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Abstract
After a stroke, several mechanisms of neural plasticity can be activated, which may lead to significant recovery. 
Rehabilitation therapies aim to restore surviving tissue over time and reorganize neural connections. With more 
patients surviving stroke with varying degrees of neurological impairment, new technologies have emerged as a 
promising option for better functional outcomes. This review explores restorative therapies based on brain-computer 
interfaces, robot-assisted and virtual reality, brain stimulation, and cell therapies. Brain-computer interfaces allow 
for the translation of brain signals into motor patterns. Robot-assisted and virtual reality therapies provide interactive 
interfaces that simulate real-life situations and physical support to compensate for lost motor function. Brain 
stimulation can modify the electrical activity of neurons in the affected cortex. Cell therapy may promote regeneration 
in damaged brain tissue. Taken together, these new approaches could substantially benefit specific deficits such as 
arm-motor control and cognitive impairment after stroke, and even the chronic phase of recovery, where traditional 
rehabilitation methods may be limited, and the window for repair is narrow.
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Introduction

In clinical practice, the number of stroke patients is 
increasing due to the aging of the population and the 
high prevalence of cardiovascular comorbidities [1]. 
This is directly correlated with the growing number of 
stroke survivors who receive acute therapies, such as 
thrombectomy or pharmacological reperfusion. Early 
recognition of stroke has led to a larger population of 
patients who can survive and be discharged from hospitals 
with less severe neurological impairment. However, a 
significant proportion of patients do not receive acute 
therapies due to contraindications or being outside the 
reperfusion time window, and a significant proportion of 
patients survive with severe neurological deficits thanks to 
life-support systems. For these reasons, stroke is a major 
cause of disability worldwide and the leading neurological 
cause of lost disability-adjusted life years [2].

Traditionally, rehabilitation for patients with persisting 
deficits has focused on physical, occupational, and speech-
language therapy, as well as the prevention of medical 
complications [3]. However, new rehabilitation strategies 
are now part of standard care and include activity-based 
therapy such as constraint-induced movement therapy, high-
dose activity-based rehabilitation, high doses of task-specific 
training, mirror therapy, and environmental enrichment [4]. 
Restorative therapies targeting neuroplasticity mechanisms 
with recent technological advances have emerged as 
a promising tool for the integral care of patients with 
special needs. This review addresses the neural basis for 
stroke recovery and new approaches, including brain-
computer interfaces (BCIs), virtual reality, robot-assisted 
rehabilitation, cell therapies, and brain stimulation. A 
comprehensive search was conducted in the PUBMED/
Medline and SCOPUS databases for articles published in 
the last 10 years using the terms “robot/virtual reality/brain-
computer interface/cell therapy/brain stimulation” combined 
with the terms “stroke/brain ischemia/rehabilitation/
neuroplasticity” in English. Relevant articles and their 
bibliographic references were included based on the authors’ 
criteria for clinical practice relevance.
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Neuroplasticity after stroke

Neuroplasticity is the ability of the nervous system to 
modify and regenerate in response to new information or 
damage. Until recently, it was believed that neuroplasticity 
was nonexistent in adulthood. However, it has been found 
that neuroplasticity occurs spontaneously throughout life, 
although these changes are not sufficient to produce evi-
dent recovery after brain damage. Therefore, there are now 
several strategies available to enhance neuroplasticity, 
including both pharmacological and non-pharmacological 
interventions that are essential for post-stroke rehabilita-
tion [5–7].

The current understanding of neuroplasticity is based 
on Hebb’s theory from 1949, which posits that repetitive 
stimulation of the postsynaptic neuron by the presynaptic 
neuron is necessary to increase synaptic efficacy [8]. There 
are three main mechanisms of neuroplasticity in healthy 
brains. The first is the regrowth of axons after peripheral 
nerve damage. The second is the restoration of injured 

central nerve cells through the growth of new dendrites, 
axons, and synapses from existing cell bodies. The third 
mechanism is the wholesale generation of new neurons, 
which occurs in two neurogenic regions: the subventricular 
zone and the dentate gyrus. In the subventricular zone, 
neuroblasts are generated and migrate along the rostral 
migratory path to the olfactory bulb, where they become 
granular and periglomerular interneurons involved in plas-
tic processes of olfactory learning. In the dentate gyrus, 
stem cells give rise to neuronal precursors that mature and 
generate new granular neurons [9, 10] (Fig. 1).

