Skip to main content
Log in

Quantitative measures of the resting EEG in stroke: a systematic review on clinical correlation and prognostic value

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Object

Quantitative electroencephalography (qEEG) has shown promising results as a predictor of clinical impairment in stroke. We systematically reviewed published papers that focus on qEEG metrics in the resting EEG of patients with mono-hemispheric stroke, to summarize current knowledge and pave the way for future research.

Methods

Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically searched the literature for papers that fitted our inclusion criteria. Rayyan QCRR was used to allow deduplication and collaborative blinded paper review. Due to multiple outcomes and non-homogeneous literature, a scoping review approach was used to address the topic.

Results

Or initial search (PubMed, Embase, Google scholar) yielded 3200 papers. After proper screening, we selected 71 papers that fitted our inclusion criteria and we developed a scoping review thar describes the current state of the art of qEEG in stroke. Notably, among selected papers 53 (74.3%) focused on spectral power; 11 (15.7%) focused on symmetry indexes, 17 (24.3%) on connectivity metrics, while 5 (7.1%) were about other metrics (e.g. detrended fluctuation analysis). Moreover, 42 (58.6%) studies were performed with standard 19 electrodes EEG caps and only a minority used high-definition EEG.

Conclusions

We systematically assessed major findings on qEEG and stroke, evidencing strengths and potential pitfalls of this promising branch of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gorelick PB (2019) The global burden of stroke: persistent and disabling. Lancet Neurol 18:417–418. https://doi.org/10.1016/S1474-4422(19)30030-4

    Article  PubMed  Google Scholar 

  2. Ramon LF, Paul Nicola LM, Gray AM, Pendlebury ST, Bull LM, Welch Sarah JV et al (2013) Population-based study of disability and institutionalization after transient ischemic attack and stroke. Stroke 44:2854–61. https://doi.org/10.1161/STROKEAHA.113.001584

    Article  Google Scholar 

  3. Carrera E, Tononi G (2014) Diaschisis: past, present, future. Brain 137:2408–2422. https://doi.org/10.1093/brain/awu101

    Article  PubMed  Google Scholar 

  4. Kulikova SP, Nikulin VV, Dobrynina LA, Nazarova MA (2017) A possible sensory interpretation of alternate motor fibers relating to structural reserve during stroke recovery. Front Neurol 8:355. https://doi.org/10.3389/fneur.2017.00355

    Article  PubMed  PubMed Central  Google Scholar 

  5. Xu J, Branscheidt M, Schambra H, Steiner L, Widmer M, Diedrichsen J et al (2019) Rethinking interhemispheric imbalance as a target for stroke neurorehabilitation. Ann Neurol 85:502–513. https://doi.org/10.1002/ana.25452

    Article  PubMed  PubMed Central  Google Scholar 

  6. Di Pino G, Pellegrino G, Assenza G, Capone F, Ferreri F, Formica D et al (2014) Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat Rev Neurol 10:597–608. https://doi.org/10.1038/nrneurol.2014.162

    Article  PubMed  Google Scholar 

  7. Stinear CM, Lang CE, Zeiler S, Byblow WD (2020) Advances and challenges in stroke rehabilitation. Lancet Neurol 19:348–360. https://doi.org/10.1016/S1474-4422(19)30415-6

    Article  CAS  PubMed  Google Scholar 

  8. Di Pino G, Di Lazzaro V (2020) The balance recovery bimodal model in stroke patients between evidence and speculation: do recent studies support it? Clin Neurophysiol. https://doi.org/10.1016/j.clinph.2020.07.004

    Article  PubMed  Google Scholar 

  9. Pernet CR, Martinez-Cancino R, Truong D, Makeig S, Delorme A. (2021) From BIDS-formatted EEG data to sensor-space group results: a fully reproducible workflow with EEGLAB and LIMO EEG. Front Neurosci 14. https://doi.org/10.3389/fnins.2020.610388

  10. Bigdely-Shamlo N, Mullen T, Kothe C, Su K-M, Robbins KA. (2015) The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Front Neuroinformatics. 9. https://doi.org/10.3389/fninf.2015.00016.

