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Abstract
The present study aims to describe the state of the art of fluid biomarkers use in ongoing multiple sclerosis (MS) clinical trials.
A review of 608 ongoing protocols in the clinicaltrials.gov  and EudraCT databases was performed. The trials enrolled 
patients with a diagnosis of relapsing remitting MS, secondary progressive MS, and/or primary progressive MS according 
to Revised McDonald criteria or relapsing MS according to Lublin et al. (2014). The presence of fluid biomarkers among 
the primary and/or secondary study outcomes was assessed.
Overall, 5% of ongoing interventional studies on MS adopted fluid biomarkers. They were mostly used as secondary out-
comes in phase 3–4 clinical trials to support the potential disease-modifying properties of the intervention. Most studies 
evaluated neurofilament light chains (NfLs). A small number considered other novel fluid biomarkers of neuroinflammation 
and neurodegeneration such as glial fibrillary acid protein (GFAP).
Considering the numerous ongoing clinical trials in MS, still a small number adopted fluid biomarkers as outcome measures, 
thus testifying the distance from clinical practice. In most protocols, fluid biomarkers were used to evaluate the effectiveness 
of approved second-line therapies, but also, new drugs (particularly Bruton kinase inhibitors). NfLs were also adopted to 
monitor disease progression after natalizumab suspension in stable patients, cladribine efficacy after anti-CD20 discontinu-
ation, and the efficacy of autologous hematopoietic stem cell transplant (AHSCT) compared to medical treatment. Neverthe-
less, further validation studies are needed for all considered fluid biomarkers to access clinical practice, and cost-effectiveness 
in the “real word” remains to be clarified.
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Introduction

Multiple sclerosis (MS) is a chronic inflammatory demyeli-
nating disease involving the central nervous system (CNS) 
resulting from the interaction of genetic and environmental 
factors that are only partially understood. Clinical symptoms 
vary based on the anatomical location of lesions and often 
correlate with the invasion of inflammatory cells across the 

blood-brain barrier (BBB) with consequent demyelination 
and edema [1]

Although the course is highly variable, the develop-
ment of irreversible disability represents the natural 
course of the disease. MS remains a notable cause of 
neurological disability in young adults [2, 3]. Together 
with neurological symptoms and signs, the spatial and 
temporal distribution of inflammatory lesions revealed by 
magnetic resonance imaging (MRI) is the primary diag-
nostic feature [3]. However, MS specificity remains an 
issue, with many patients needing to satisfy established 
diagnostic criteria delaying proper disease management 
and treatment [4].

Thus, in recent years, there has been considerable effort 
in finding more accurate biomarkers to rapidly identify 
disease processes and different MS trajectories and dif-
ferentiate them from other neurological conditions. Given 
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the inter-relation with the blood-brain barrier (BBB) and 
brain parenchyma, cerebrospinal fluid (CSF) was the pri-
mary object of new biomarkers investigation [4]. The main 
benefit of using CSF over blood to measure biomarkers 
was that it more accurately reflects the inflammatory pro-
file within CNS [5].

Accordingly, the immunoglobulin G (IgG) index and 
oligoclonal biomarker detection have been systematically 
validated as CSF biomarkers for multiple sclerosis.

As increasingly sensitive technological platforms are 
being developed, the feasibility of identifying soluble 
biomarkers in blood has improved, as supported by the 
role of the neurofilament light chain (NfL) in serum and 
plasma for evaluating response to therapy and disease 
activity [4].

CSF biomarkers benefit from being more sensitive than 
clinical or radiological assessments, especially in low-
grade MS activity [5].

Indeed, among those patients whose disease was 
inactive according to clinical scales and/or MRI, CSF 
neurofilament light chain (cNfL) and immunoglobulin 
(Ig)G index were significantly elevated. Furthermore, 
some studies demonstrated that intrathecal IgG synthe-
sis was a hallmark of MS and IgM synthesis: increased 
IgM index or detection of OCMB (Oligoclonal IgM 
bands) was an unfavorable diagnostic marker [6]. 
Indeed, OCMBs are associated with increased MS 
activity (i.e., increased retinal axonal loss, decreased 
retinal nerve fiber layer, and more aggressive dis-
ease progression during the early stages of relapsing-
remitting multiple sclerosis, RRMS). The presence of 
oligoclonal bands in CSF is predictive of conversion 
from CIS to MS [5]. Over the past three decades, many 
assays have been developed to detect neurofilament 
light chain (NfL) levels [7]; several features make NfL, 
cytoskeletal proteins released from damaged axons 
into the CSF and the blood, a promising biomarker of 
neurodegeneration.

