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Abstract Its natural aesthetics make wood an attractive

material for construction and design. However, there is no

detailed understanding of the relationships between human

perception of the appearance and measurable features of

wood surfaces that could be used for controlling sawn

timber production. This study investigated whether wood

surfaces can be classified according to their visual

appearance on the basis of wood feature measurements.

Cluster analysis was used to discover a classification based

on a set of feature pattern variables in a sample of 300

softwood floorboards. A finely graded visual appearance

sorting provided a reference. Discriminant analysis was

applied to identify the relevant variables from the tested set

and to assess predictability of the classification. The results

indicated that visual appearance sorting could be approxi-

mated quite well by the variable-based classification after

pregrouping according to board position in the log.

Ambivalent results were obtained for group prediction

within the validation sample. While for boards from some

groups prediction was mostly or entirely correct, boards

from other groups were largely misclassified. An effect of

the available sample was one of the surmised causes,

making repetition of the analysis based on a larger sample a

desirable focus of further research.

Keywords Wood appearance � Wood feature

measurement � Sawn timber sorting � Multivariate

classification

Introduction

Wood is appreciated as a material for construction and

interior design not only for its technical properties but also

for its natural aesthetics. Yet so far, only a limited number

of studies have investigated the aesthetic perception of

wood and the relationships between people’s preference

and visible wood properties (e.g. Broman [1], Bumgardner

et al. [2], Donovan and Nicholls [3], Nyrud et al. [4], Høibø

and Nyrud [5], Nicholls and Barber [6]). In various inter-

view studies in Scandinavia, Broman [1] found that dif-

fering preferences existed among people and that the most

decisive characteristics of a wood surface were the pre-

sence of mismatching features and the overall mixture of

features. Similar to those findings, Nyrud et al. [4] con-

cluded that consumers prefer wood surfaces with homog-

enous visual appearance when they investigated the

attributes influencing preference for residential decks made

of different wood materials. Høibø and Nyrud [5] studied

the relationships between preference and visual homoge-

neity of wood surfaces. According to their multivariate
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models, knot properties had a major influence on the per-

ceived homogeneity and thus the attractiveness of a wood

surface. In a study on secondary products from Alaska

birch lumber, Donovan and Nicholls [3] stated that natural

wood features like, e.g. knots were a desired characteristic

of wooden products that was even reflected in a higher

willingness to pay. By contrast to those findings indicating

differentiated preference of consumers, most appearance

grading standards or producer-specific rules classify sawn

products solely according to the overall degree of wood

features with their absence generally rated as highest

quality (e.g. Anonymous [7]).

X-ray computed tomography (CT) has for some time

been regarded as the most feasible method of roundwood

scanning for internal properties (e.g. Taylor et al. [8], Funt

and Bryant [9], Grundberg [10]) and recent development

has made this technology commercially available (Giu-

diceandrea et al. [11]). Various studies have shown that

optimization of initial log breakdown based on knowledge

of internal wood features—knots in the tested cases—

could considerably improve value recovery in sawn tim-

ber production (e.g. Rinnhofer et al. [12], Berglund et al.

[13]).

Broman [1] noted, in an investigation on the connections

between people’s preferences of wood and measurable

wood features, that perceptions and preferences of knotty

Scots pine (Pinus sylvestris L.) edge glued panel surfaces

could to some extent be predicted from wood feature

variables by partial least squares (PLS) regression models.

Considering these findings and the still evolving prac-

ticability of log CT scanning, it can be assumed that uti-

lization of this technology to optimize log breakdown

according to aesthetic visual appearance of the sawn pro-

ducts might hold some potential for increased added value

in the wood processing industry. Like any optimization

system, such a CT-scanning based sawing optimization for

aesthetic quality would require the respective rules to be

applied to the detected inner log features.

Thus, the establishment of aesthetic grades expressed

through a set of rules for the pattern of features detectable

with CT scanning—i.e. mainly knots as this is the most

frequent wood feature determining the visual appearance of

a wooden piece to a high degree and usually most readily

recognized by people—on a board face is a prerequisite,

along with knowledge about the valuation of these aes-

thetic grades by potential customers. The former in turn

translated into the tasks:

1. To investigate if a board classification can be derived

from feature pattern measurements on board faces that

reproduces or resembles a manual board sorting

according to visual appearance to a sufficient extent

and

2. To identify the most relevant feature pattern variables

together with limits for class distinction and to assess

the predictability of the classification found.

This was the overall objective of the present work, while

capturing the valuation of different aesthetic appearances

was subject to complementary research.

Materials and methods

Sample material and processing

A sample of 58 Norway spruce (Picea abies [L.] Karst.)

sawlogs with lengths between 3.9 and 4.2 m and top

diameters ranging from 20 to 58 cm were collected from a

stand in southwestern Germany. They were scanned with a

MiCROTEC CT.LOG� X-ray CT scanner.

The logs were then sawn into boards with a green

dimension of 30 9 130 mm2, which yielded 810 boards in

total. During breakdown of the logs with a frame saw, the

position of each board within the sawing pattern and the

log was recorded. This was accomplished by sequentially

numbering the cants and boards produced in the first and

second saw, respectively, and by measuring rotational

angle and offset of the sawing patterns in reference to

markings applied to the logs previous to the CT scans.

After kiln-drying, the boards were processed to tongue-

and-groove profiled boards with a thickness of 20 mm, an

exposed face width of 101 mm and a piece width of

110 mm, and they were treated with a water-based oil

finish.

All boards were then fed through an industrial-type

board scanner utilizing grayscale line cameras and laser

sensors on the board faces and edges and RGB line cam-

eras on the board faces. The raw image data of all boards

were recorded.

