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Abstract
Introduction  Computer vision models have been used to diagnose some disorders using computer tomography (CT) and 
magnetic resonance (MR) images. In this work, our objective is to detect large and small brain vessel occlusion using a deep 
feature engineering model in acute of ischemic stroke.
Methods  We use our dataset. which contains 324 patient’s CT images with two classes; these classes are large and small brain 
vessel occlusion. We divided the collected image into horizontal and vertical patches. Then, pretrained AlexNet was utilized 
to extract deep features. Here, fc6 and fc7 (sixth and seventh fully connected layers) layers have been used to extract deep 
features from the created patches. The generated features from patches have been concatenated/merged to generate the final 
feature vector. In order to select the best combination from the generated final feature vector, an iterative selector (iterative 
neighborhood component analysis—INCA) has been used, and this selector has chosen 43 features. These 43 features have 
been used for classification. In the last phase, we used a kNN classifier with tenfold cross-validation.
Results  By using 43 features and a kNN classifier, our AlexNet-based deep feature engineering model surprisingly attained 
100% classification accuracy.
Conclusion  The obtained perfect classification performance clearly demonstrated that our proposal could separate large and 
small brain vessel occlusion detection in non-contrast CT images. In this aspect, this model can assist neurology experts 
with the early recanalization chance.
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Introduction

Endovascular thrombectomy is the standard treatment 
developed in recent years for ischemic stroke patients with 
large vessel occlusion who experience symptoms within the 
first 6 h. [1]. The effectiveness of endovascular thrombec-
tomy in acute ischemic stroke patients with large vessel 
occlusion is equal to time initially, and decreases with the 
narrowing of time according to the brain base [2]. Early 
treatment of patients with large vessel occlusion using end-
ovascular thrombectomy reduces morbidity and mortality 
[3, 4]. Although endovascular thrombectomy is the primary 
treatment option for patients with large vessel occlusion, 
it is not available at every center. Therefore, the majority 
of these patients are initially evaluated at centers that do 
not perform thrombectomy. In this situation, difficulties 
arise in inter-hospital communication and referral to stroke 
centers for thrombectomy, in order to differentiate large 
vessel occlusion [5]. Even in experienced centers, it takes 
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about 100 min to identify patients eligible for thrombec-
tomy, which results in neuronal loss and an increase in 
morbidity [6]. In cases where reperfusion is achieved 
through endovascular thrombectomy, every 15-min delay 
results in a 5-point worsening of the NIHSS score [7]. Cur-
rent guidelines recommend non-invasive imaging (such as 
computed tomography angiography/computed tomography 
perfusion/magnetic resonance angiography) to detect large 
vessel occlusion before angiography. They also state that 
any facility providing emergency stroke services should 
be capable of performing non-invasive vascular imaging 
[8]. However, due to resource constraints in stroke centers, 
multimodal CT imaging may not be sufficient [8, 9]. Acute 
access to MRI and CTP is not available in most centers in 
the USA or worldwide [10]. Less than one-third of small 
hospitals have 24/7 CT angiography available [11]. When 
vascular imaging is not feasible, NIHSS or the Rapid Arte-
rial Occlusion Evaluation Scale have shown relatively high 
accuracy in detecting large vessel occlusion, but their level 
of adequacy is still not widely accepted [12]. According to 
recent clinical studies conducted in America and Europe, 
a combination of best medical treatment with endovascular 
thrombectomy has been reported to result in a cost savings 
of 33,190 pounds per patient compared to best medical 
treatment alone [13].

In this article, our primary goal is to propose a new auto-
matic anterior system occlusion detection model based on 
computer vision to minimize human error. With the advance-
ment of deep learning since the 2010s, computer vision 
models have been able to tackle various image classification 
problems with ease. Particularly, deep learning and patch-
based models exhibit high accuracy rates and find applica-
tion in many fields, such as biomedical image classification 
and object detection. To harness this capability of computer 
vision in urgent anterior system occlusion detection, we 
have suggested a patch-based transfer learning model. In 
our model, the image will be divided into 16 × 16 fixed-size 
patches. Features will be extracted from both the CT image 
and each fixed-size patch using a pretrained AlexNet. These 

extracted features will undergo iterative feature selection to 
identify the most meaningful attributes, and classifiers will 
be employed to obtain the results.