NfL can be objectively measured and quantified: over the 
last few years, a single molecular array (Simoa) has made 
measuring NfL concentration levels more reliable and clini-
cally relevant [4].

Several studies showed that NfL levels increase during 
MS relapses and correlate with MRI lesion volume [8, 9], 
disease activity, disability, and disease progression [10]. In 
addition, a growing body of evidence reported that NfL in 
cerebrospinal fluid (CSF) and serum could be used as reli-
able indicators of treatment response.

Other novel biomarkers seem promising in MS. A 
recent meta-analysis of studies confronting CSF glial 
fibrillary acid protein (GFAP) levels in MS patients 

compared to healthy controls has shown significantly 
higher levels in MS patients. Progressive MS patients 
tendentially had higher CSF GFAP concentration than 
RRMS [11]. Additionally, higher levels of GFAP have 
been associated with greater disabilities and shorter 
relapse intervals [4].

There is growing research interest in inflammation bio-
markers. According to recent findings, immune signatures 
assembled with the markers mentioned above could fur-
ther differentiate underlying disease pathology and dis-
ease activity. Chitinase-3-like-1 precursor (Chi3L1) is a 
glycoprotein secreted by various cell types, including acti-
vated astrocytes and microglia [12]. It has been found to 
be increased in CSF of patients with different inflamma-
tory diseases of the central nervous system. In MS, higher 
CSF levels have been associated with a more rapid con-
version to RRMS in CIS patients; lower CSF levels have 
been found in progressive MS compared with RRMS [13]. 
The same data was not confirmed on plasma where Chi3L1 
levels resulted higher in progressive patients. Otherwise, 
according to what was found in CSF, plasma levels resulted 
associated with more radiological relapses [14], and serum 
levels were associated with a more rapid conversion from 
CIS to RRMS [13]. In another study, serum Chi3L1 levels 
were found to increase in groups of patients unresponsive 
to b-interferon therapy [15]. C-X-C Motif Chemokine 13 
(CXC13) is a chemokine protein-ligand [16]. High CSF 
CXCL13 concentration was confirmed in MS by several 
studies and associated with an increased risk of clinically 
definite MS and a more severe disease course in RRMS, 
SPMS, and PPMS patients [17–20]. Not surprisingly, CSF 
CXCL13 levels seem to be a robust and sensitive indicator 
of intrathecal B-cell response, even in the presence of an 
intact blood-brain barrier [21].

Serum pro-inflammatory cytokine IL-6 has been found to 
be correlated with the age of onset of MS, and higher lev-
els were detected in MS patients compared to controls [22]. 
Serum levels of the anti-inflammatory cytokine IL-10 were 
inversely correlated with the risk of relapse in pediatric MS 
[23].

Despite the growing research interest in plasma and CSF 
biomarkers of MS, their use in clinical trials and prospec-
tive studies still seems limited. The study aimed to review 
and summarize the state of the art of biomarkers implemen-
tation in ongoing MS study protocols registered in clinical-
trials.gov  and EudraCT databases. The review was focused 
on neuroinflammation- and neurodegeneration-related bio-
markers according to the body of literature available in our 
query.

This analysis may inform how MS biomarkers are 
adopted in drug development, shedding light on potential 
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methodological, clinical, and ethical issues. Furthermore, it 
can provide reflection points on how biomarkers are translated 
from a pure research context to a clinical one.

Materials and methods

Data source and search strategy

Two databases were used as reference sources for the pre-
sent review: (i) the ClinicalTrials.gov  for studies regis-
tered in the USA and (ii) the EudraCT (European Union 
Drug Regulating Authorities Clinical Trials Database) 
for all interventional studies registered in the European 
Union.

 Clinicaltrials.gov is an online free database provided 
by the U.S. National Library of Medicine, gathering 
information from privately and publicly funded clinical 
studies conducted worldwide on a wide range of diseases 
and conditions. EudraCT is an online free database for all 
interventional clinical trials on medicinal products submit-
ted to the National Competent Authorities (NCAs) of the 
European Union.