Visual appearance sorting and production of sample

boards and images

All 810 boards were visually sorted according to their

characteristic appearance. Thereby, neither any public

grading standards nor producer-specific grading rules were

applied. Instead, different appearance classes were estab-

lished by iteratively searching for boards with character-

istic visual appearance and grouping them with similar

ones. If an initial appearance class was not supported by a

sufficient number of similar boards or later perceived as not

distinct enough from another one, it would be dismissed

and the boards would be reassigned to the best matching

appearance class. In this iterative sorting procedure, size,

condition, shape and distribution of knots, direction of the
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Fig. 1 Panels composed of

sample boards from the 15

appearance classes. Each panel

contains ten boards from one

class. Class numbers are

indicated

Fig. 2 Board image with knot outlines (bounding boxes) displayed in the user interface of the software application used for wood feature

measurement. For the lower left knot, the drawn ellipse is also shown. The scale underneath the board image indicates millimetres
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annual rings, i.e. flat or vertical grain, colour—which was

often influenced by the presence of compression wood—as

well as presence and length of visible pith sections were

regarded, and all sorting decisions were made by consent of

two persons (two of the authors; neither of them being

trained as lumber grader). A basic sorting requirement was

that the section of characteristic appearance within the

board had a minimum length of two metres without any

technical defect (such as a knot hole or a large resin

pocket) precluding the usability of the piece as a floor or

panelling board. Boards that did not have a usable section

of at least 2 m length were rejected. When sorting was

completed, 15 different visual appearance classes had been

established. Board counts differed considerably among

these appearance classes.

For each of the 15 appearance classes, 2-m sections of

ten boards were selected as representative samples for

further use, including studies on people’s preferences for

the different visual appearances. They were physically

cross-cut from the full-length boards with their exact

position within the respective board being documented, and

they were composed into panels. The RGB images of the

faces of these 150 boards were cropped so that they cor-

responded to the decking surfaces of the physical board

sections. They were used as the analysis sample in the

present study. In addition, another 150 images corre-

sponding to 2-m sections, again ten for each of the 15

classes, were produced to use them as a validation sample.

Mostly, these images were prepared from images of dif-

ferent full-length boards than those used in the analysis

sample. However, from 14 boards in the analysis sample,

one to four sections at different longitudinal positions

within the full-length board (19 sections in total) were also

taken for the validation sample. In Fig. 1, the samples of

the 15 appearance classes, corresponding to the physical

board panels, are illustrated.

Knot data acquisition and processing

A purpose-built software application was used to obtain

measurements of the position and size of knots and pith

streaks from the 300 RGB images of the boards. Therefore,

one image at a time was loaded and displayed by the

application, and, if present on the board face, knots and

pith streaks were manually marked by fitting an ellipse to

their circumference. X and Y position as well as width and

length of the bounding box automatically added by the

application during manual marking were saved. Knot

condition was assessed and entered as well and a list with

all marked features was obtained from the application.

Figure 2 presents a screenshot of a board image displayed

in the user interface.

A set of 30 variables describing the knot and pith pattern

on the face of each board were calculated from the position

and size data of the measured knots and pith streaks. Knot

features with a size below 4 mm2 were filtered out prior to

variable computation since their detection, as sound or

black knots, was considered insecure. The variables com-

prised knot counts, differentiated by knot type, statistics

about knot size and shape distribution, as well as knot

dispersion measures and the sum of pith streak lengths. A

complete list of all variables is given in Table 1.

Determination of expected annual ring pattern

The direction of annual rings on the board faces (i.e.

standing annual rings, or vertical grain, versus laying

annual rings, or flat grain) was found to be an important

Table 1 Variables calculated from knot and pith measurements on

each sample board

Variable

no.

Variable description Variable

unit

1 Number of knots []

2 Number of sound knots []

3 Number of black knots []

4 Simpson index of knot type []

5 Mean knot size mm2

6 Mean sound knot size mm2

7 Mean black knot size mm2

8 Standard deviation of knot size mm2

9 Standard deviation of sound knot size mm2

10 Standard deviation of black knot size mm2

11 Median of knot size mm2

12 Median of sound knot size mm2

13 Median of black knot size mm2

14 Minimum knot size mm2

15 Minimum sound knot size mm2

16 Minimum black knot size mm2

17 Maximum knot size mm2

18 Maximum sound knot size mm2

19 Maximum black knot size mm2

20 Relative total knot area mm2/mm2

21 Relative total sound knot area mm2/mm2

22 Relative total black knot area mm2/mm2

23 Mean knot elongation mm/mm

24 Standard deviation of knot elongation mm/mm

25 Minimum knot elongation mm/mm

26 Maximum knot elongation mm/mm

27 Mean Euclidean distance to first nearest

neighbour

mm

28 Standard deviation of longitudinal knot

position

mm

29 Span of longitudinal knot position mm

30 Length sum of pith mm
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characteristic in the visual sorting, but was not reflected in

the variables calculated from the feature measurements on

the boards. For this reason, the boards were preclassified

according to their expected annual ring pattern by

assigning them to three classes, referred to as ‘‘log-sector

classes’’, based on their original position in the log. This

was done by utilizing the CT data of the logs. First, the

actual sawing pattern and its orientation were virtually

reconstructed in the CT image of each log, based on the

board positions recorded at sawing. Then, for each slice of

the CT image, the CT image processing software deter-

mined the location of each board in one of the three

sectors dividing the log cross-section. The sectors were

defined with reference to the log pith and the orientation

of the sawing pattern so that they approximately coincided

with the different directions of annual rings on the board

faces; the scheme is described in Fig. 3. For each board,

the software registered the sector in which its cross-sec-

tion centre was situated on each CT slice and returned the

sector with most counts over all slices as the final log-

sector class.

Data analysis

Testing the distributions of the individual knot variables for

normality revealed deviations from normal distribution in

several cases. Therefore, logarithmic transformation was

applied prior to the classification procedure based on

multivariate analysis. The classification was then carried

out separately for each log-sector class and comprised three

main steps:

1. First, an explorative cluster analysis was performed to

reveal the natural classification structure within each of

the log-sector classes expressed in the knot variables

and to assess to which extent a derived classification

would coincide with the 15 appearance classes from

the visual appearance sorting. Hierarchical-agglomera-

tive clustering applying Ward’s minimum variance

method on squared Euclidean distances was used (Hair

et al. [14]). Separate analyses were done for the boards

in the analysis and validation samples. To derive the

classifications for further use in the study, the results of

the cluster analyses were evaluated by interpreting the

dendrograms (cluster trees), i.e. their graphical repre-

sentations, and by assessing if the visual appearance of

board composition images generated from the single

board images according to the established groups was

homogeneous, distinct and resembling the original

appearance classes.

2. Subsequently (multiple) discriminant analysis (Hair

et al. [14]) was conducted for assessing whether any

differences between the groups found in each separate

a b

Fig. 3 a Sectors defined on the log cross-section for preclassification

of the sample boards according to expected direction of annual rings.