Currently, three major mechanisms have been described 
for how neuroplasticity works after a stroke. These mecha-
nisms begin in the early stages after the event and continue 
for at least 3–6 months, leading to the reorganization of 
neural connections [11, 12]. The first mechanism involves 
increased functional activity in the somatosensory system 
on the opposite side of the brain from the infarction, as well 
as recruitment from distant cortical regions connected to 
the affected area [13, 14] (Fig. 2a). The second mechanism 

Fig. 1  Mechanisms of neuro-
plasticity in healthy individuals

Fig. 2  Neuroplasticity after 
stroke
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involves the improvement of the structural integrity of the 
corticospinal tract on the same side of the brain as the infarc-
tion [15] (Fig. 2b). The third mechanism involves the resto-
ration of interhemispheric functional connectivity and the 
network of the sensorimotor cortex on both sides of the brain 
[16] (Fig. 2c). As a result, there is a reallocation of functions 
whose primary representation has been damaged [11].

Brain‑computer interfaces

A BCI is a modern tool that allows for the transduction of 
brain signals into computational commands, enabling the 
control of technological devices. The positive effects of BCI 
have been discovered to mainly stimulate neuroplasticity and 
assist patients with loss of motor function, leading to hopeful 
clinical implications for post-stroke patients and individuals 
with other neurological diseases [17–20]. The operation of 
BCI is based on three main components: signal reception, 
signal processing, and generation of a specific response in 
a machine. Multiple methods for developing each of these 
components have been reported [18, 20–23].

There are two methods for the reception of brain signals, 
invasive and non-invasive. The invasive method, which may 
produce a cleaner signal, carries the risks of surgery and is not 
always the most suitable for clinical use. There are three types 
of invasive electrodes, including cortical surface microelec-
trodes (ECoG), cortical penetrating microelectrodes, and deeply 
penetrating electrodes, which record different characteristics 
of brain action potentials. Non-invasive approaches, such as 
electroencephalography (EEG), are more commonly used and 
have the most scientific evidence to support their effectiveness. 
However, alternative methods like near-infrared spectroscopy 
have also been reported [18, 20].

The second step in the BCI process involves filtering the 
received brain signals using specific techniques to enable 
interpretation. The commonly used techniques include sen-
sorimotor rhythms, slow cortical potentials, event-related 
potentials/P300, and visual evoked potentials. The filtered 
signals are then transformed into voltage/time frequencies 
using processing techniques such as Fourier, common spa-
tial filter, and wavelet transform. These signals are further 
analyzed through classification algorithms, which generate 
a specific command for the machine to execute [18, 20].

The final step in BCI involves generating a response using 
a device that is programmed to receive the signal and per-
form a function, such as basic motor patterns to improve 
rehabilitation and quality of life [18, 20]. In stroke patients, 
BCI-assisted rehabilitation is an alternative approach that 
aims to stimulate neuroplasticity by manipulating or self-
regulating brain activity, resulting in motor cortical reorgani-
zation and changes in motor activation ipsilateral and con-
tralateral to the lesion. BCI has been found to be superior to 

several types of conventional therapy, as reflected in motor 
connectivity in fMRI, increased event-related desynchroni-
zation activity in the EEG, and increased volitional con-
traction in electromyographic activity in affected muscles. 
These, along with other changes not measurable with clinical 
scales, suggest a promising mechanism for managing these 
patients [17]. However, the physiological basis of this recov-
ery has not yet been fully elucidated, nor have the factors 
that influence better outcomes with these therapies, making 
it an area with great potential for future applications in clini-
cal settings [18, 24, 25].

Robot‑assisted rehabilitation and virtual 
reality

Virtual reality (VR) therapy and robot-assisted therapies 
(RAT) are emerging technologies that have shown promise 
as alternative treatments for improving motor function and 
quality of life [26–29]. VR therapy involves the use of an 
interface between the computer and the patient, using both 
hardware and software to simulate interactions with the envi-
ronment. This allows for the creation of sensory connections 
that closely mimic reality, with the added benefits of simul-
taneous task execution and immediate feedback [26, 30]. VR 
systems are specifically designed to aid in the rehabilitation 
of patients with neurocognitive impairments, using special-
ized interfaces that focus on developing functional skills that 
can be applied in the real world [30, 31].