The two databases were lastly investigated on May 2023 
by using the following terms and fields in the advanced 
search function on Clinicaltrials.gov : “multiple sclerosis 

OR MS” [CONDITION OR DISEASE] AND “interven-
tional studies (clinical trials)” [STUDY TYPE] AND (“not 
yet recruiting” OR “recruiting” OR “enrolling by invita-
tion “OR “active, not recruiting”) [STATUS: RECRUIT-
MENT] AND (“phase 1” OR “phase 2” OR “phase 3” 
OR “phase 4”) [PHASE]. On EudraCT, selecting specific 
search functions is impossible.

There was no restriction on age, sex, date, and 
location.

Two authors (E.D.S + G.R; M.G + E.F) independently 
screened the identified records to remove duplicates and 
verify the fulfilment of the following predefined inclusion 
criteria:

(i) Targeting subjects with clinical disturbances associ-
ated within the MS continuum (e.g., CIS; RRMS; PPMS)

(ii) Testing the safety, efficacy, or tolerability of pharma-
cological interventions.

The flow chart (Fig. 1) shows the selection of the proto-
cols of interest for the present review.

Data extraction and analysis

Data were extracted from trials included in this review using 
extraction tables. Four reviewers (G.R + E.D.S and E.F + 
M.G) independently extracted the following data from the 
selected protocols:

Fig. 1  Flow chart of protocols 
selection Condition or disease: 

“Multiple Sclerosis”

Study type: Recruiting 
Enrolling by invitation 
Active, not recruiting

Phase: Phase 1
Phase 2
Phase 3 
Phase 4

Protocols found:
N = 616

Protocols not meeting predefined criteria: 
N = 3 non testing pharmacological interventions
N = 581 non adopting fluid biomarkers

Protocols included:
N = 32
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 i. NCT number
 ii. Phase
 iii. Study design
 iv. Expected end date
 v. Location
 vi. Planned number of participants
 vii. Pharmacological intervention
 viii. Age
 ix. Diagnosis
 x. Expanded disability status score (EDSS)
 xi. Adopted diagnostic criteria
 xii. Main criteria of exclusion/inclusion
 xiii. Fluid biomarkers adopted as either primary or second-

ary outcome measure (s).

Disagreements in the selection process and data extraction 
were solved by consensus or involving two additional reviewers.

Results

In Table 1 are listed NCT number, phase, study design, 
expected end date, and location of selected protocols; in 
Table 2 are listed NCT number, planned number of par-
ticipants, pharmacological intervention, age, diagnosis, 
EDSS, adopted diagnostic criteria, main criteria of inclu-
sion/exclusion, and fluid biomarkers adopted as either pri-
mary or secondary outcome measures of selected protocols. 
Lastly, Table 3 describes how fluid biomarkers were adopted 
according to MS phenotype.

Search results

A total of 608 protocols of phase 1, 2, 3, and 4 interventional 
studies, retrieved by the structured search on clinicaltrials.
gov and the EUDRA database, were screened. Overall, 

Table 1  Listed NCT number, 
phase, study design, expected 
end date, and location of 
selected protocols

NCT Phase Study design Expected end date Location

NCT05349474 1 Double-blinded RCT May-26 USA
NCT05417269 2 Double-blinded RCT Dec-25 Moldova
NCT03979456 3 Single-blinded RCT Jun-25 Sweden
NCT05630547 2 Quadruple-blinded RCT Aug-25 Multi-country
NCT04121403 3 Single-blinded RCT Dec-24 Norway
NCT04544436 3 Double-blinded RCT Aug-28 USA
NCT05147220 3 Double-blinded RCT Oct-30 USA
NCT0454899 3 Double-blinded RCT Jul-29 Canada
NCT04926818 3 Quadruple-blinded RCT Jun-29 USA
NCT04695080 3 Quadruple-blinded RCT Dec-26 UK
NCT04410991 3 Triple-blinded RCT Aug-23 USA
NCT04510220 3 Open-label Dec-21 USA
NCT04586023 3 Double-blinded RCT Nov-25 USA
NCT03963375 4 Open-label May-25 USA
NCT03193866 4 Observational Dec-22 Sweden
NCT05296161 4 Open-label Mar-26 Netherlands
NCT05232825 3 Open-label Apr-25 USA
NCT04458051 3 Triple-blinded RCT Aug-24 USA
NCT04411641 3 Double-blinded RCT Aug-24 Multi-country
NCT03650114 3 Open-label Mar-30 USA
NCT04047628 3 Single-blinded RCT Oct-29 USA
NCT04688788 3 Single-blinded RCT Apr-28 Denmark
NCT04338061 3 Quadruple-blinded RCT Jun-26 USA
NCT02688985 3 Open-label Jul-23 USA
NCT04550455 4 Open-label Dec-25 USA
NCT04640818 4 Observational Oct-22 Switzerland
NCT05090371 4 Open-label Nov-25 USA
NCT04048577 4 Open-label Dec-21 USA
NCT04239820 4 Observational Jun-24 Finland
NCT04877457 4 Quadruple-blinded RCT Jul-28 USA
NCT03540485 2 Double-blinded RCT Dec-24 Spain
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only in 5% (n = 32) of the protocols, fluid biomarkers were 
adopted as outcome measures.

