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Abstract To understand the viscoelasticity of wood three

dimensionally, matched samples of Japanese cypress were

loaded in uniaxial tensile creep in the longitudinal (L),

radial (R), and tangential (T) directions at approximately

9.7 % equilibrium moisture content. Longitudinal and

transverse strains were measured for the determination of

viscoelastic Poisson’s ratios and three-dimensional visco-

elastic compliance tensors concerning the normal strain.

The changes in the transverse strains showed the same

tendencies as those in the longitudinal strains, in all

directions of loading. That is, during creep, the absolute

value of transverse strain continued to increase with the

gradual reduction in the increase rate; immediately after

the removal of the load, it recovered rapidly, after which it

continued to recover slowly. The transverse strain

increased most easily in the T direction, followed by R and

L, during creep. All the viscoelastic Poisson’s ratios and

the absolute values of all elements of the viscoelastic

compliance increased logarithmically with creep time. The

three-dimensional viscoelastic compliance matrix for Jap-

anese cypress is concluded to be asymmetric.

Keywords Viscoelasticity � Normal strain � Creep

compliance � Transverse strain � Poisson’s ratio

Introduction

Two of the unique characteristics of wood as a material are

its orthotropy and its viscoelasticity. Therefore, it will be

essential to formulate two- or three-dimensional visco-

elastic functions that can be employed for rigorous stress–

strain analyses for wood to make wider use of this material

in designs involving combined stress in the future. A one-

dimensional theory of the viscoelasticity for wood has

almost been established with a few exceptions, e.g.,

behavior in a non-equilibrium moisture state and behavior

under shear stress. Nonetheless, as of this writing, there has

yet to be almost any research, either theoretical or exper-

imental, toward establishing a two- or three-dimensional

viscoelastic theory for wood.

Poisson’s ratio is one of the elastic constants for

describing the stress–strain relationship in an elastic body

in two dimensions. When a material is subjected to tension,

it shrinks in the transverse direction (perpendicular to the

direction of the force). Conversely, when it is compressed,

it swells in the transverse direction. This behavior is called

the Poisson effect. Poisson’s ratio (mij) is expressed as

follows:

mij ¼ �
ej

ei

ði; j ¼ L;T;RÞ ð1Þ

where ei is the longitudinal (positive) strain in the loading

direction and ej is the transverse (passive) strain in the

perpendicular direction; the subscripts i and j index the

three orthogonal directions in wood, i.e., longitudinal (L),

radial (R), and tangential (T) directions. Non-contact strain

measurement technologies based on image analysis have

made some contributions to research into Poisson’s ratio in

the orthotropic material wood, and this is currently a quite

popular topic of research. Within the research on Poisson’s
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ratio, a large variety of sub-topics exists: earlywood or

latewood [1–3]; in-plane distribution [4, 5]; the relation-

ships with the microstructure of the cell wall [6–9]; the

influences of moisture content [10, 11], grain angle [12],

annual ring angle [13], and loading rate [14, 15]; com-

pressed or heat-treated wood [16–18]; and Poisson’s ratios

in the three orthogonal planes (LR, LT, and RT planes) in

wood [14, 19, 20]. Sliker et al. [14] have measured Pois-

son’s ratios and Young’s moduli in 10 species of hard-

woods to determine all elastic compliance tensors

concerning the normal strain.

Since Poisson’s ratio is an elastic constant, it cannot

vary with time. Nevertheless, it has been theoretically

proven that the Poisson effect in viscoelastic materials,

whether isotropic or orthotropic, is time dependent [21,

22]. The apparent Poisson’s ratio is therefore referred to as

the viscoelastic Poisson’s ratio, which is defined as

follows:

mijðtÞ ¼ �
ejðtÞ
eiðtÞ

ði; j ¼ L;T;RÞ ð2Þ

An introduction of the concept of the viscoelastic

Poisson’s ratio to viscoelasticity should provide clues on

how to expand the one-dimensional law of viscoelasticity

to two or three dimensions in a way analogous to the

generalization of Hooke’s law in elasticity [23]. Some

reports concerning the viscoelastic Poisson’s ratio are

available to resolve the two-dimensional viscoelasticity of

Fig. 1 Tensile test specimens. A biaxial strain gauge was pasted on each of the four planes. Unit: mm. Upper L-specimen, middle T-specimen,

lower R-specimen
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wood. Schniewind et al. [24] measured mLR(t), mLT(t), and