  11. Roy Y, Banville H, Albuquerque I, Gramfort A, Falk TH, Faubert J (2019) Deep learning-based electroencephalography analysis: a systematic review. J Neural Eng 16:051001. https://doi.org/10.1088/1741-2552/ab260c

    Article  PubMed  Google Scholar 

  12. Finnigan S, van Putten MJAM (2013) EEG in ischaemic stroke: quantitative EEG can uniquely inform (sub-)acute prognoses and clinical management. Clin Neurophysiol 124:10–19. https://doi.org/10.1016/j.clinph.2012.07.003

    Article  PubMed  Google Scholar 

  13. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cooke A, Smith D, Booth A (2012) Beyond PICO: The SPIDER tool for qualitative evidence synthesis. Qual Health Res 22:1435–1443. https://doi.org/10.1177/1049732312452938

    Article  PubMed  Google Scholar 

  15. Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928. https://doi.org/10.1136/bmj.d5928

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bramer WM, Rethlefsen ML, Kleijnen J, Franco OH (2017) Optimal database combinations for literature searches in systematic reviews: a prospective exploratory study. Syst Rev 6:245. https://doi.org/10.1186/s13643-017-0644-y

  17. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A (2016) Rayyan—a web and mobile app for systematic reviews. Syst Rev 5:210. https://doi.org/10.1186/s13643-016-0384-4

  18. Jiang M, Su Y, Liu G, Chen W, Gao D (2019) Predicting the non-survival outcome of large hemispheric infarction patients via quantitative electroencephalography: superiority to visual electroencephalography and the Glasgow Coma Scale. Neurosci Lett 706:88–92. https://doi.org/10.1016/j.neulet.2019.05.007

    Article  CAS  PubMed  Google Scholar 

  19. Sheorajpanday RVA, Nagels G, Weeren AJTM, De Surgeloose D, De Deyn PP. (2010) Additional value of quantitative EEG in acute anterior circulation syndrome of presumed ischemic origin. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 121:1719–25https://doi.org/10.1016/j.clinph.2009.10.037

  20. Huang H, Niu Z, Liu G, Jiang M, Jia Q, Li X et al (2020) Early consciousness disorder in acute large hemispheric infarction: an analysis based on quantitative EEG and brain network characteristics. Neurocrit Care. https://doi.org/10.1007/s12028-020-01051-w

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kasner SE (2006) Clinical interpretation and use of stroke scales. Lancet Neurol 5:603–612. https://doi.org/10.1016/S1474-4422(06)70495-1

    Article  PubMed  Google Scholar 

  22. Cuspineda E, Machado C, Galán L, Aubert E, Alvarez MA, Llopis F et al (2007) QEEG prognostic value in acute stroke. Clin EEG Neurosci 38:155–160

    Article  CAS  PubMed  Google Scholar 

  23. Sheorajpanday RVA, Nagels G, Weeren AJTM, van Putten MJAM, De Deyn PP. (2011) Quantitative EEG in ischemic stroke: correlation with functional status after 6 months. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 122:874–83https://doi.org/10.1016/j.clinph.2010.07.028

  24. Xin X, Gao Y, Zhang H, Cao K, Shi Y (2012) Correlation of continuous electroencephalogram with clinical assessment scores in acute stroke patients. Neurosci Bull 28:611–617. https://doi.org/10.1007/s12264-012-1265-z

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ajčević M, Furlanis G, Naccarato M, Miladinović A, Buoite Stella A, Caruso P et al (2021) Hyper-acute EEG alterations predict functional and morphological outcomes in thrombolysis-treated ischemic stroke: a wireless EEG study. Med Biol Eng Comput 59:121–129. https://doi.org/10.1007/s11517-020-02280-z