Overall, 32 protocols were phase 3 (n = 18) and phase 
4 (n= 9) trials. In 3 cases, fluid biomarkers were secondary 
outcome measures in phase 2 clinical trials; they were also 
adopted in a phase 1 clinical trial for an early assessment 
of metformin remyelinating properties in PPMS and SPMS 
patients.

Demographics

In almost all protocols, the 2017 Revised McDonald Criteria 
were adopted for patients’ selection [24]. Two studies con-
sidered the 2010 Revised McDonald Criteria [25], whereas 2 
protocols adopted the 2014 Lublin criteria to identify relaps-
ing MS patients, independently from a relapsing-remitting or 
secondary progressive disease progression [26].

Most studies were conducted on adult RRMS patients; 
the age of patients recruited ranged from 18 to 100 years, 
but most protocols included patients from 18 to 65 years. 
One study was addressed to pediatric patients (from 10 to 17 
years). RRMS patients included had mostly a baseline EDSS 
score from 0 to 5.5 or 6.5, although some trials included 
patients independently from baseline disability status. In 9 
protocols, fluid biomarkers were adopted as outcome meas-
ures in SPMS and/or PPMS patients. The age of progres-
sive patients included ranged from 18 to 65 years, and the 
EDSS score for inclusion was variable in the different stud-
ies. Finally, patients with other diagnoses were included in 
7 protocols, namely, RMS (n = 3), MS (n = 2), active MS 
(n = 1), CIS (n = 1), and RIS (n = 1) patients.

Interventions

Fluid biomarkers were prevalently considered in studies 
about the effectiveness of approved second-line therapies 
(ocrelizumab, rituximab, ofatumumab, cladribine, siponi-
mod, and natalizumab) compared to other disease-modifying 
therapies or placebo. On the other hand, almost all clinical 
trials evaluating new drugs, particularly Bruton tyrosine 
kinase (BTK) inhibitors (remibrutinib, tolebrutinib, fenebru-
tinib, SAR443820), considered fluid biomarkers. In one trial 
of stable MS patients, NfLs were used to monitor disease 
progression after disease-modifying therapies suspension, 
particularly natalizumab; NfLs have also been considered to 
monitor cladribine disease modifying efficiency after anti-
CD20 drugs discontinuation and to evaluate the efficacy of 
autologous hematopoietic stem cell transplantation (aHSCT) 
compared to best medical treatment. As mentioned above, 
1 protocol evaluated metformin remyelinating properties in 
PPMS and SPMS patients.Ta
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Fluid biomarkers

Four protocols indicated fluid biomarkers as primary out-
comes and 32 as secondary outcomes, whereas in 1 case as 
both primary and secondary outcome measures.

The use of fluid biomarkers mostly relied on serum 
NfLs (sNfL): 18 protocols adopted sNfL as secondary out-
comes and 2 protocols as primary outcome measures. NfLs 
were also evaluated in plasma (pNfL) in 3 protocols as 
secondary outcomes. Four protocols, which study design 
contemplated multiple successive lumbar punctures, evalu-
ated NfL in CSF (cNfL); in one case, cNfL were consid-
ered as primary outcome measure. In 5 protocols, NfL 
were reported as generically tested in blood (bNfL).

Given a baseline determination at the start of the pro-
tocol, the mean change of sNfL concentration in subse-
quent time points was compared in the two dosing arms. 
However, 2 protocols considered the absolute difference 
of NfL concentration in subsequent time points between 
the two arms.