mTL(t) in Douglas-fir by conducting tensile creep tests; they

reported that all three decreased with time and that they

had found no remarkable asymmetry in the two-

dimensional viscoelastic compliance matrix for the LT

plane. Sobue et al. [23] measured mLR(t) and mRL(t) in

Japanese cypress, Japanese beech, and Japanese zelkova by

the method of free–free beam vibration, and found that the

two-dimensional viscoelastic stiffness matrix was

asymmetric, which contradicted the results of Schniewind

et al. Hayashi et al. [25] measured mLR(t) in Norway spruce

by tensile creep tests and observed that the change in

mLR(t) during creep was quite small; they implied that

mLR(t) could be considered to be equal to Poisson’s ratio, in

other words mLR(t = 0). Taniguchi et al. [26] measured

mLR(t) and mLT(t) in wood of 12 species by tensile creep

tests and reported that the viscoelastic Poisson’s ratios

increased with time, contradicting the results of

Schniewind et al.; Taniguchi et al. also stated that the

reason for the increase in viscoelastic Poisson’s ratios was

a remarkable enlargement of the permanent transverse

strain, which they attributed to the occurrence or growth of

microcracks. Furthermore, they reported that the volume of

wood decreased due to the Poisson effect during both creep

and creep recovery, which would be a unique property of

wood as a material [27]. Although Schniewind et al. and

Sobue et al. have measured the viscoelastic compliance in

two dimensions, there has been almost no research into the

three-dimensional viscoelastic compliance of woods, in

spite of the fact that wood has three axes of symmetry.

The purpose of the present study is to extend the previous

biaxial, two-dimensional approach for determining the vis-

coelastic functions for wood to three dimensions. Uniaxial

creep tests were performed on Japanese cypress in the L, T,

and R directions, and the longitudinal and transverse strains

were observed during creep and creep recovery. All com-

ponents of the three-dimensional viscoelastic compliance

tensor concerning the normal strain were determined. Most

Fig. 2 Typical creep and creep-recovery curves. The first subscript in eij represents the load direction and the second one represents the strain

direction

292 J Wood Sci (2013) 59:290–298

123



importantly, the symmetry of the non-shear viscoelastic

compliance matrix was then examined.

Theory

Three orthogonal normal strains for time-independent elastic

bodies are defined by the following elastic compliance:

eL

eT

eR

2
4

3
5 ¼

SLL SLT SLR

STL STT STR

SRL SRT SRR

2
4

3
5

rL

rT

rR

2
4

3
5

¼

1
EL

� mTL

ET
� mRL

ER

� mLT

EL

1
ET

� mRT

ER

� mLR

EL
� mTR

ET

1
ER

2
64

3
75

rL

rT

rR

2
4

3
5 ð3Þ

where Sij(t) (i, j = L, T, R) is the elastic compliance; ei

(i = L, T, R) is normal strain when i refers to the direction

of vector; ri is normal stress; and Ei is Young’s modulus,

respectively.

When a viscoelastic material such as wood is put under

a time-dependent load condition, the resulting normal

strains can be expressed by the following equation:
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where Qij(t) (i, j = L, T, R) is the viscoelastic compliance.

The first square matrix in Eq. 4 is derived from the

instantaneous elastic strain, and the second one is from the

delayed elastic strain and the permanent strain.

The uniaxial normal stress in i direction, ri, generates

the stress state with rj = rk = 0 (i, j, k = L, T, R; i = j,

i = k). Thus, Qii(t) can be expressed as follows [28]:

QiiðtÞ ¼
eiðtÞ
ri

� 1

Ei

ð5Þ

And, Qji(t) and Qki(t) can be expressed as follows:

QjiðtÞ ¼
ejðtÞ
ri

þ mij

Ei

ð6Þ

QkiðtÞ ¼
ekðtÞ
ri

þ mik

Ei

ð7Þ

Materials and methods

Materials

The samples were prepared from an air-seasoning log of a

150-year-old Japanese cypress (Chamaecyparis obtusa

Endl.), grown in Nagano Prefecture in Japan. The diameter

of a log was 41 cm. Wood was obtained from the outer

growth rings (at least 20 rings from the center of the tree)

of a log. Figure 1 shows an overview of tensile test spec-

imens. The specimens were grouped into the following

three types. All the specimens were derived from neigh-

boring portions of a log.

1. L-specimen, the external dimensions were 300

(L) 9 18 (T) 9 18 (R) mm. A tapered shape with a

central cross section of 12 mm 9 12 mm and a

parallel portion of about 40 mm along the fiber was

formed on the LT and LR planes. Tabs made of a

hardwood were attached to the grip sections on both

ends of the specimen for reinforcement. EL, rL, mLT,

mLR, mLT(t), and mLR(t) were measured. The number of

specimens was nine.

2. T-specimen, the dimensions were 250 (T) 9 20

(L) 9 20 (R) mm. The length of grip section was

70 mm. ET, rT, mTL, mTR, mTL(t), and mTR(t) were

measured. The number of specimens was eleven.