RAT have shown promise in training lost motor function 
or compensating for lost skills after stroke. The use of robots 
in stroke rehabilitation has led to positive trends in motor 
improvement. For instance, an exoskeleton or a robotic 
hand can be used to rehabilitate gait and upper limb motor 
function, respectively. These devices support the patient’s 
movements in different axes and provide better control and 
monitoring for specific tasks and patient needs. However, 
the impact of RAT depends on factors such as the type of 
support provided to the limb, the patient’s ability to execute 
the movement, the duration of robot support, and the type of 
exercise. Additionally, limited research has been conducted 
on the impact of therapy performed solely with robots, and 
it is more feasible to use RAT in combination with other 
techniques such as VR therapy to improve overall motor and 
cognitive performance [32, 33].

In VR therapy, there are different levels of immersion 
that can be utilized based on the patient’s needs. Skill-
ful immersion focuses on improving specific motor skills, 
while strategic immersion aims to improve higher-level 
cognitive skills such as decision-making and problem-
solving. Narrative immersion uses storytelling to provide 
a context for the exercises and increase engagement, while 
spatial or total immersion involves creating a completely 
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immersive virtual environment for the patient to interact 
with. Total immersion is the most immersive type of VR 
therapy, providing the patient with a fully immersive expe-
rience where they are transported to a virtual world or sce-
nario. This can be helpful in providing a distraction from 
the real world, while still allowing the patient to engage in 
meaningful activities that improve physical and cognitive 
function. The use of a virtual scenario with a specific story 
can also provide emotional and psychological benefits for 
the patient. Additionally, performance can be monitored 
and measured in real time, and feedback can be given to 
the patient to help them improve [26, 27, 30].

VR therapy is an effective way to provide game-based 
training tasks to patients with motor deficits. These tasks, 
such as grasping and releasing a virtual ball, are designed 
to stimulate and activate mirror neurons. As shown in 
Fig.  3, patients wear a head-mounted display and use 
movement controllers to interact with the virtual envi-
ronment. After 4 weeks of treatment, mirror neuron VR 
rehabilitation (MNVR-Rehabs) has been shown to promote 
neuroplasticity in injured brain areas and lead to functional 
performance improvement. Resting fMRI and Fugl-Meyer 
assessment support the effectiveness of MNVR-Rehabs in 
reorganizing brain and motor function [34].

The results of rehabilitation using VR and robot-assisted 
therapies can be influenced by differences in intensity, dura-
tion, frequency, and personalization. These modalities do not 
impact overall cognitive function, verbal fluency, or attention 
compared to the control groups, but they do lead to signifi-
cant improvements in dynamic balance, executive function, 
memory, motor function, visuospatial ability, and quality of 
life [27, 35]. Balance improvement is closely tied to the visual, 
vestibular, and somatosensory systems, which can be targeted 
through VR therapy to stimulate and practice postural control 
in a safe and controlled environment, ultimately reducing fall 
risk and enhancing cognitive processes [36]. Multidisciplinary 
rehabilitation that includes immersion therapy using robot 
assistance can further improve gait control parameters and 
offer greater control during therapy [26, 28, 32].

Furthermore, the use of robot-assisted therapy has been 
shown to result in improvements in upper limb motor func-
tion, spasticity, and overall functioning, leading to better 
performance of daily activities. Additionally, patients who 
received RAT showed better results in cognitive evalua-
tions compared to the control groups. While VR therapy has 
shown potential for future treatments in stroke rehabilitation, 
it did not show statistically significant differences in cogni-
tive function compared to the control groups [31].

Fig. 3  Setup and scenario of VR-Rehab system: a the patient can 
be seen wearing a head-mounted display (HMD) headset and a 3D 
viewer and monitored by two infrared cameras that track her exact 
position in the virtual world. The patient also has movement control-
lers in the form of purple bands on their arms, equipped with sen-
sors that track their gestures and replicate them graphically within the 
virtual world. b The therapist can monitor the patient’s performance 

through the PC, which displays the virtual world. The illustration 
shows a typical exercise in which the patient must move a virtual ball 
to a virtual basket using their virtual upper limb. c Through immer-
sion in virtual reality and performing these exercises, the patient’s 
mirror neurons are stimulated, which through repetition contributes to 
the formation of new synaptic connections and the overall improve-
ment of their physical condition
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Cell therapies

The brain’s limited repair capacity has led to the devel-
opment of new strategies for enhancing brain plasticity, 
including cell therapy. Stem cells have the potential to 
differentiate into multiple mature and immature cell types, 
and therefore have the ability to promote regeneration in 
damaged brain tissue [37, 38]. Various cell lines have been 
explored for the treatment and rehabilitation of stroke, 
including embryonic stem cells (ESCs), neural stem cells 
(NSCs), bone marrow mononuclear cells (BMMCs), 
mesenchymal stem cells (MSCs), induced pluripotent 
stem cells (iPSCs), and others. Among these, MSCs are 
particularly promising due to their low immunogenicity, 
easy availability, and positive results in animal models [37, 
38]. MSCs are characterized by their adherence to plastic 
matrix-cultures, fibroblast-like morphology, expression of 
surface antigens (CD44, CD90, CD29), and ability to dif-
ferentiate into mesodermal and neural cells [37, 39].