The sectors are centred on the pith and aligned with the sawing

pattern so that the centre line of sector is parallel to the cutting lines of

the first saw. For sideboards, the 1 scheme is rotated 90�. The

diameter of the circular third sector equals the width of the boards

from the centre cant. b CT slice image of a log with reconstructed

sawing pattern displayed in the CT image processing software used.

The sector scheme is not shown in the user interface
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cluster analysis were expressed in the variables that

would enable predictive classification of further

boards. A stepwise estimation of the discriminant

function(s) was applied with the objective to identify

those variables that were most effective in discrimina-

tion of the groups and thus to allow for reducing the

number of variables to be used in a future implemen-

tation of the classification procedure. Minimum Ma-

halanobis distance (D2) and partial F value were used

as criteria for variable inclusion or removal. At each

step, the variable maximizing the minimum Mahalan-

obis distance (D2) between the two closest groups was

entered if the F value was above the minimum limit for

inclusion of 3.84 (corresponding to a significance level

of a = 0.05), and any variable with an F value below

2.71 (significance level a = 0.1) was removed. Step-

wise inclusion was terminated when there were no

more variables not already included with F values

above 3.84. Each of the estimated discriminant func-

tions had the form:

Zjk ¼ aþ C1V1k þ C2V2k þ � � � þ CnVnk ð1Þ

where Zjk is the discriminant score of function j for

observation k, a the constant term, Vik the included

variable i for observation k and Ci its coefficient. The

basis for classification was then the scores at the group

centroids, i.e. the mean of the scores of the observa-

tions within each group that were calculated as:

Fig. 4 a Dendrogram for the boards from the analysis sample within

log-sector class 1 (boards with flat grain). The horizontal scale

indicates the distance coefficient, standardized to relative numbers in

the interval 0–25, while the numbers on the vertical scale indicate the

identifiers of the boards. The dashed line indicates the chosen cluster

solution and the corresponding groups are marked and numbered.

b Compositions of single board images according to the chosen

cluster solution labelled with the group numbers
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ZGj ¼
PN

i¼1 Zji

N
ð2Þ

where ZGj is the score at the centroid of group j, Zji is

the score of observation i in group j and N is the

number of observations in group j. In the case of dis-

crimination between two groups, a weighted cutting

score (ZC) was used for group determination. It was

calculated according to:

ZC ¼
N1ZG2 þ N2ZG1

N1 þ N2

ð3Þ

with N1 and N2 denoting the observation counts in

group 1 and 2, respectively, and ZG1 and ZG2 the scores

at the centroids of the respective groups. In the case

when three groups were discriminated by two dis-

criminant functions, calculation of a single weighted

cutting score for discrimination was not applicable.

Instead, for each board to be classified, the Euclidean

distance to each of the three group centroid scores in

the discriminant functions space had to be calculated.

The group of the board would then be determined by

the minimum distance. Accuracy of group prediction

was evaluated by means of a classification matrix.

Thereby, the classification results obtained by applying

the discriminant function(s) and cutting scores (group

centroid scores) estimated with the analysis sample to

Fig. 5 a Dendrogram for the boards from the analysis sample within

log-sector class 2 (boards with vertical grain). The horizontal scale

indicates the distance coefficient, standardized to relative numbers in

the interval 0–25, while the numbers on the vertical scale indicate the

identifiers of the boards. The dashed line indicates the chosen cluster

solution and the corresponding groups are marked and numbered.

b Compositions of single board images according to the chosen

cluster solution labelled with the group numbers
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the validation sample were compared with the original

groups of the boards. The results of a cross-validated

classification of the analysis sample were included as

well. The overall classification result, i.e. the rate of

correct group prediction, was assessed by checking

whether it was better than proportional chance multi-

plied by a factor of 125 %, as proposed by Hair et al.

[14]. Press’s Q statistic with the critical value being the

quantile of the v2 distribution at a significance level of

a = 0.01 for one degree of freedom was used for

testing whether classification was significantly better

than chance (Hair et al. [14]).

3. Hierarchical cluster analysis was then repeated for the

analysis and validation sample using only the variables

entered in the discriminant functions. It was checked if

and to which extent clustering based solely on the

reduced set of variables yielded a different classifica-

tion compared to the initial cluster analysis.

All analyses were carried out using the SPSS software

package, release 22.0.

Results

Some boards could not be considered further in the analysis

as their log-sector class could not be determined due to lost

data about the position of the individual board in the log. A

few boards were excluded from the analysis since they

were identified as outliers in the cluster analyses, when

considerably larger distances to joining the next cluster

compared to the other boards were observable for these

boards in the dendrograms. In total, 18 of the boards

originally in the analysis sample and 19 of the boards in the

validation sample were lost.

Pregrouping of the remaining 132 boards in the analysis

sample according to their original position on the log cross-

section yielded 56 boards in log-sector class 1 (flat grain as

expected annual ring pattern), 49 boards in log-sector class

2 (vertical grain) and 27 boards in log-sector class 3

(boards from the log centre, in parts with exposed pith). For

the 131 boards in the validation sample counts were 48, 48

and 35 for log-sector classes 1, 2 and 3, respectively.

Fig. 6 a Dendrogram for the boards from the analysis sample within

log-sector class 3 (boards from log centre). The horizontal scale

indicates the distance coefficient, standardized to relative numbers in

the interval 0–25, while the numbers on the vertical scale indicate the

identifiers of the boards. The dashed line indicates the chosen cluster

solution and the corresponding groups are marked and numbered.

b Compositions of single board images according to the chosen

cluster solution labelled with the group numbers
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Explorative classification of the pregrouped boards

by cluster analysis

Analysis sample

For log-sector class 1 of the analysis sample, the result of

the clustering procedure, graphically represented by the

dendrogram in Fig. 4a, suggested grouping the boards into

two or three clusters, or groups. Since there were only

comparatively few boards in the first group of the three-

cluster solution, making this group less substantial and

probably less reproducible, and since a lower group count

was generally preferable due to the pregrouping already

carried out, the two-cluster solution was chosen for further

analysis. The composition images prepared according to

the two-cluster solution that are presented in Fig. 4b

exhibited a contrast between boards with larger sound

knots and boards having smaller dead knots, often in a

lower number.