3. R-specimen, the dimensions were 120 (R) 9 20

(L) 9 20 (T) mm. The length of grip section was

30 mm. ER, rR, mRL, mRT, mRL(t), and mRT(t) were

measured. The number of specimens was ten.

Specimens were conditioned at a constant temperature

of 25 �C and relative humidity of 55 % over a period of

6 months to reach an equilibrium moisture content. The

density and equilibrium moisture content of specimens

were 482 ± 16 kg/m3 and 9.7 ± 0.3 %, respectively. The

average width of annual ring was 0.9 mm.

Tensile creep test

For the tensile test, a servo-controlled fatigue-testing

machine (Shimadzu Servopulser EHF-ED10/TD1-20L)

was used. We were able to simultaneously control both the

uniaxial load and the torque using this machine, and we

confirmed that all samples could be held without the pos-

sibility of twisting. Biaxial strain gauges (gauge length,

2 mm; Tokyo Sokki Kenkyujo, FCA-2-11) were pasted

onto the central regions of four planes of the specimen to

measure the longitudinal strain and transverse strains

serially.

Beforehand, a static tensile test was conducted to mea-

sure the tensile strength. More than six specimens were

used for each type of specimen.

A 24-h tensile creep test was conducted. 42, 1.5 and

2.5 MPa, which correspond to the 30 % of tensile strength

in the L, T and R directions, respectively, were applied to

the specimen. Thereafter, the load was removed immedi-

ately and maintained at 0 N until all strains became almost

constant; this comprised the creep-recovery test. The
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temperature (25 �C) and humidity (55 %RH) were kept

constant during both tests.

Results and discussion

Variations in strain

Figure 2 shows the typical changes in longitudinal and

transverse strains in the L, T, and R directions of stress

during creep and creep recovery. The first subscript in eij

(i, j = L, T, R) represents the load direction and the

second represents the strain direction. Each strain is the

average value for the opposite planes. The load was

removed 24 h after the beginning of the creep test. The

variations in the transverse strain were similar to those in

the longitudinal strain, in all directions of tensile stress.

That is, during creep, the absolute value of transverse

strain continued to increase with the gradual reduction in

the increase rate; immediately after the removal of the

load, rapid recovery occurred, after which it continued to

recover slowly, in most cases, tending to converge toward

a constant value.

In general, wood shows linear viscoelastic behavior in

the range of bending loads up to 30–35 % of the strength.

In tensile loads, this occurs up to about 50 % of the

Fig. 3 Typical progression of

viscoelastic Poisson’s ratios

measured during creep
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strength [29]. Because the current study employed stress

level of 30 % of tensile strength, the behavior observed can

be assumed to lie within the linear viscoelastic range.

Variations in the viscoelastic Poisson’s ratio

Figure 3 shows the typical changes in the viscoelastic

Poisson’s ratio during creep. All six viscoelastic Poisson’s

ratios showed abrupt increases in the early stage. This was

due to the greater increase in the absolute value of trans-

verse strain than in the longitudinal strain during initial

creep. They subsequently continued increasing gradually.

Figure 4 shows the rate of increase in the viscoelastic

Poisson’s ratio from the beginning of creep to 24 h later.

Comparing cases with the same loading direction, the

following relationships were found (p \ 0.05, t test):

mLR(t) \ mLT(t), mTL(t) \ mTR(t), and mRL(t) \ mRT(t). In

other words, the transverse strain increased most easily in

Fig. 4 Rate of increase in the viscoelastic Poisson’s ratio from the

beginning of creep to after 24 h of creep. Comparison between two

cases with the same loading direction. Error bars standard deviations.

Asterisk significant difference (t test) at p \ 0.05

Fig. 5 Progression of the viscoelastic compliance Qij(t) measured during creep. Qij(t) is defined in Eq. 4
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the T direction, followed by R and L, in that order

(T [ R [ L). The most likely apparent reason for this is

that the tracheids that lie in the L direction and the ray

parenchyma cells that lie in the R direction prevent trans-

verse strain from increasing with time.

Variations in viscoelastic compliance

Figure 5 shows the changes in viscoelastic compliance

during creep. The first subscript in Qij(t) indicates the strain

direction, and the second one indicates the stress direction.

Ei and mij measurements were performed immediately after

beginning the creep test. The diagonal elements

(i = j) tended to increase logarithmically and the off-

diagonal elements (i = j) tended to decrease logarithmi-

cally. Also, when the strain or stress was in the L direction,

the values were an order of magnitude less than in the other

directions.

