 0.05 mm, 64, and 1.5 9 1.5 cm, respectively
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‘‘average’’ and ‘‘average ? range’’ exhibited good clus-

tering compared to ‘‘range’’ (Fig. 5). The maximum value

at a certain value of k, therefore, was not appropriate to

evaluate the recognition system because the values would

have small differences when comparing the systems with

the three different parameters shown in Fig. 6. Alterna-

tively, the average values with k = 1, 3, 5, 7, and 9, which

include the information of the degreasing level from the

maximum value, were used in this study as the predicted

accuracy of the recognition system.

Validation of the output results

Selection of the optimum parameters

The predicted accuracies were calculated for the seven

parameters, and the parameter that provided the highest

predicted accuracy was examined for all of the input

datasets (Table 1). For input images with a high resolution

and a large number of gray levels, such as a resolution

above 0.1 mm and 64 gray levels, there were no significant

differences among the values obtained using the parame-

ters of ‘‘0�’’, ‘‘90�’’, ‘‘average’’ and ‘‘average ? range’’.

The information integrated from all directions is commonly

used for image recognition of isotropic objects, whereas

wood is an anisotropic object with three characteristic

orthogonal directions. For this reason, the data obtained

using the parameters of ‘‘0�’’ and ‘‘90�’’, which correspond

to the characteristic directions in the radial and tangential

directions, respectively, captured the features of the wood

structure well, which resulted a high performance and the

use of ‘‘average’’ and ‘‘average ? range.’’ With decreases

in the resolution and the numbers of gray level, however,

the variability in the predicted accuracy depending on the

parameters became larger. With a slight decrease in the

image qualities, ‘‘average ? range’’ tended to give the best

prediction because it included a significant amount of

information from all directions and the degree of aniso-

tropy in the images. When the resolution became even

lower, such as 0.2 and 0.25 mm, the optimum parameter

was ‘‘0�’’ in most cases. At these levels of resolution, fine

differences in the gray level that originate from the dif-

ferent types of the cells could not be recognized, and only

the information from the direction across the annual rings,

such as the degree of the gradient from earlywood to

latewood, would be meaningful. ‘‘Average ? range’’ has

an advantage in that it is applicable to images with any

arrangement, whereas the images used in this study were

cropped so that the annual rings were arranged in the same

direction, which would be difficult for objects with limited

wooden areas. On the other hand, ‘‘0�’’ would be better if

the data could be obtained with a low resolution but from a

large area. Therefore, the textural features of ‘‘aver-

age ? range’’ or ‘‘0�’’ should be used according to the

situation for the construction of the discriminant model.

Required qualities of the input data

The predicted accuracies obtained using the parameters

‘‘average ? range’’ and ‘‘0�’’ are shown in Figs. 7 and 8,

respectively. In either case, the predicted accuracy was

greater than 0.99 for the initial dataset with the best quality,

indicating almost all images were classified into their true

classes. With a reduction in the resolution, the number of

gray levels, or the image size, the predicted accuracy

basically decreased. However, the number of gray levels

had a lower effect on the accuracy, except for eight gray

levels. The number of gray levels could be reduced to 16 or

32, which will be a great advantage to the system for

significant reductions in the calculation time and database

capacity. The resolution of 0.1 mm resulted in a high

predicted accuracy as did 0.05 mm, but the accuracy

Table 1 Optimum parameters for each condition

Image size

(cm2)

1.5 9 1.5 1 9 1 0.5 9 0.5

Resolution

(mm/pixel)

0.05 0.1 0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25

Gray level

8 a ? r 0� a ? r 0� 0� a ? r 0� a ? r 0� 0� a ? r a ? r a ? r a ? r 0�
16 a ? r ave a ? r 0� 0� a ? r 0� a ? r 0� ave a ? r 0� a ? r 0� 0�
32 a ? r ave a ? r 0� 0� a ? r 0� 0� 0� 0� a ? r 0� a ? r 0� 0�
64 0�, 90�,

a ? r

90� a ? r a ? r ave 90� a ? r a ? r 0� 0� a ? r 0� a ? r 0� 0�

128 90� 90� a ? r 0� ave 90� a ? r a ? r 0� 0� ave 0� a ? r 0� ave

256 0�, 90�, ave 90�, ave a ? r 0� ave a ? r a ? r a ? r 0� 0� ave a ? r 0� 0� 0�, ave, a ? r

ave ‘‘average’’, a ? r ‘‘average ? range’’
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gradually decreased at lower resolutions, particularly for

‘‘average ? range.’’ The image size was the most impor-

tant factor for obtaining a high accuracy. The predicted

accuracy decreased greatly with a decrease from

1 cm 9 1 cm to 0.5 cm 9 0.5 cm.

Assuming that the required accuracy of the system for

practical application is greater than 98 %, any conditions

with the image size of 0.5 cm 9 0.5 cm could not achieve

this accuracy. If images larger than 1 cm 9 1 cm were

obtained, the resolution of 0.15 mm would be sufficient,

and even 0.25 mm would be possible when the parameter

‘‘0�’’ is used. Currently, the maximum resolution that could

be obtained from large objects such as human-sized

sculptures is 0.2 mm because the sample-source distance

defined the resolution; thus, the results indicated that the

system has the potential for application to such large

sculptures if we could ensure a sufficient size of the

wooden part, such as 1.5 cm 9 1.5 cm. In addition, the

system could also be applicable to objects with small

wooden parts, such as 1 cm 9 1 cm, e.g., wooden frames

used in dry lacquer.