A less clear distinction between the meaningful levels of

clustering could be observed in the dendrogram resulting

from the cluster analysis of log-sector class 2. Here, solu-

tions with two, three or four clusters were most distinct as

can be seen in Fig. 5a. The two-cluster solution obviously

entailed very imbalanced board counts among the groups

as well as a noticeable variation in the appearance of the

boards in the larger group—joining the boards shown in

compositions 1 and 2 in Fig. 5b. On the other hand, the

four-cluster solution divided the boards contained in group

1 in two groups not exhibiting any important difference in

visual appearance and with the problem of likely decreased

reproducibility mentioned before. Thus, the three-cluster

solution was taken for further analysis as the expectedly

most robust classification. Notably, the ten boards com-

prised in the small group 3 all belonged to the same ori-

ginal appearance sorting class. This congruency together

with the large distance of group 3 to the other groups

suggested that the visually striking characteristic of these

boards—few but large sound knots mostly cut at an

angle—was also strongly expressed in the knot variables.

The most pronounced distinction between the groups of

the selected clustering solution could be observed for the

boards of log-sector class 3, i.e. the boards originating from

the log centre. As indicated by the dendrogram in Fig. 6a,

the two-cluster solution was the obvious basis for sub-

sequent investigation. Similar to the case of group 3 within

log-sector class 2, all the boards apart from one merged into

group 1 had also been assigned to the same class in the

appearance sorting. Apparently, variables representing

either only the presence of pith streaks or, additionally, some

knot properties associated with direct proximity of the

pith—e.g. the shape of splay knots or the clustered distri-

bution of very small knots—prevailed in the clustering

procedure and led to the separation of the boards with visible

pith, boards that also formed their proper appearance class.

Pregrouping of the boards according to expected direc-

tion of annual rings combined with the groups derived from

the separate cluster analyses yielded a classification of the

boards from the analysis sample into seven classes in total.

Thus, the number of classes was reduced by more than half,

compared to the original appearance sorting. The agree-

ment between these new classes and the original 15

appearance classes was examined with the aid of a cross-

table (Table 2). It can be noted that some of the appearance

classes containing boards with laying annual rings, e.g.

classes 12 and 15, were divided at pregrouping, while the

boards from other original classes—both with laying and

standing annual rings—were dispersed by cluster analysis,

as for example classes 2, 5 or 11. Other original appearance

classes, on the other hand, were entirely included in one of

the new classes, such as class 9, or remained as a distinct

class as it was the case with appearance class 4. Unfortu-

nately, the majority of boards from appearance class 14 had

to be excluded from the analysis due to unavailable or

incorrect information on log-sector class, leaving only four

out of ten boards in the analysis. The other twelve excluded

boards, however, were rather evenly distributed among the

appearance classes, so that most of the appearance classes

retained at least eight of ten boards.

Table 2 Cross-table indicating coinciding board counts for the ori-

ginal visual appearance classification and the classification derived

from the explorative analysis for the analysis sample

Appearance

class

Class derived from analysis Total

count
1–1 1–2 2–1 2–2 2–3 3–1 3–2

1 10 10

2 2 8 10

3 2 7 9

4 10 10

5 8 2 10

6 8 8

7 7 7

8 9 9

9 10 10

10 10 10

11 6 2 8

12 2 8 10

13 2 5 1 8

14 1 3 4

15 5 4 9

Total count 33 23 22 17 10 11 16 132

The hierarchical designation of the classes derived from the analysis

indicates log-sector class and within-class group number
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Validation sample

The same explorative cluster analyses as for the analysis

sample were performed for the validation sample. To

enable using the groups from both analysis and validation

sample in the subsequent discriminant analysis, numbering

of the groups in the clustering solutions chosen for further

analysis was synchronized with the numbering of the

groups in the analysis sample. Therefore, each group of the

validation sample was assigned the same number as the

group of the analysis sample most similar in appearance.

When cluster analysis was performed for log-sector

class 1 of the boards in the validation sample, the resulting

dendrogram (see Fig. 7a) indicated—similar to the case of

the boards in the analysis sample—that a two-cluster

solution might provide the most meaningful classification

of the boards. A three-cluster solution could be identified as

producing a classification with balanced counts and little

intra-cluster variability as well. However, obtaining the

same number of groups, i.e. clusters, as for the boards in

the analysis sample was a requirement for the assessment

of predictability in the discriminant analysis. Furthermore,

taking the two-cluster solution was also justified by the

lack of marked visual dissimilarity of the knot patterns

between the two first groups of the three-cluster solution.

Thus, in the case of log-sector class 1, the hierarchical

clustering showed some analogy for the analysis and val-

idation samples and the two-cluster solution for the boards

Fig. 7 a Dendrogram for the boards from the validation sample

within log-sector class 1 (boards with flat grain). The horizontal scale

indicates the distance coefficient, standardized to relative numbers in

the interval 0–25, while the numbers on the vertical scale indicate the

identifiers of the boards. The dashed line indicates the chosen cluster

solution and the corresponding groups are marked and numbered.

b Compositions of single board images according to the chosen

cluster solution labelled with the group numbers
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in the validation sample also produced compositions of

similar visual appearance, as can be seen in Fig. 7b.

By contrast, there were considerable discrepancies

between the boards in the analysis and validation samples

in the case of log-sector class 2. As Fig. 8a shows, a three-

cluster solution was distinct for the validation sample as

well and therefore deriving the same number of groups for

the validation sample as for the analysis sample did not

conflict with a feasible interpretation of the cluster tree.

However, the visual impression of the derived board

compositions markedly differed for two of the three

groups. While a group comprising only clear or near knot-

free boards was established for the validation sample as

well, a good separation between boards with large sound

knots and boards with smaller dead knots was not

accomplished. As compositions 2 and 3 in Fig. 8b

illustrate, boards with predominantly large sound knots and

boards with black knots were mixed in those groups with

some near clear boards distributed over both.

Applying cluster analysis to the boards in the validation

sample in log-sector class 3, on the other hand, again

produced a classification that was mostly consistent with

the classification of the boards in the analysis sample. As it

was the case with the analysis sample, the only feasible

solution that could be identified in the dendrogram was at

the two-cluster level as indicated by Fig. 9a. With a higher

number of boards assigned to log-sector class 3 in the

validation sample, a complete separation of the boards with

pith streaks visible on the face was provided here as well.