Material and method

The study sample consisted of 324 patients hospitalized 
from the emergency department of Fırat University Hos-
pital to the neurology clinic between January, 2019, and 
December, 2021, 159 of whom had large vessel occlusion 
and 165 of whom had small vessel occlusion confirmed by 
radiology report and clinical determination. Top of the ICA 
occlusion and MCA-M1 segment occlusion were included 
as large vessel occlusion. MCA-M3 and MCA-M4 distal 
branch occlusions were included as small vessel occlusions. 
Statistical analyses were performed using the SPSS package 
program version 25.0 (IBM, Armonk, NY). Descriptive data 
were reported as median (min–max). Chi-square test was 
used to compare categorical variables. Mann–Whitney U 
test was used to compare continuous variables between two 
independent groups. Statistical significance was accepted 
as p < 0.05 (Table 1). Sample size was calculated using 
G*Power software 3.1 with α = 0.05 and 1 − β = 0.95 [14]. 
When a study was not available, the minimum sample size 
was calculated as 314 by taking an effect size of 0.2.

Faul F, Erdfelder E, Buchner A, Lang AG. Statisti-
cal power analyses using G*Power 3.1: tests for correla-
tion and regression analyses. Behav Res Methods. 2009 
Nov;41(4):1149–60.

A new CT image classification model has been proposed 
in this work. We have presented a new patch-based (exem-
plar) deep feature engineering (PDFE) model. Our proposed 
PDFE model contains three essential phases, and they are (i) 
exemplar deep feature extraction, (ii) iterative feature selec-
tion, and (iii) classification with a kNN classifier. This model 
is a vision transformer (ViT) [15] like a model. In the ViT, 
features are extracted using a transformer from 16 × 16 sized 
patches. Here, we extracted features by deploying pretrained 

Table 1   Baseline characteristic 
of the patients

NIHSS, National Institutes of Health Stroke Scale; ASPEST, The Alberta stroke programme early computed 
Tomography

Large vessel occlusion 
(n = 159)

Small vessel occlusion 
(n = 165)

p value

Age 62 (37–79) 63 (39–78) 0.868
Gender (n,%)

  Female 74 (46.5) 81 (49.1) 0.646
  Male 85 (53.5) 84 (50.9)

Time from stroke onset, min [mean (min–
max)]

194 (55–360) 209 (45–375) 0.555

NIHSS score [mean (min–max)] 16 (8–24) 15 (7–25) 0.045
ASPECT score [mean (min–max)] 8 (6–10) 8 (7–10) 0.134
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AlexNet [16]. We have used two fully connected layers of 
the AlexNet to get features named fc6 and fc7 (sixth and sev-
enth fully connected layers). In this aspect, transfer learning 
has been used to get features from a patch of the image. By 
using this strategy, deep features have been extracted from 
each patch. In the feature concatenation phase, the generated 
features have been merged. To select the most informative/
meaningful features, INCA [17] feature selector has been 
used. In the classification phase, the selected features have 
been fed to the classifier (kNN) [18]. The block diagram of 
the presented AlexNet-based PDFE is shown in Fig. 1.

The steps of the presented model have been listed below.

Step 1: Read each image from the collected dataset.
Step 2: Resize each image to 224 × 224-sized images.
Step 3: Divide the resized image into 16 × 16-sized 
patches.
Step 4: Generate a feature from the raw image by deploy-
ing the fc6 and fc7 layers of the pretrained AlexNet.
Step 5: Extract deep features from each patch.

The feature extraction phase (see step 4 and step 5) is 
demonstrated in Fig. 2.

Step 6: Merge the generated features.
Step 7: Apply INCA to the generated features and choose 
the most informative features.
Step 8: Utilize the selected features (the selected 43 fea-
tures) as input for the kNN classifier.