Misclassified objects

Although the wood samples were classified into their true

classes with a high accuracy, there were still some mis-

classifications. For a resolution of 0.05 mm, the most

misclassified object was Pt, which was classified into Zs

(Table 2). The textures of these two wood species were

similar because both are ring-porous hardwood, where

large vessels are arranged in the earlywood, which were

visualized as dark bands in the CT image, and small vessels

with parenchyma cells are arranged in a line in the late-

wood, which appeared as black streaks in the light bands in

the CT images (Fig. 2, Pt, Zs).

In contrast, with a lower resolution of 0.1 mm, the

misclassified objects completely changed (Table 2). In

many cases, Zs was misclassified as Cc, whereas there was

no misclassification of Pt as Zs. Cc is a diffuse-porous

hardwood but is also described as a semi-ring-porous

hardwood, where there are large vessels in the earlywood

that become slightly smaller in the latewood. However,

these vessels in Cc are randomly distributed, which is in
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contrast to Zs, a representative ring-porous hardwood with

a single row of large vessels in the pore zone and a tan-

gential arrangement of latewood vessels. This difference in

the distribution of the vessels enabled clear discrimination

with a resolution of 0.05 mm. In fact, the CT images of Cc

with a resolution of 0.05 mm exhibited local gray-level

variations corresponding to the vessels, whereas those of

Zs exhibited little variation in the earlywood because of the

densely arranged vessels in the pore zone (Fig. 2, Cc, Zs).

With a reduction in the resolution to 0.1 mm; however,

such a difference was hardly detected, and the regions of

earlywood in Cc also exhibited dark colors with little

variation, which made it similar to Zs.

To eliminate these errors, we have to revise each step in

the system. In terms of the image dataset or the pretreat-

ment of images, calibration of the gray levels to the actual

density of wood seems to be a quite efficient and reliable

approach because the specific gravities of the wood sam-

ples are actually quite different; in particular, Pt is known

as a significantly light wood. Regarding feature extraction,

the use of a multifeature extractor by combining the GLCM

analysis with other filtering and transforms seems

promising to improve the recognition accuracy. For

example, feature extraction methods that focused on the

periodicity of the images, such as the FFT and Gabor filter,

would be effective for recognizing the differences between

Cc and Zs because Zs has a clear periodicity in the radial

direction derived from the tangential arrangement of the

latewood vessels compared to Cc. The periodicity in the

radial direction derived from the ray may also be possibly

detected and contribute to the improvement in the system.

Conclusion

We constructed a novel system for wood identification

from low-resolution CT data using the GLCM and k-NN

algorithm as a feature extractor and classifier, respectively.

The system recognized 10 wood samples almost perfectly,

although it is necessary to continue improvement. The

current system is still at the level of individual recognition

because the data were obtained from one wood block for

each species; thus, data from multiple individuals should be

added to the database to advance to the level of species

recognition. In addition, the applicability of the system to

various practical situations should be tested further;

Table 2 Classification table for

five different numbers of gray

levels (16, 32, 64, 128, and

256), five k values (1, 3, 5, 7,

and 9), and two parameters

(‘‘0�’’ and ‘‘average ? range’’)

for an image size of 3 9 3 cm

True class

Cc Ce Cj1 Cj2 Co1 Co2 Mo Pt Tn Zs

Resolution of 0.05 mm

Classified class (%)

Cc 100 0 0 0 0 0.10 0 0 0 0.50

Ce 0 100 0 0 0 0 0 0 0 0

Cj1 0 0 99.35 0 0 0 0 0 0 0

Cj2 0 0 0 100 0 0.50 0 0 0 0

Co1 0 0 0.65 0 100 0 0 0 0 0

Co2 0 0 0 0 0 99.30 0 0 0 0

Mo 0 0 0 0 0 0 100 0 0 0

Pt 0 0 0 0 0 0 0 97.50 0 0.30

Tn 0 0 0 0 0 0 0 0 100 0

Zs 0 0 0 0 0 0.10 0 2.50 0 99.20

Resolution of 0.1 mm

Classified class (%)

Cc 99.40 0 0 0 0 0.90 0 0.10 0 4.30

Ce 0 100 0 0 0 0 0 0 0 0

Cj1 0 0 100 0 0 0 0 0 0 0

Cj2 0 0 0 100 0 0.25 0 0 0 0

Co1 0 0 0 0 100 0 0 0 0 0

Co2 0 0 0 0 0 98.85 0 0 0 0

Mo 0 0 0 0 0 0 100 0 0 0

Pt 0 0 0 0 0 0 0 99.90 0 0

Tn 0 0 0 0 0 0 0 0 100 0

Zs 0.60 0 0 0 0 0 0 0 0 95.70
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artifacts such as lacquerware and masks, which are covered

by coating materials, are expected to be difficult because of

the strong scattering from the metals in the coatings.

So far, the ability to recognize a wood species and to

understand its specificities has been a task only accessible

for specialists, more precisely, experienced anatomists.

However, image recognition has the potential to offer the

opportunity to introduce such knowledge to nonspecialists.

Moreover, the GLCM effectively extracted the features of

each wood species, indicating that the textural features may

offer alternative keys to describe species specificities

linked to still undefined anatomical features.
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