While for the boards in the analysis sample only one out of

eleven boards in group 1 did not belong to the appearance

class of pith boards, four out of 13 boards in group 1 of the

Fig. 8 a Dendrogram for the boards from the validation sample

within log-sector class 2 (boards with vertical grain). The horizontal

scale indicates the distance coefficient, standardized to relative

numbers in the interval 0–25, while the numbers on the vertical scale

indicate the identifiers of the boards. The dashed line indicates the

chosen cluster solution and the corresponding groups are marked and

numbered. b Compositions of single board images according to the

chosen cluster solution labelled with the group numbers
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validation sample were originally assigned to other

appearance classes. However, all boards in this cluster

actually exhibited pith streaks, albeit of only minor length

in the case of one board.

Discriminant analysis of the groups from cluster

analysis

Discriminant analysis was then applied to assess whether

any differences between the groups found in cluster ana-

lysis were expressed in the variables that would enable

group prediction. Individual analyses were performed for

the groups within each of the log-sector classes.

In the case of log-sector class 1, the data of 56 board

images were used in the discriminant analysis and the data

of 48 board images were available for validation. After

seven iterations, five out of the original 30 variables were

included in the discriminant function. The stepwise

procedure is summarized in Table 3, while the standard-

ized and non-standardized canonical coefficients of the

included variables—i.e. the variable weights—and the

constant term (intercept) of the discriminant function are

listed in Table 4. The absolute values of the standardized

coefficients indicate the importance of the variables for

group discrimination, whereas the non-standardized coef-

ficients together with the constant term were used for cal-

culation of the discriminant score of each observation

according to the discriminant function in Eq. 1. The scores

at the group centroids, calculated on the basis of the ana-

lysis sample, were -7.465 for group 1 and 10.711 for

group 2, respectively, which resulted in a weighted cutting

score of 3.246. Prediction accuracy was assessed through

the classification matrix presented in Table 5. While 100 %

of the boards in group 2, which corresponded to the clusters

comprising boards with larger sound knots, were correctly

assigned to this group, only 48.3 % of the boards in group 1

Fig. 9 a Dendrogram for the boards from the validation sample

within log-sector class 3 (boards from log centre). The horizontal

scale indicates the distance coefficient, standardized to relative

numbers in the interval 0–25, while the numbers on the vertical scale

indicate the identifiers of the boards. The dashed line indicates the

chosen cluster solution and the corresponding groups are marked and

numbered. b Compositions of single board images according to the

chosen cluster solution labelled with the group numbers
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were predicted as belonging to that group. With the

remaining 51.7 % incorrectly assigned to group 2, the

overall rate of correct classification, or hit ratio, was no

higher than 68.8 % but still slightly above the applied

standard (proportional chance multiplied with 125 %)

which corresponded to 65.2 %. The calculated Press’s Q

statistic was 6.75 and thereby a little higher than the critical

value of 6.63. Despite this overall acceptable result, the

poor prediction accuracy for the boards of group 1 had to be

regarded as critical since it raised the question whether the

discriminant model based on the analysis sample was

appropriate for classification of further, yet unknown

boards.

For log-sector class 2, the data of the 49 boards in the

analysis sample were used for model estimation while the

validation sample comprised 48 boards. In the discriminant

analysis, 14 iterations were required for the inclusion of

twelve variables as shown in Table 6. Since cluster ana-

lysis lead to three groups within log-sector class 2, the

groups that each variable discriminated between are addi-

tionally indicated. The canonical coefficients for each of

the two discriminant functions and the constant terms are

listed in Table 7, and the function values of each dis-

criminant function at the group centroids are given in

Table 8.

As the classification matrix (Table 9) shows, the pre-

diction results for log-sector class 2 were ambivalent as

well. With 93.8 and 94.1 % correct prediction for group 1

and 2, respectively, but all boards from group 3 misclas-

sified, overall prediction accuracy was only 64.6 %.

Applying the same diagnostics as in the case of the log-

sector class 1, it could be noted that—despite the complete

misclassification of one group—both the hit ratio was well

above the postulated minimum of 41.8 %, and the Press’s

Q statistic, with a value of 21.1 compared to the critical

value of 6.63, indicated an overall classification signifi-

cantly better than chance. However, the total misclassifi-

cation of the boards from the validation sample in group 3

had the same implications as the poor prediction accuracy

for group 1 of the flat-grain boards, being even more evi-

dent in this case.

The likely reason for the misclassification is revealed

by the scatter plot in Fig. 10. It displays the distribution

of the values of the two canonical discriminant functions

(discriminant scores) for each board together with the

location of the group centroids. As can be seen, many

boards of group 3, presumably those from the validation

sample, were located very far from their group cen-

troid, some of them particularly close to the centroid of

group 2.

The boards pregrouped into log-sector class 3 had

counts of 27 and 35 boards for the analysis and validation

sample, respectively. Group 1 comprised the boards with

Table 3 Variables included or removed in the stepwise discriminant

analysis for log-sector class 1

Step Variables F value Minimum

D2

Included Removed

1 Maximum sound

knot size

– 860.412 63.482

2 Standard deviation of

sound knot size

– 24.414 94.561

3 Simpson index of

knot type

– 11.651 116.640

4 Number of sound

knots

– 27.505 181.693

5 Relative total sound

knot area

– 24.106 271.212

6 Mean sound knot

size

– 12.168 339.550

7 – Maximum

sound knot

size

1.347 330.357

The partial F value and minimum D2 indicated for each step are the

values computed in the previous step that were the basis for variable

inclusion or removal

Table 4 Standardized and non-standardized canonical coefficients of

the included variables and intercept of the discriminant function for

log-sector class 1

No. Variable Standardized

coefficient

Coefficient

1 Number of sound knots 2.190 4.480

2 Simpson index of knot type -0.912 -17.302

3 Mean sound knot size 2.063 2.794

4 Standard deviation of sound knot

size

-1.890 -1.389

5 Relative total sound knot area -1.417 -250.048

Intercept – 4.527

Table 5 Classification matrix for discriminant analysis of the groups

resulting from the cluster analyses within log-sector class 1

Actual group Predicted

group

Total

1 2

Analysis sample Cross-

validated

Count 1 33 0 33

2 0 23 23

% 1 100.0 0.0 100.0

2 0.0 100.0 100.0

Validation

sample

Original Count 1 14 15 29

2 0 19 19

% 1 48.3 51.7 100.0

2 0.0 100.0 100.0
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visible pith streaks while the remaining boards, mainly

characterized by larger sound knots, made up group 2. A

set of three variables was included in the discriminant

model after three iterations of the stepwise procedure (see

Table 10 for details). The length sum of pith streaks was

apparently the most important variable for discrimination

between the groups as can be seen from the standardized

coefficients listed in Table 11 together with the non-stan-

dardized coefficients and constant term. In this two-group

case, discrimination could again be based on a weighted

cutting score. With group centroids at function values of

3.968 and -2.728 for group 1 and 2, respectively, this

cutting score was 1.24.