Results

We proposed a new PDFE model using the pretrained 
AlexNet, INCA selector, and kNN classifier. To construct 
this model, we used MATLAB (2021a) programming envi-
ronment. In the first phase, the pretrained AlexNet was 

Fig. 1   The block diagram of the proposed model

Fig. 2   Feature extraction methodology of the proposed model. The 
raw image and the created patches (P) have been utilized as input of 
the pretrained AlexNet. The used AlexNet was trained on the Ima-
geNet1K dataset. By deploying fc6 and fc7, two feature vectors, 
which are F1 and F2, are extracted, and the length of each feature 
vector is equal to 4096. These features have been merged, and 8192 
(= 4096 + 4096) features (the created feature is demonstrated using f) 
are created from each input
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imported to MATLAB by using the Add-Ons section. Our 
proposal was coded using functions. The coded functions 
are (i) main function, (ii) INCA, and (iii) kNN. By using 
the main function, AlexNet-based feature extraction was 
implemented. We have used the default settings of AlexNet. 
Furthermore, image resizing and patch division were coded 
in the main function. This function is also called INCA and 
kNN functions. In the meaningful feature selection phase, 
we have used INCA, and this feature selector is a parametric 
function. These parameters are given as follows. The loop 
range is from 1 to 500, and the loss function calculator is 
kNN. kNN has used both misclassification rate generators 
for feature selection and in the classification phase. Hyper-
parameters of this classifier are k, 1; distance, Euclidean; 
voting, none. Using the pretrained AlexNet, this model can 
be applied on a simple configured personal computer since 
there is no need to train AlexNet.

Classification accuracy, recall, precision, and F1-score 
have been used to evaluate the performance values, and the 
mathematical explanation of these parameters is given below 
[19, 20].

The meanings of the used variables are TP , true positive; 
TN , true negative; FP , false positive; and FN , false negative.

Our proposal is applied to the collected dataset, and this 
dataset contains 324 CT images with two classes, and these 
classes are named (1) large occlusion and (2) small occlu-
sion. There are 159 large occlusion CT images and 165 small 
occlusion CT images. Our model attained 100% classifica-
tion performance, and the calculated performances are given 
in Table 2.

As highlighted in Table 2, our model attained a wonderful 
classification performance by using kNN. In order to create 

(1)Accuracy =
TP + TN

TP + TN + FP + FN

(2)Recall =
TP

TP + FN

(3)Precision =
TP

TP + FP

(4)F1 − score =
2TP

2TP + FN + FP

a benchmark list, we have used decision tree (DT) [21], ran-
dom forest (RF) [22], linear discriminant (LD) [23], quad-
ratic discriminant (QD) [24], logistic regression (LR) [25], 
naïve Bayes (NB) [26], support vector machine (SVM) [27], 
and multi-layer perceptron (MLP) [28] for classification and 
the calculated classification performances are demonstrated 
in Fig. 3.

As can be seen from Fig. 3, the best classifier to solve 
this problem is kNN. SVM attained over 98.14% classifica-
tion accuracy, and it is the second-best classifier for this 
model. The worst classifier is DT since it attained about 70% 
(DT reached 70.06% classification accuracy) classification 
accuracy.

Discussions

Artificial intelligence (AI) is a general term that refers to the 
use of a computer to model intelligent behavior with mini-
mal human intervention. Deep learning has begun to play a 
role in many aspects of medicine, from knowledge manage-
ment to the control of health management systems, including 
electronic health records, and from doctors’ treatment deci-
sions to active guidance [14–29]. Radiology emerged with 
the extraordinary discovery of X-rays, and since then, new 
imaging modalities (ultrasound, CT, MRI, PET, SPECT) 
have developed rapidly. Artificial intelligence is another 
such development that will potentially bring fundamental 
changes to the practice of radiology [15–30]. However, 
despite such rapid advances in radiology, it is not possible 
to distinguish between large and small vascular occlusions 
using brain CT images. We hypothesize that by utilizing 
artificial intelligence in brain CT imaging, we will be able 

Table 2   Results (%) of the 
presented model

Evaluation metric Result

Accuracy 100.0
Recall 100.0
Precision 100.0
F1-score 100

Fig. 3   The classification performances of the used nine classifiers
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to differentiate between large and small vascular occlusions 
in a fast, safe, side-effect-free and inexpensive manner.