Qij(t) is approximated using the logarithm of time as

QijðtÞ ¼ a log t þ b ð8Þ

where a and b are constants. Table 1 lists mean values for

a and b.

Symmetry of the three-dimensional compliance matrix

In this study, the elastic compliance and viscoelastic

compliance are linearly added to express strain during

creep (Eq. 4). It is vital to examine whether the reciprocal

compliance condition is satisfied in three orthogonal planes

of wood, because this is necessary for discussing the lin-

earity of the orthotropic viscoelasticity of wood. Before

investigating the viscoelastic compliance matrix for sym-

metry, let us examine whether the non-shear elastic com-

pliance matrix is symmetric.

Takemura [30] analyzed Hearmon’s data [31] and con-

cluded that the elastic compliance matrix is symmetric

(Sij = Sji). However, Sliker et al. [14] disagreed, reporting

that while symmetry holds for STR and SRT, it does not hold

for the pairs SLR and SRL, and SLT and STL. Figure 6 shows

the results of an investigation of the symmetry of elastic

compliance in the present study. No significant difference

was found here for any of the compliance pairs (p [ 0.05,

t test). Consequently, asymmetry of three-dimensional

elastic compliance matrix for Japanese cypress was not

recognized in this study. The loading rate has a great

influence on the measurement of Poisson’s ratio [14]; in the

present study, the target load was reached in 5 s, a rela-

tively high loading rate. Conversely, Sliker et al. measured

Poisson’s ratio in static tests (strain rate in the L direction:

13–294 9 10-6/min). It is possible that the difference in

loading rates is the reason for the disparity between the

finding of Sliker et al. of no symmetry and the finding in

the present study.

Figure 7 shows the hourly averages of all the specimens

for the off-diagonal elements in the viscoelastic compli-

ance matrix. The figure includes Qji(t), the compliance with

the subscripts reversed from Qij(t), to examine the sym-

metry of the matrix. As mentioned above, all the absolute

values of the viscoelastic compliance tended to increase

logarithmically. Since the error bars showing standard

deviations have almost no overlap, as can be seen in the

figure, a significant difference between Qij(t) and

Qji(t) appears to exist. In view of these findings, the three-

dimensional viscoelastic compliance matrix of wood is

concluded to be asymmetric.

Table 1 Mean values for a and b in Eq. 8

Qij(t) (10-5MPa-1) n a [10-5MPa-1(logh)-1] b (10-5MPa-1)

Average SD Average SD

QLL(t) 9 0.45 0.13 0.56 0.14

QTL(t) 9 -0.53 0.19 -0.40 0.21

QRL(t) 9 -0.45 0.19 -0.38 0.16

QTT(t) 11 11.67 2.85 10.28 2.76

QRT(t) 11 -6.40 2.21 -6.50 1.72

QLT(t) 7 -1.23 0.26 -0.93 0.63

QRR(t) 10 10.70 5.41 9.04 1.77

QTR(t) 10 -21.56 10.40 -9.78 4.77

QLR(t) 7 -3.07 1.31 -1.35 0.36

Qij(t) is defined in Eq. 4

n number of specimens, SD standard deviation

Fig. 6 Comparison of elastic compliance Sij and Sji. Sij is defined in

Eq. 3. Error bars standard deviations. ns non-significant difference

(t test) at p [ 0.05
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Conclusions

With the aim of understanding the viscoelasticity of wood

three-dimensionally, matched samples of Japanese cypress

were loaded in uniaxial tensile creep tests in the L, T, and R

directions. The longitudinal and transverse strains were

measured for each type of specimen. The viscoelastic Pois-

son’s ratio and the viscoelastic compliance were successively

determined during creep. The principal results are as follows:

1. The changes in the transverse strains showed the same

tendencies as those in the longitudinal strain, in all

directions of loading; specifically, the absolute value

of transverse strain increased during creep, although

the rate of increase in the absolute value tended to

gradually decrease. Immediately after the removal of

the load, transverse strain recovered sharply; subse-

quently, it recovered more gradually.

2. All the viscoelastic Poisson’s ratios and the diagonal

elements in the non-shear viscoelastic compliance

matrix increased logarithmically during creep. Con-

versely, the off-diagonal elements in the non-shear

viscoelastic compliance matrix decreased logarithmi-

cally during creep.

3. The reciprocal elastic compliance condition for ortho-

tropicity of wood was satisfied in three dimensions.

4. The reciprocal viscoelastic compliance condition was

not satisfied in any of the planes.

Extending the laws of viscoelasticity from one dimension

to three dimensions allows the orthotropic viscoelasticity of

wood to be expressed in a more detailed and systematic

manner. This will lead to more rational designs of wood and

wood-based materials as anisotropic materials.
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