Here, group prediction for the boards in the validation

sample was entirely correct, as the classification matrix in

Table 12 shows. Presumably, the complete separation

between the boards in both groups on length sum of pith

influenced this result. It was noticeable that the cross-val-

idated hit ratio of the analysis sample, on the other hand,

did not attain 100 %. This was in contrast to the cross-

validated hit ratios of the other log-sector classes and might

seem surprising given the 100 % prediction result of the

validation sample. However, the number of boards pre-

dicted as belonging to group 1 equalled the number of

boards in the original appearance class comprising the pith

boards (ten in either case) and the cross-validation proce-

dure therefore actually could have led to a classification of

these boards fully consistent with the visual appearance

sorting.

Repetition of cluster analysis with reduced sets

of variables

The repetition of cluster analysis for the boards from the

analysis sample within log-sector class 1, using only the

variables included in the discriminant model, modified the

dendrogram in that it lead to an even more outstanding

two-cluster solution. It thereby caused the reallocation of

four boards from group 2 to group 1. These boards had

rather small and dark knots, and therefore they were not the

most representative ones for group 2. Thus, this reassign-

ment could be deemed as a slight improvement of the

classification, leading to an increased homogeneity within

group 2.

By contrast, clustering of the boards of the analysis

sample in log-sector class 2 seemed to be adversely

affected by variable reduction. The shape of the cluster tree

was altered considerably, compared to clustering based on

the full set of variables, making the three-cluster level less

distinct. Three boards were reallocated from group 3 to

group 1 that originally comprised only clear and near clear

boards.

It was assumed that the influence of the length sum of

pith within log-sector class 3 was already prevailing in

cluster analysis based on all variables. This assumption was

supported when cluster analysis based on only this and two

other included variables produced a cluster tree with an

even more distinct two-cluster level. Due to the realloca-

tion of one board in the reiterated cluster analysis, group 1

Table 6 Variables included or

removed in the stepwise

discriminant analysis for log-

sector class 2

The partial F value and

minimum D2 indicated for each

step are the values computed in

the previous step that were the

basis for variable inclusion or

removal. The groups that each

variable separated between are

given likewise, i.e. the

discriminated groups were

always identified in the

preceding step as well

Step Variables F value Minimum

D2
Groups

discriminated
Included Removed

1 Maximum knot size – 71.029 4.812 1–2

2 Number of knots – 44.332 11.205 1–2

3 Span of longitudinal knot position – 12.476 17.198 2–3

4 Standard deviation of sound knot

size

– 28.589 28.333 1–2

5 Mean Euclidean distance to first

nearest neighbour

– 31.818 35.875 1–3

6 – Span of longitudinal

knot position

1.613 33.161 1–3

7 Minimum black knot size – 24.121 78.914 1–3

8 Simpson index of knot type – 8.231 82.337 1–2

9 Standard deviation of knot size – 26.453 115.155 2–3

10 Minimum sound knot size – 25.399 207.024 1–2

11 Minimum knot elongation – 4.570 232.143 1–2

12 Standard deviation of black knot

size

– 5.432 263.306 1–3

13 Number of black knots – 25.457 405.287 1–2

14 Maximum black knot size – 11.632 527.664 1–2
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was thereby fully congruent with the pith-board class from

the visual appearance sorting, which also sustained the

assumption that group prediction based on the included

discriminant variables lead to a classification of the

respective boards consistent with the original sorting. The

cluster trees and corresponding board compositions for all

three log-sector classes are presented in Figs. 11, 12, 13.

For the boards from the validation sample in log-sector

class 1—as it was the case for the analysis sample—

repeated cluster analysis with the five variables included in

the discriminant model caused reallocation of three boards

from group 2 to group 1. Since large sound knots and small

black knots were equally present on the faces of the

reallocated three boards, this regrouping was neither con-

sidered an improvement of the classification nor an

impairment. The shape of the dendrogram was not mark-

edly altered with the two-cluster level still being most

distinct.

With the initial cluster analysis, a visually inhomoge-

neous classification of the boards in log-sector class 2 was

observed for the validation sample. When cluster analysis

was rerun on the basis of the included variables, the reas-

signment of nine boards at the three-cluster level indeed

produced a visually homogeneous group of vertical-grain

boards with large sound knots (group 3). However, this

group comprised only six boards, whereas the large cluster

that the boards were allocated to (group 2) contained 26

boards with large variation in appearance. Thus, the board

counts in the three groups were very unbalanced and there

was only little distance between the three-cluster level and

levels with more clusters in the cluster tree—a less distinct

three-cluster level due to variable reduction as it could be

observed for the vertical-grain boards in the analysis

sample as well. On the other hand, the cluster with (near)

clear boards (group 1) was not affected by variable

reduction; this robustness was also reflected in a large

distance to the remaining cluster at the two-cluster level.

Cluster analysis reiterated with the reduced set of vari-

ables for the boards in the validation sample in log-sector

class 3 did not change the allocation of the boards to the

groups at the two-cluster level, when compared with the

initial cluster analysis with all variables. The shape of

the cluster tree indicated a maximum separation between

the two groups probably due to the amplified effect of the

length sum of pith after variable reduction. Figures 14, 15,

16 show the dendrograms and corresponding board com-

positions for all three log-sector classes.