Some novel fluid biomarkers were also adopted. Serum 
GFAP (sGFAP) was a secondary outcome measure in 3 
protocols; 1 study also considered GFAP in CSF (cGFAP). 
In all cases, GFAP was evaluated in combination with 
NfL. In one protocol, sGFAP and sNfL concentrations in 
subsequent time points were correlated with microglial 
activity, measured as standardized uptake value ratio 
(SUVR) of [F-18] PBR06 in brain PET scans.

Other fluid biomarkers adopted were blood IL-6 (n = 
2), serum Chi3L1 (n = 2), serum VCAM (n = 1), serum 
MadCAM (n = 1), and serum CXCL13 (n = 1). In all 
cases, they were adopted as secondary outcome measures 
and in combination with NfL.

Discussion

MS is a disease characterized by high clinical, radiological, 
and pathological features and therapeutic response heteroge-
neity. Therefore, there is an urgent need for reliable biomark-
ers to capture the varied aspects of disease heterogeneity. 
At now, this aspect is not reflected in clinical trials: only a 
few protocols included fluid biomarkers as outcome meas-
ures, and none have adopted them for participant eligibility 
criteria.

Most of the selected protocols adopted NfL as a surrogate 
endpoint of neuroaxonal damage, the culprit of disability 
development in MS. Table 3 indicates that NfL are exten-
sively used in protocols as a biomarker across all MS pheno-
types. While NfL indicate acute axonal damage determined 
by inflammation, neurofilament heavy chains (NfH) more 
effectively capture chronic axonal damage, strongly correlat-
ing with disability progression [27]. However, only NfL have 
been incorporated into clinical trials to date.

Numerous studies endorse using NfL to assess the effect 
of immunomodulatory treatments. In phase 3 β-interferon 
(IFN-β) clinical trials and its extension studies, a signifi-
cant reduction of CSF NfL levels was observed in patients 
treated with IFN-β compared to those treated with placebo; 
an increase of NfL levels was also evidenced in patients 
with a suboptimal treatment response [28]. In a study of 32 
treatment-naïve RRMS patients initiating either glatiramer 
acetate (GA) or IFN-β first decreasing and then afterwards 
consistently low NfL levels were documented in therapy-
responsive patients. Otherwise, NfL levels stayed elevated 
and aligned with MRI relapse activity. [29]. Dimethyl-
fumarate (DMF) effect on CSF, serum, and plasma NfL was 
assessed in 104 treatment-naïve RRMS patients receiving 

Table 3  Describes how fluid biomarkers were adopted in clinical 
trials according to MS phenotype. n, number of clinical trials that 
adopted a candidate fluid biomarker as outcome measure for a defi-
nite MS phenotype. RIS radiologically isolated syndrome, CIS, clini-

cally isolated syndrome; RRMS relapsing remitting MS, SPMS sec-
ondary progressive MS, PPMS primary progressive MS, MS multiple 
sclerosis patients, AMS active MS, RMS relapsing MS

Biological sample Biomarker MS phenotype

RIS CIS RRMS SPMS PPMS MS AMS RMS

Blood NfL n= 1 n= 2 n= 15 n= 6 n= 4 n= 2 n= 1 n= 2
CSF NfL n= 0 n= 0 n= 2 n= 1 n= 1 n= 0 n= 0 n= 1
Blood GFAP n= 0 n= 0 n= 3 n= 0 n= 0 n= 0 n= 0 n= 0
CSF GFAP n= 0 n= 0 n= 0 n= 1 n= 0 n= 0 n= 0 n= 0
Blood IL-6 n= 0 n= 0 n= 1 n= 1 n= 1 n= 0 n= 0 n= 0
Blood Chi3L1 n= 0 n= 0 n= 2 n= 1 n= 1 n= 0 n= 0 n= 0
Blood VCAM n= 0 n= 0 n= 1 n= 0 n= 0 n= 0 n= 0 n= 0
Blood MadCAM n= 0 n= 0 n= 1 n= 0 n= 0 n= 0 n= 0 n= 0
Blood CXCL13 n= 0 n= 0 n= 0 n= 0 n= 1 n= 0 n= 0 n= 0
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either treatment or placebo; after 1 year of treatment, DMF 
reduced CSF, plasma, and serum NfL levels were reduced 
to levels comparable to that measured in healthy controls 
[30]. Treatment with natalizumab for 60 weeks was also 
associated with a decrease in NfL level in CSF in a single-
arm prospective cohort study. In this cohort, changes in 
NfL levels correlated with clinical improvement [31]. One 
longitudinal study evaluating 243 RRMS patients showed 
that fingolimod treatment decreased plasma NfL levels 12 
and 24 months after baseline [32]. Compared to placebo, a 
decrease in blood NfL concentration was observed in ocre-
lizumab and fingolimod trials in PPMS and with siponimod 
and natalizumab in SPMS [33, 34].