    Article  PubMed  Google Scholar 

  26. Yuasa T, Maeda A, Higuchi S, Motohashi Y (2001) Quantitative EEG data and comprehensive ADL (activities of daily living) evaluation of stroke survivors residing in the community. J Physiol Anthropol Appl Human Sci 20:37–41. https://doi.org/10.2114/jpa.20.37

    Article  CAS  PubMed  Google Scholar 

  27. Vecchio F, Tomino C, Miraglia F, Iodice F, Erra C, Di Iorio R et al (2019) Cortical connectivity from EEG data in acute stroke: a study via graph theory as a potential biomarker for functional recovery. Int J Psychophysiol 146:133–138. https://doi.org/10.1016/j.ijpsycho.2019.09.012

    Article  PubMed  Google Scholar 

  28. Capon AP. (1996) Quantitative EEG with brain mapping in strokes: is it useful for prognosis?. 9:77–82.

  29. Giaquinto S, Cobianchi A, Macera F, Nolfe G (1994) EEG recordings in the course of recovery from stroke 25:2204–2209

    CAS  PubMed  Google Scholar 

  30. Fanciullacci C, Bertolucci F, Lamola G, Panarese A, Artoni F, Micera S et al (2017) Delta power is higher and more symmetrical in ischemic stroke patients with cortical involvement. Front Hum Neurosci 11:385

    Article  PubMed  PubMed Central  Google Scholar 

  31. van Putten MJAM, Tavy DLJ (2004) Continuous quantitative EEG monitoring in hemispheric stroke patients using the brain symmetry index. Stroke 35:2489–2492. https://doi.org/10.1161/01.STR.0000144649.49861.1d

    Article  PubMed  Google Scholar 

  32. Sheorajpanday RVA, Nagels G, Weeren AJTM, De Deyn PP. (2011) Quantitative EEG in ischemic stroke: correlation with infarct volume and functional status in posterior circulation and lacunar syndromes. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 122:884–90. https://doi.org/10.1016/j.clinph.2010.08.020.

  33. Finnigan SP, Rose SE, Walsh M, Griffin M, Janke AL, McMahon KL et al (2004) Correlation of quantitative EEG in acute ischemic stroke with 30-day NIHSS score: comparison with diffusion and perfusion MRI. Stroke 35:899–903. https://doi.org/10.1161/01.STR.0000122622.73916.d2

    Article  PubMed  Google Scholar 

  34. Zappasodi F, Tecchio F, Marzetti L, Pizzella V, Di Lazzaro V, Assenza G (2019) Longitudinal quantitative electroencephalographic study in mono-hemispheric stroke patients. Neural Regen Res 14:1237–1246. https://doi.org/10.4103/1673-5374.251331

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ajčević M, Furlanis G, Miladinović A, Buoite Stella A, Caruso P, Ukmar M et al (2021) Early EEG alterations correlate with CTP hypoperfused volumes and neurological deficit: a wireless EEG study in hyper-acute ischemic stroke. Ann Biomed Eng. https://doi.org/10.1007/s10439-021-02735-w

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ajčević M, Furlanis G, Stragapede L, Ridolfi M, Caruso P, Naccarato M, et al. (2020) Brain oscillatory activity and neurological deficit in hyper-acute ischemic stroke: correlation of EEG changes with NIHSS. In: Henriques J, Neves N, de Carvalho P (eds) XV Mediterranean conference on medical and biological engineering and computing – MEDICON 2019. MEDICON 2019. IFMBE Proceedings, vol 76. Springer, Cham. 133–41. https://doi.org/10.1007/978-3-030-31635-8_16.