Multiple animal studies have demonstrated that stem 
cell therapy can improve post-stroke functionality by 
stimulating various mechanisms, including neuron 
replacement, trophic stimulus, angiogenesis promotion, 
remyelination induction, and cell protection [38]. Three 
main theories have been proposed to explain MSC-medi-
ated brain repair, including “trans”-differentiation, cell 
fusion, and the paracrine effect, through the release of 
soluble trophic factors [37, 40]. While there is evidence 
for all of these phenomena, it is uncertain how much each 
contributes to rehabilitation and functional improvement 
[40]. Among these, the release of trophic factors seems to 
play a significant role in the MSC-mediated brain repair 
response after stroke. The effects of these factors can be 
classified as angiogenic, neurogenic, protective, synapto-
genic, and prevention of pathological scarring [40, 41]. 
The immune regulation and tolerance provided by these 
soluble factors can prevent and regulate the secondary 
inflammatory response, which can be more harmful than 
protective. In addition, in vitro studies have shown that 
MSCs can increase the expression of angiogenic factors 
such as vascular endothelial growth factor (VEGF) and 
brain-derived neurotrophic factor (BDNF). Exosomes, 
which contain DNAs, RNAs, mRNAs, peptides, and 
other bioactive molecules, have also been found to play a 
crucial role in MSC-mediated brain repair by stimulating 
nerve repair, reducing inflammation, and promoting suc-
cessful remodeling [42]. In fact, the delivery of exosomes 
may be comparable to MSC transplantation.

There have been human studies on stem cell therapy 
[43]. One study published in 2019 focused on the safety 
of intravenous doses of allogeneic ischemia-tolerant mes-
enchymal stem cells and the potential behavioral changes 

after therapy. The study concluded that intravenous trans-
fusion of allogeneic ischemia-tolerant mesenchymal stem 
cells was safe for patients with chronic stroke and signifi-
cant functional deficits, and suggested possible behavioral 
improvements. However, the results should be evaluated 
further with a randomized, placebo-controlled study [44]. 
Another study, called the PISCES-2 study, used direct 
intracerebral implantation of neural stem cells by stere-
otaxic injection to the putamen ipsilateral to the cerebral 
infarct. The study aimed to observe upper limb movement 
improvement, but the clinical enhancement was only seen 
in those with residual upper limb movement at baseline 
[45]. The RECOVER stroke trial used internal carotid infu-
sion of autologous bone marrow-derived aldehyde dehydro-
genase-bright stem cell and found no allergic reactions or 
adverse events related to the cell therapy, but there was no 
significant difference between the intervention and placebo 
groups in the modified Rankin scale (mRS) at 3 months 
[45, 46]. Another randomized clinical trial, called the ISIS-
HERMES study, evaluated the safety, efficacy, and feasibil-
ity of intravenous autologous bone marrow-derived MSCs 
infusion in subacute stroke patients (< 2 weeks after diag-
nosis). The study found no differences in the Barthel Index, 
NIHSS, and mRS, but there were significant improvements 
in motor recovery evidenced with motor-NIHSS and motor-
Fugl-Meyer score. The study also observed that intravenous 
MSCs treatment was safe [47]. These studies indicate that 
we are getting closer to identifying a consistent, secure, and 
efficient method for using cell therapy in stroke recovery 
and rehabilitation, particularly with MSCs. However, there 
is still a need for further research to demonstrate a strong 
effect in actual clinical practice.

Brain stimulation

Non-invasive brain stimulation (NIBS) is a widely used 
technique in many fields, particularly in stroke rehabilita-
tion [48]. Both transcranial magnetic stimulation (TMS) and 
transcranial direct current stimulation (TDCS) have dem-
onstrated improved functional outcomes and responses in 
individuals who have experienced a stroke. These techniques 
have been observed to induce changes in long-term neuro-
plasticity, modulating local and distant networks that under-
lie various clinical symptoms resulting from stroke [49–52].