Almost all ongoing clinical trials evaluating Bruton 
tyrosine kinase (BTK) inhibitors (remibrutinib, tolebruti-
nib, fenebrutinib, SAR443820) considered NfL as outcome 
biomarkers, suggesting a future clinical utility in assessing 
the effectiveness of these drugs.

Serum NfL were also employed in one trial to assess the 
efficacy of aHSCT compared to BMT, since two trials have 
documented that CSF and serum NfL were significantly 
decreased and remained low in MS patients that responded 
to aHSCT [35, 36].

In everyday clinical practice, NfLs maintain a marginal 
role. In orientating therapeutic decision-making, clini-
cians mainly rely on clinical symptoms and MRI measures. 
However, the use of NfL in ongoing and past clinical trials 
underlines the possibility of employing NfL in monitoring 
and evaluating the disease-modifying effect of the treatment 
on a single patient. Furthermore, one recent investigation 
conducted on 203 patients reported the usefulness of NfL 
in progressive MS, whereas NfLs often resulted in the only 
non-clinical indicator of ongoing disease activity [37]. Nev-
ertheless, NfLs pose some significant confounding problems. 
Plasma NfL is negatively correlated with body mass index 
(BMI) and blood volume [38]. Serum NfLs are positively 
correlated with age, due to age-related neurodegeneration, 
[39], creating a significant confounding factor since progres-
sive MS patients tend to be older patients. Moreover, a large 
overlap of NfL levels has been described in MS early stages 
of MS and controls affected by migraine and conversion 
disorders [8]. Finally, NfL are non-specific biomarkers of 
MS since their levels are elevated also in other neurological 
disorders, particularly neurodegenerative and infective dis-
orders [40]. Therefore, in order for NfL measurement to be 
part of everyday clinical practice, validation studies, age, and 
concomitant disease-related normal ranges are needed; stand-
ardization of laboratory methodologies is also mandatory.

Among other biomarkers, GFAP was the most fre-
quently adopted in ongoing clinical trials. Since CSF lev-
els of GFAP have been associated with shorter relapse 
intervals and greater disabilities, GFAP levels have been 
adopted predominantly as outcome measure in RRMS 

patients (Table 3). However, CSF GFAP may help to dif-
ferentiate different disease subtypes, particularly PPMS 
and RRMS, in their early stages, and it might represent 
a marker of disease severity and progression also in pro-
gressive phenotypes. Nonetheless, more preclinical stud-
ies with larger cohorts are needed to validate these find-
ings. Furthermore, in 3 out of 4 protocols, GFAP levels 
were assessed in serum; it is important to consider that 
almost all findings about GFAP levels were obtained in 
the CSF of MS patients, and such findings still need to be 
adequately replicated in serum.

Regarding inflammatory biomarkers, their employment is 
even farther from validation. Few studies support the adop-
tion of Chi3L1 and CXCL13, and they have shown contrast-
ing results. In ongoing clinical trials, Chi3L1 was adopted as 
an outcome measure in RRMS patients (n=2) and progres-
sive patients (SPMS n=1, RRMS n= 1), as shown in Table 3. 
A recent metanalyses [41] evidenced CIS patients to have 
higher levels of CSF Chi3L1 compared to healthy controls, 
suggesting an overexpression from the early phase of the dis-
ease and highlighting its potential as a prognostic biomarker. 
Furthermore, no significant difference in Chi3L1 levels was 
observed between progressive MS and RRMS patients, nei-
ther during relapse phases, suggesting that it could serve 
as an outcome biomarker for all MS phenotypes. In RRMS 
patients, natalizumab, fingolimod, mitoxantrone, and inter-
feron beta were found to reduce CSF levels of Chi3L1 [42, 
43], while glatiramer acetate and dimethylfumarate did not 
influence Chi3L1 levels [15, 44].