  37. Finnigan S, Wong A, Read S (2016) Defining abnormal slow EEG activity in acute ischaemic stroke: delta/alpha ratio as an optimal QEEG index. Clin Neurophysiol 127:1452–1459. https://doi.org/10.1016/j.clinph.2015.07.014

    Article  PubMed  Google Scholar 

  38. Finnigan SP, Walsh M, Rose SE, Chalk JB (2007) Quantitative EEG indices of sub-acute ischaemic stroke correlate with clinical outcomes. Clin Neurophysiol 118:2525–2532. https://doi.org/10.1016/j.clinph.2007.07.021

    Article  PubMed  Google Scholar 

  39. Saes M, Zandvliet SB, Andringa AS, Daffertshofer A, Twisk JWR, Meskers CGM et al (2020) Is resting-state EEG longitudinally associated with recovery of clinical neurological impairments early poststroke? A prospective cohort study. Neurorehabil Neural Repair 34:389–402. https://doi.org/10.1177/1545968320905797

    Article  PubMed  Google Scholar 

  40. Assenza G, Zappasodi F, Pasqualetti P, Vernieri F, Tecchio F (2013) A contralesional EEG power increase mediated by interhemispheric disconnection provides negative prognosis in acute stroke. Restor Neurol Neurosci 31:177–188. https://doi.org/10.3233/RNN-120244

    Article  CAS  PubMed  Google Scholar 

  41. Lanzone J, Colombo MA, Sarasso S, Zappasodi F, Rosanova M, Massimini M et al (2022) EEG spectral exponent as a synthetic index for the longitudinal assessment of stroke recovery. Clin Neurophysiol. https://doi.org/10.1016/j.clinph.2022.02.022

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kawano T, Hattori N, Uno Y, Kitajo K, Hatakenaka M, Yagura H et al (2017) Large-scale phase synchrony reflects clinical status after stroke: an EEG study. Neurorehabil Neural Repair 31:561–570. https://doi.org/10.1177/1545968317697031

    Article  PubMed  Google Scholar 

  43. Wu W, Sun J, Jin Z, Guo X, Qiu Y, Zhu Y et al (2011) Impaired neuronal synchrony after focal ischemic stroke in elderly patients 122:21–26

    Google Scholar 

  44. Zappasodi F, Croce P, Giordani A, Assenza G, Giannantoni NM, Profice P et al (2017) Prognostic value of EEG microstates in acute stroke. Brain Topogr 30:698–710. https://doi.org/10.1007/s10548-017-0572-0

    Article  PubMed  Google Scholar 

  45. Singer B, Garcia-Vega J (2017) The Fugl-Meyer upper extremity scale. J Physiother 63:53. https://doi.org/10.1016/j.jphys.2016.08.010

    Article  PubMed  Google Scholar 

  46. Chen C-C, Lee S-H, Wang W-J, Lin Y-C, Su M-C (2017) EEG-based motor network biomarkers for identifying target patients with stroke for upper limb rehabilitation and its construct validity. PloS One 12(6):e0178822. https://doi.org/10.1371/journal.pone.0178822.

  47. Wu J, Quinlan EB, Dodakian L, McKenzie A, Kathuria N, Zhou RJ et al (2015) Connectivity measures are robust biomarkers of cortical function and plasticity after stroke. Brain 138:2359–2369. https://doi.org/10.1093/brain/awv156

    Article  PubMed  PubMed Central  Google Scholar 

  48. Philips GR, Daly JJ, Príncipe JC (2017) Topographical measures of functional connectivity as biomarkers for post-stroke motor recovery. J Neuroengineering Rehabil 14:67. https://doi.org/10.1186/s12984-017-0277-3

    Article  Google Scholar 

  49. Riahi N, Vakorin VA, Menon C (2020) Estimating Fugl-Meyer upper extremity motor score from functional-connectivity measures. IEEE Trans Neural Syst Rehabil Eng 28:860–868

    Article  PubMed  Google Scholar 

  50. Agius Anastasi A, Falzon O, Camilleri K, Vella M, Muscat R (2017) Brain symmetry index in healthy and stroke patients for assessment and prognosis. Stroke Res Treat 2017:8276136. https://doi.org/10.1155/2017/8276136