For this purpose, we used various VIT models and evalu-
ated the performance of each model in the classification of CT 
imaging. It has been observed that performing CT angiogra-
phy to demonstrate the presence of large vessel occlusion can 
lead to contrast nephropathy, particularly more pronounced in 
individuals with diabetes mellitus. The additional cost incurred 
by performing CT angiography and the rapid loss of 1.9 mil-
lion neurons, 14 billion synapses, and 12 km (7.5 miles) of 
myelinated fibers in the brain for every minute of large vessel 
occlusion have been determined [31, 32]. Therefore, achieving 
an accurate diagnosis promptly holds significant importance 
for the patient’s well-being. To handle this problem, machine 
learning is a well-known problem-solving methodology. Thus, 
we have presented a new transfer learning-based model.

In this study, we introduced a novel PDFE model utilizing 
the pretrained AlexNet architecture, the INCA feature selec-
tor, and the kNN classifier. Our approach involved three main 
coded functions: the main function, INCA, and kNN. The main 
function facilitated AlexNet-based feature extraction, incorpo-
rating default settings for AlexNet, image resizing, and patch 
division. This function was instrumental in integrating the 
INCA and kNN functions [17, 18]. We have applied the pro-
posed PDFE to the collected CT image dataset for large- and 
small-occlusion detection. Our model attained 100% classifica-
tion performance for solving this problem.

Based on these findings, using a CT image classification 
model as an alternative to CT angiography for detecting 
large vessel occlusion and considering the comprehensive 
evaluation of all structures, including deep brain structures, 
in this model, can yield positive results. Therefore, this 
assumption explains the outstanding classification perfor-
mance of kNN models utilizing the CT image classification 
model.

We have discussed the most important points of this work 
and these are as follows:

•	 By proposing a transfer learning-based model, we have 
obtained a computationally cheap model. Therefore, we 
used a simple configured computer.

•	 We have used INCA to choose the most informative fea-
tures automatically.

•	 Our model attained high classification performances 
using the shallow classifiers.

•	 Our model has a remarkable 100% accuracy, recall, preci-
sion, and F1-score, demonstrating exceptional capabili-
ties in anterior system occlusion detection using kNN 
classifier.

•	 Our model has contributed to timely diagnosis by 
facilitating the swift identification of large vessel 
occlusion, thereby emphasizing its significance for 
patient well-being.

Limitations and future works

We collected a CT image dataset from a single medical 
center, resulting in a relatively small dataset. However, 
we are actively working on obtaining a larger and more 
diverse dataset in the near future. Our current focus has 
been on the development of a CT image-based detection 
model. Additionally, we plan to incorporate CT angiogra-
phy images and MRIs to expand the range of modalities. 
This will pave the way for a more comprehensive model 
in the near future.

Our primary objective in the near future is to validate our 
proposal in clinical settings. We intend to achieve this by 
assessing a wide array of patient populations and occlusion 
cases, ultimately confirming the practical utility and effec-
tiveness of our machine learning-based model in real-world 
scenarios.

Conclusions

In this study, we introduced a novel approach for detecting 
large vessel occlusion in ischemic cerebrovascular diseases 
using a PDFE model. By deploying the power of pretrained 
AlexNet, INCA feature selection, and the kNN classifier, 
we achieved outstanding results in identifying large vessel 
occlusion from brain CT images.

Our proposed PDFE model demonstrated exceptional 
classification performance, attaining perfect accuracy, recall, 
precision, and F1-score on a dataset containing two classes: 
large occlusion and small occlusion. Our proposal achieved 
100% classification performances.

Our PDFE model demonstrates the significant strides that 
can be achieved by combining advanced machine learning 
techniques with medical imaging. The promising results 
obtained lay the foundation for future advancements and 
underscore the potential of technology-driven solutions in 
the realm of medical diagnosis and intervention.
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