On the other hand, CXCL13 has been adopted only in one 
protocol as an outcome biomarker in PPMS (Table 3). In pro-
gressive phenotype, CXCL13 showed a correlation with dis-
ease activity and IgG-index and intrathecal B-cell response 
[21]; this may be important considering that the presence of 
leptomeninges infiltrating B-cells represents a culprit of neuro-
pathology of progressive forms of MS [45]. It is also important 
to note that the tight correlation between CXCL13 and B-cells 
activity makes CXCL13 a perfect candidate to measure the 
therapeutic efficacy of B-cells depleting therapies. However, 
no specific data is available in the literature regarding ocreli-
zumab and ofatumumab effects on CXCL13 levels.

Both biomarkers, Chi3L1 and CXCL13, have been mostly 
evaluated in CSF and rarely in serum All selected protocols 
evaluated their levels in blood, but more validation studies 
to replicate what was found in CSF are still needed.

Finally, insufficient data in the literature support the 
employment of cytokines, such as IL-6 and IL-10, in MS 
clinical trials. Despite that, IL-6 was adopted in 3 clinical 
trials as outcome biomarker in, respectively, RRMS, SPMS, 
and PPMS patients (Table 3). Even if in vitro data suggest 
that the overexpression of proinflammatory cytokines, such 
as IL-6, can induce neurodegeneration [46], these evidences 
need to be confirmed in vivo on MS patients’ cohorts.
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For a biomarker to be deemed effective for MS, as per Paul 
A et al. [47], it should be easily measurable, possess high 
sensitivity and specificity, correspond to a specific disease 
aspect, and be cost-efficient. Another unrealized potential 
is using biomarkers to pinpoint optimal treatments for indi-
vidual patients [27]. New fluid biomarkers, post-validation, 
could be pivotal in upcoming clinical trials. Tau protein CSF 
levels, which are responsible for stabilizing axonal micro-
tubules and released after neuronal damage [48], seem to 
directly correlate with the severity of clinical symptoms [49], 
quicker disease progression [50], EDSS score, and T2 lesion 
load in both CIS and RRMS patients [51]. It also seems that 
higher Tau CSF levels predict a higher risk of conversion 
from CIS to clinically definite MS. However, one study did 
not show significant differences in Tau protein CSF con-
centration between MS patients of all clinical subtypes and 
healthy controls [52]. In one study, plasma soluble CD40L 
(sCD40L) resulted significantly increased in SPMS patients 
compared to non-progressive benign MS, and the combi-
nation of plasma sCD40L with monocyte chemoattractant 
protein 1 (MCP1) showed great accuracy in differentiating 
RRMS and SPMS patients [53]. Finally, Kappa Free Light 
Chain (KFLC) are produced during the synthesis of antibod-
ies by plasma cells [54] and have been found to be increased 
in CSF and serum of MS patients; furthermore, KFLC levels 
correlated with disability [55], disease [56, 57] progressions.

Fluid biomarkers, with the exception of oligoclonal bands 
and the light chain index, present substantial challenges in 
their application to MS, hindering their incorporation into 
future diagnostic criteria. Several key obstacles might be 
particularly relevant for MS. The generalizability of findings 
with candidate biomarker is constrained by considerable 
interstudy variability in preanalytical processes, including 
specimen collection methodologies, timing of processing, 
and storage conditions. Existing literature suggests that these 
preanalytical factors may contribute to nearly 68% of all 
laboratory discrepancies [58]. Moreover, the robustness of 
numerous studies is undermined by suboptimal design mani-
fested in heterogeneous patient and control groups, a dearth 
of prospective analyses, and inadequate sample size [59]. 
Other factors might negatively affect the translation from 
bench to bedside of validated fluid biomarkers. Primarily the 
fact that the majority is not specific for MS since their lev-
els in biological samples might be influenced by numerous 
neurological conditions. In addition, the clinical relevance of 
several candidate biomarkers might go beyond their valida-
tion due to a difficult application in everyday clinical prac-
tice (for example, characterization of lymphocyte intracellu-
lar vesicles and susceptibility genes to diagnostic purposes). 
A critical consideration is also the lack of sufficient clinical 
endpoints to affirm the surrogate role of these biomarkers 
[27]. Relapse rate might not adequately describe disease 
activity since it does not evidence subclinical relapses; 

EDSS only captures a significant progression of the disease 
that often occurs in a matter of years and is not able to dis-
criminate true disease progression from relapse-dependent 
accumulation of disability [60]. EDSS primarily focuses on 
deambulation, overlooking other essential aspects such as 
cognitive decline when mobility becomes compromised. 
Considering that the majority of studies, whether prospec-
tive or retrospective, assess follow-up periods of 1–3 years, 
the utilization of such low-sensitivity clinical measure may 
pose significant limitation in the context of a chronically 
progressive disease like MS.