Discussion

The tested classification procedure led to ambivalent

results. On the one hand, the classes established by pre-

grouping and by subsequent clustering based on all vari-

ables had a distinct appearance with quite high within-class

homogeneity and could thus be seen as a comparatively

Table 7 Standardized and non-standardized canonical coefficients of the included variables and intercepts of the discriminant functions for log-

sector class 2

No. Variable Standardized coefficients Coefficients

Function 1 Function 2 Function 1 Function 2

1 Number of knots -6.276 0.519 -19.856 1.643

2 Number of black knots 5.388 0.817 15.134 2.295

3 Simpson index of knot type 3.944 -2.168 15.859 -8.716

4 Standard deviation of knot size 4.240 -2.305 2.652 -1.441

5 Standard deviation of sound knot size 4.064 -0.398 2.647 -0.260

6 Standard deviation of black knot size -1.018 0.335 -0.883 0.291

7 Minimum sound knot size 2.871 0.264 2.382 0.219

8 Minimum black knot size 3.982 -1.337 2.647 -0.889

9 Maximum knot size 2.430 3.284 1.720 2.324

10 Maximum black knot size -7.383 -1.159 -4.667 -0.733

11 Minimum knot elongation -2.378 0.239 -7.336 0.738

12 Mean Euclidean distance to first nearest neighbour -4.103 2.533 -2.921 1.804

Intercept – – 2.702 -7.390

Table 8 Function values of the two discriminant functions (dis-

criminant scores) at the group centroids

Group Group centroids

Function 1 Function 2

1 2.657 -7.257

2 -16.910 4.776

3 22.901 7.847

They correspond to the graphical representation in Fig. 10
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good approximation of the visual appearance sorting, albeit

with the exception of the boards in the validation sample in

log-sector class 2. On the other hand, due to the partly

insufficient classification results for log-sector classes 1

and 2 in the validation sample, it seemed questionable

whether the variables and discriminant functions found for

these two classes are generally applicable, i.e. would allow

for a classification of boards consistent with human per-

ception of board appearance.

Manual sorting of the boards according to their visual

characteristics lead to a large number of classes with a fine

gradation of appearance and, as mentioned, considerable

differences in class counts. The latter turned out to be

Table 9 Classification matrix

for discriminant analysis of the

groups resulting from cluster

analysis within log-sector class

2

Actual group Predicted group Total

1 2 3

Analysis sample Cross-

validated

Count 1 22 0 0 22

2 0 17 0 17

3 0 0 10 10

% 1 100.0 0.0 0.0 100.0

2 0.0 100.0 0.0 100.0

3 0.0 0.0 100.0 100.0

Validation

sample

Original Count 1 15 0 1 16

2 1 16 0 17

3 5 10 0 15

% 1 93.8 0.0 6.3 100.0

2 5.9 94.1 0.0 100.0

3 33.3 66.7 0.0 100.0

Fig. 10 Distribution of discriminant scores of the boards from log-

sector class 2 with group centroids indicated

Table 10 Variables included or removed in the stepwise discrimi-

nant analysis for log-sector class 3

Step Variables F value Minimum

D2

Included Removed

1 Length sum of pith – 128.119 19.655

2 Maximum black knot size – 9.263 28.721

3 Relative total knot area – 11.383 44.832

The partial F value and minimum D2 indicated for each step are the

values computed in the previous step that were the basis for variable

inclusion or removal

Table 11 Standardized and non-standardized canonical coefficients

of the included variables and intercept of the discriminant function for

log-sector class 3

No. Variable Standardized

coefficient

Coefficient

1 Maximum black knot size -0.813 -0.637

2 Relative total knot area 0.700 131.166

3 Length sum of pith 0.921 0.766

Intercept – -1.559

Table 12 Classification table for discriminant analysis of the groups

resulting from the cluster analyses within log-sector class 3

Actual group Predicted group Total

1 2

Analysis sample Cross-

validated

Count 1 10 1 11

2 0 16 16

% 1 90.9 9.1 100.0

2 0.0 100.0 100.0

Validation

sample

Original Count 1 13 0 13

2 0 22 22

% 1 100.0 0.0 100.0

2 0.0 100.0 100.0
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problematic since some appearance classes were repre-

sented by only a small number of boards. Very limited

choice of boards in these appearance classes made select-

ing boards for the validation sample that were not as

visually consistent and homogeneous as the boards in the

analysis sample unavoidable. In some cases, even two or

more virtual two-metre-sections had to be taken from the

image of the same full-length board. While this circum-

stance might largely explain the poor classification results,

it also implied that some appearance classes would only be

representative for very small shares of sawn timber

production.

The classification results, together with the change of the

dendrograms when reiterating the cluster analyses, could also

indicate that the board groups derived from the initial cluster

analyses were too much of an adaption to the analysis sam-

ples, entailing that the discriminant models established on

their basis were overfitted as well. Therefore, it should be

tested on a preferably large sample whether the classifications

found in the cluster analyses could be reproduced and whe-

ther discriminant analysis based on this classification would

result in similar discriminant models.

There were considerable differences between the sets of

variables included in the discriminant models for the indi-

vidual log-sector classes. While for log-sector class 1—

except for one variable—only variables describing the

occurrence of sound knots appeared to be relevant for group

discrimination, in the case of log-sector class 2 a large set of

different variables was included in the discriminant model. It

contained variables related to the size distribution of knots,

but also variables describing knot shape and spatial distri-

bution. Two variables were included in the discriminant

models for both log-sector class 1 and 2. With maximum

black knot size, the discriminant model for log-sector class 3

shared one variable with that for log-sector class 2, but it was

apparently mainly governed by length sum of pith.

Only those wood features relevant for the visual appear-

ance that can already be detected with sufficient accuracy in a

CT scan could be taken into account for the creation of the

tested variables. The annual ring pattern on the board faces—

the most important feature in the visual sorting together with

the knot pattern—could be well predicted from the defined

log sectors since it is mainly determined by the cut orientation

of a board and modified to only a minor extent by the actual

shape of the annual rings, i.e. their width and deviation from

ideal concentric circles. Still, if reliable measurement of the

annual rings was available from CT scans, e.g. for species

with usually wider annual rings and strong density contrast

between early and late wood, such as Douglas fir (Pseud-

otsuga menziesii [Mirb.] Franco), it could be tested whether

variables derived from this measurement were suitable for

classification instead of pregrouping according to expected

annual ring direction. Colour variation and contrast,

especially due to compression wood, on the other hand, could

not be expressed in the variables at all, although it also was an

important characteristic in the visual appearance sorting as it

influenced the formation of two sorting classes, 5 and 7.