TMS is a technique that uses electromagnetic induction 
to create an electric current which can modulate the electro-
physiological activity of cells, leading to neuron depolariza-
tion and action potential. The frequency of the pulses can 
alter cortical activity by reducing the permeability of the 
neurovascular complex, thereby improving cerebral perfu-
sion and angiogenesis [53]. TMS can also modulate cortical 
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excitability (CE), with low-frequency TMS (<1 Hz) decreas-
ing excitability (commonly used in the contralateral hemi-
sphere to inhibit activity) and high-frequency TMS (>1 Hz) 
increasing excitability (used in the affected area to stimulate 
activity) [54, 55]. The primary motor cortex, parietal cortex, 
and Broca-Wernicke areas are commonly treated with TMS 
[56–59]. There is a subtype of repetitive TMS called theta 
burst stimulation (TBS), which can enhance in intermittent 
mode (iTBS) or depress in continuous mode (cTBS) and has 
been used in stroke recovery; beyond its original description 
in primary motor areas, there are publications on TBS in the 
cerebellum, given its parietal-frontal connections, showing 
improvement in motor learning [60, 61].

TDCS generates a weak direct electrical constant cur-
rent (1–2 mA) that modulates CE, stimulates neuroplasticity, 
improves local blood flow, and has an effect over nearby 
areas and connectivity; the anode depolarizes the resting 
potential (potentiating CE), while the cathode hyperpolar-
izes it (inhibiting CE) [62–65]. In studies using TDCS, cur-
rent intensities of 1, 1.5, and 2 mA have been applied for a 
duration of 20 min. Anodic TDCS stimulates the affected 
primary motor cortex, while cathodic TDCS stimulates the 
contralateral primary motor cortex; high intensity and long 
duration TDCS have been found to yield better results [66].

TMS has been studied for its potential to aid in post-
stroke rehabilitation in both acute and subacute cases. Vari-
ous testing protocols for motor function, neglect, and aphasia 
have shown better recovery, although the results have been 
contradictory because the symptoms have not been com-
pared between them or at the same time [67–69]. In contrast, 
TDCS has had minimal impact on post-stroke rehabilitation 
in the acute and subacute periods, possibly due to a lack 
of standardization in trials. However, in chronic scenarios, 
TDCS has been found to improve motor function as an adju-
vant to other classical therapies [70, 71].

TMS is generally considered safe, but adverse events such 
as seizures, headache, cervicalgia, dizziness, and local dis-
comfort have been reported in a low proportion of cases. 
Seizures are rare but more common with high-frequency 
TMS [72–74]. On the other hand, TDCS is better tolerated, 
with fewer effects such as skin redness, slight tingling, diz-
ziness, and fatigue, depending on the current dose used [75]. 
In conclusion, NIBS holds promise as an adjuvant therapy 
for future research and possible translational applications 
in clinical scenarios [76], particularly for post-stroke reha-
bilitation [77].

Future and perspectives

Traditionally, the phases of recovery after stroke have been 
divided into acute (first month), functional or subacute (6 
months), and chronic or plateau (first year and thereafter) 

[78]. However, new approaches to stroke rehabilitation could 
be incorporated into these different phases and improve the 
outcomes of standard therapies. For example, cell therapy is 
a promising intervention for the acute and subacute phases, 
and may eventually become part of reperfusion therapies. 
Brain-computer interfaces, transcranial brain stimula-
tion, robot-assisted therapy, and virtual reality can benefit 
not only the subacute phase but also the chronic phase of 
recovery, where classical rehabilitation may be limited and 
the time window for repair is narrow. However, these new 
approaches should be coupled with training and other restor-
ative therapies for the best results.

The availability of rehabilitation services varies across 
countries, and many stroke patients suffer from delays and 
poor quality of rehabilitation services due to limited options 
and other public health barriers. Although the new technolo-
gies described in this paper hold great promise for stroke 
rehabilitation, they are still in the clinical phase of research 
and their availability is limited due to their high cost and 
complexity. However, given the high impact of stroke dis-
ability and associated costs, it is important to continue devel-
oping and implementing new strategies for stroke recovery.

Conclusions

Stroke disability is an area of increasing interest, as recovery 
after stroke involves various neural mechanisms of plasticity 
that can be potentiated with both traditional and new rehabil-
itation therapies. The emerging approaches for stroke reha-
bilitation include brain-computer interfaces, robot-assisted 
therapy coupled with virtual reality, brain stimulation, and 
cell therapy. Although ongoing research is still exploring 
the impact of these modalities on stroke recovery, promising 
results suggest that these new therapies could lead to better 
functional outcomes for stroke patients.
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