Conclusions and limitations

Fluid biomarkers possess the potential to capture various 
aspects of the disease. At now, only oligoclonal bands and 
light chain index are adopted in clinical practice for their 
relevance in diagnosing MS; no fluid biomarker is validated 
for an early identification of different disease subtypes nor 
as a reliable progression biomarker. For a diagnostic bio-
marker to be useful, it should closely correlate with the 
underlying pathophysiological processes of MS. However, 
given our limited understanding of mechanisms underlying 
MS progression, pinpointing fluid biomarkers that can pre-
cisely identify MS phenotypes remains a challenge. Con-
versely, fluid biomarkers associated with neurodegenerative 
and repair mechanisms appear to be particularly promis-
ing, since they might become targets for innovative drugs 
tackling disease progression or be used in clinical trials to 
ascertain drugs neuroprotective efficacy. However, achieving 
this requires a focused effort to develop sensitive clinical 
outcomes. Furthermore, while some biomarkers have under-
gone retrospective validation, they still demand prospective 
validation in clinical trials. Specifically, the integration of 
these validated fluid biomarkers into a substantial number 
of phase 2 and 3 clinical trials is crucial.

Neurofilament light chains (NfLs) appear as the fore-
most biomarkers poised for integration into clinical prac-
tice. Nonetheless, additional research is needed to establish 
age and disease-related baseline values. As for other emerg-
ing fluid biomarkers, extensive validation studies on larger 
groups are essential. Additionally, establishing robust sta-
tistical correlations between measurements in cerebrospinal 
fluid (CSF) and peripheral blood samples is vital for their 
integration as outcome measures in clinical trials.

This review is characterized by several inherent limita-
tions that warrant mention. The foremost limitation is the 
constrained number of clinical trials that met the eligibil-
ity criteria. With only 32 trials included, this restricted 
sample might not represent the entire research spectrum 
in the domain, thereby potentially affecting the generaliz-
ability of our conclusion. The included trials encompassed 
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a heterogeneous population, covering varied age groups, 
disease phenotypes, baseline EDSS score/disability, and 
pharmaceutical histories. Such variability, while providing 
a comprehensive range of data, also introduces potential 
confounders that could influence interpretations concerning 
fluid biomarkers. A further consideration emerges from the 
heterogenous distribution of trial phases. While most stud-
ies were in phases 3 and 4, characterized by large cohorts 
and real-world relevance, four were in initial phases 1 and 
2. These early-phase studies, employing fluid biomarkers, 
have an explorative nature, possibly limiting their congru-
ence with advanced-phase trials.

Diagnostic criteria variation further adds to the list 
of limitation. Most studies employed the 2017 Revised 
McDonald Criteria for diagnosis, yet other used the 2010 
McDonald Criteria or the 2014 Lublin Criteria. This varia-
tion introduces potential inconsistencies in patient recruit-
ment and diagnostic rigor, which could, in turn, affect the 
outcomes tied to fluid biomarkers. A disparity was also 
noted in how fluid biomarkers were utilized as primary or 
secondary outcomes across the trials, presenting challenges 
when drawing definitive conclusions or comparing results 
between studies. Additionally, the review includes studies 
with varied pharmacological interventions, from approved 
second-line therapies to emerging drugs. The differential 
effects of these drugs on fluid biomarkers could introduce 
further confounding variables. Lastly, although fluid bio-
markers utilization remained uniform across the trials, the 
designs showed significant variations, especially when con-
sidering their phases. This inconsistency, despite a shared 
biomarker objective, might yield varied results, analytical 
intricacies, and potential biases.

In light of these limitations, it is imperative to interpret the 
findings of this review with caution, especially when general-
izing them to broader contexts or making direct comparisons 
across the different trial phases and diverse patient populations.
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