Broman [1] used a very large set of variables calculated

from measurements on greyscale images of knotty wood

surfaces in the PLS models tested for prediction of sub-

jective perceptions and preferences of the surfaces. The

models comprised, amongst others, variables describing

grey scale of knots, central moment, knot size and shape

distribution, as well as spatial distribution of knots. Models

for a number of perceived properties, established separately

in each case with the individual 30 most robust out of the

initial 140 variables, were considered to have significant

predictive ability. This indicated that the connections

between subjective perception and wood feature measure-

ments might generally be best expressed in a combination

of several variables. Thus, the question is whether the use

of further variables expressing the pattern of features on a

surface could also lead to an improved classification

according to visual appearance on the single board level.

Other variables that could be taken into account besides

those tested by Broman [1] are, for example, texture vari-

ables like angular second moment and contrast, or variables

of the spatial arrangement of objects like entropy and

contagion (Farina [15]). These variables, however, are all

derived from raster images of visible wood surfaces and

can therefore not be readily calculated when the features

are represented as geometrical objects, as it is the case for

the virtual logs used in sawing optimization. Using such

variables might be an option for board classification based

on data from optical board scanners that would also offer

the possibility to take the above-mentioned colour varia-

tions in board faces into account. Yet such an application

would be limited to a refined sorting or trimming of boards

after the initial breakdown decision had already been made.

The most important limitation to the findings of this

investigation was the limited size of the available sample

which was a trade-off between effort and representativeness

of the analysis results. Since identification and tracking of the

individual boards during production and visual appearance

sorting was laborious already with the realized sample size,

increasing the number of boards would not have been feasi-

ble. Due to this, any results of the present study cannot readily

be generalized but may only be seen as indicative. Being

aware of the purely explorative nature of the study also

motivated the choice of discriminant analysis for identifying

the variables important in class distinction. This method was

preferred because of its easy interpretability, even though

other methods—namely binary and multinomial logistic

regression—are considered more robust against deviances

from multivariate normal distribution and multicollinearity in

the data (Hair et al. [14]).
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Conclusions

• Visual appearance sorting with a fine gradation of

visual characteristics and thus a large number of dif-

ferent classes could be reproduced in relatively good

approximation with the tested two-stage classification

procedure.

• The variables included in the discriminant models

differed considerably between the log-sector classes,

with no variable being present in all models.

• There might be other variables describing the feature

pattern on a wood surface that could improve classification.

However, the majority of these variables are not available

for sawing optimization utilizing CT data of logs.

• Group prediction by means of the discriminant models

did not yield satisfactory accuracy for the validation

sample in all cases. This might be explained by some

heterogeneity between analysis and validation sample

but could also signify overfitting.

• Due to the limited size of the available sample, any

results of this investigation may be taken as indicative

only.

• Therefore, further research should include both repeat-

ing cluster analysis and verifying the discriminant

models on a preferably large data basis.
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Appendix

See Figs. 11, 12, 13, 14, 15, 16.

Fig. 11 a Dendrogram for the boards from the analysis sample in

log-sector class 1 based on the variables included in the discriminant

model. The horizontal scale indicates the distance coefficient,

standardized to relative numbers in the interval 0–25, while the

numbers on the vertical scale indicate the identifiers of the boards.

The dashed line indicates the chosen cluster solution and the

corresponding groups are marked and numbered. Boards reallocated

from group 2 to group 1 are indicated by the shaded box.

b Compositions of single board images according to the chosen

cluster solution labelled with the group numbers
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Fig. 12 a Dendrogram for the boards from the analysis sample in

log-sector class 2 based on the variables included in the discriminant

model. The horizontal scale indicates the distance coefficient,

standardized to relative numbers in the interval 0–25, while the

numbers on the vertical scale indicate the identifiers of the boards.

The dashed line indicates the chosen cluster solution and the

corresponding groups are marked and numbered. Boards reallocated

from group 3 to group 1 are indicated by the shaded box.

b Compositions of single board images according to the chosen

cluster solution labelled with the group numbers
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Fig. 13 a Dendrogram for the boards from the analysis sample in

log-sector class 3 based on the variables included in the discriminant

model. The horizontal scale indicates the distance coefficient,

standardized to relative numbers in the interval 0–25, while the

numbers on the vertical scale indicate the identifiers of the boards.

The dashed line indicates the chosen cluster solution and the

corresponding groups are marked and numbered. The board reallo-

cated from group 1 to group 2 is indicated by the shaded box.

b Compositions of single board images according to the chosen

cluster solution labelled with the group numbers

108 J Wood Sci (2015) 61:89–112

123



Fig. 14 a Dendrogram for the boards from the validation sample in

log-sector class 1 based on the variables included in the discriminant

model. The horizontal scale indicates the distance coefficient,

standardized to relative numbers in the interval 0–25, while the

numbers on the vertical scale indicate the identifiers of the boards.

The dashed line indicates the chosen cluster solution and the

corresponding groups are marked and numbered. Boards reallocated

from group 2 to group 1 are indicated by the shaded box.

b Compositions of single board images according to the chosen

cluster solution labelled with the group numbers
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Fig. 15 a Dendrogram for the boards from the validation sample in

log-sector class 2 based on the variables included in the discriminant

model. The horizontal scale indicates the distance coefficient,

standardized to relative numbers in the interval 0–25, while the

numbers on the vertical scale indicate the identifiers of the boards.

The dashed line indicates the chosen cluster solution and the

corresponding groups are marked and numbered. Boards reallocated

from group 3 to group 2 are indicated by the shaded boxes.

b Compositions of single board images according to the chosen

cluster solution labelled with the group numbers
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Fig. 16 Dendrogram for the

boards from the validation

sample in log-sector class 3

based on the variables included

in the discriminant model. The

horizontal scale indicates the

distance coefficient,

standardized to relative numbers

in the interval 0–25, while the

numbers on the vertical scale

indicate the identifiers of the

boards. The dashed line

indicates the chosen cluster

solution and the corresponding

groups are marked and

numbered. No boards have been

reallocated; therefore,

presenting the board

compositions has been omitted

as they are already shown in

Fig. 9b
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