    Article  PubMed  PubMed Central  Google Scholar 

  51. Saes M, Meskers CGM, Daffertshofer A, van Wegen EEH, Kwakkel G (2021) Are early measured resting-state EEG parameters predictive for upper limb motor impairment six months poststroke? Clin Neurophysiol 132:56–62. https://doi.org/10.1016/j.clinph.2020.09.031

    Article  PubMed  Google Scholar 

  52. Saes M, Meskers CGM, Daffertshofer A, de Munck JC, Kwakkel G, van Wegen EEH (2019) How does upper extremity Fugl-Meyer motor score relate to resting-state EEG in chronic stroke? A power spectral density analysis. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 130:856–862. https://doi.org/10.1016/j.clinph.2019.01.007

    Article  CAS  Google Scholar 

  53. Szelies B, Mielke R, Kessler J, Heiss WD (2002) Prognostic relevance of quantitative topographical EEG in patients with poststroke aphasia. Brain Lang 82:87–94

    Article  CAS  PubMed  Google Scholar 

  54. Iyer KK, Angwin AJ, Van Hees S, McMahon KL, Breakspear M, Copland DA (2020) Alterations to dual stream connectivity predicts response to aphasia therapy following stroke. Cortex J Devoted Study Nerv Syst Behav 125:30–43. https://doi.org/10.1016/j.cortex.2019.12.017

    Article  Google Scholar 

  55. Schleiger E, Sheikh N, Rowland T, Wong A, Read S, Finnigan S (2014) Frontal EEG delta/alpha ratio and screening for post-stroke cognitive deficits: the power of four electrodes. Int J Psychophysiol Off J Int Organ Psychophysiol 94:19–24

    Google Scholar 

  56. Song Y, Zang D-W, Jin Y-Y, Wang Z-J, Ni H-Y, Yin J-Z et al (2015) Background rhythm frequency and theta power of quantitative EEG analysis: predictive biomarkers for cognitive impairment post-cerebral infarcts. Clin EEG Neurosci 46:142–146. https://doi.org/10.1177/1550059413517492

    Article  PubMed  Google Scholar 

  57. Schleiger E, Wong A, Read S, Rowland T, Finnigan S (2017) Poststroke QEEG informs early prognostication of cognitive impairment. Psychophysiology 54:301–309

    Article  PubMed  Google Scholar 

  58. Romeo Z, Mantini D, Durgoni E, Passarini L, Meneghello F, Zorzi M (2021) Electrophysiological signatures of resting state networks predict cognitive deficits in stroke. Cortex 138:59–71. https://doi.org/10.1016/j.cortex.2021.01.019

    Article  PubMed  Google Scholar 

  59. Demeurisse G, Hublet C, Paternot J (1998) Quantitative EEG in subcortical neglect. Neurophysiol Clin Clin Neurophysiol 28:259–265. https://doi.org/10.1016/S0987-7053(98)80116-0

    Article  CAS  Google Scholar 

  60. Stinear CM, Byblow WD, Ackerley SJ, Smith M-C, Borges VM, Barber PA (2017) PREP2: A biomarker-based algorithm for predicting upper limb function after stroke. Ann Clin Transl Neurol 4:811–820. https://doi.org/10.1002/acn3.488

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chiarelli AM, Croce P, Assenza G, Merla A, Granata G, Giannantoni NM et al (2020) Electroencephalography-derived prognosis of functional recovery in acute stroke through machine learning approaches. Int J Neural Syst 30:2050067. https://doi.org/10.1142/S0129065720500677

    Article  PubMed  Google Scholar 

  62. Gao R (2016) Interpreting the electrophysiological power spectrum. J Neurophysiol 115:628–630. https://doi.org/10.1152/jn.00722.2015

    Article  PubMed  Google Scholar 

  63. Fanciullacci C, Panarese A, Spina V, Lassi M, Mazzoni A, Artoni F et al (2021) Connectivity measures differentiate cortical and subcortical sub-acute ischemic stroke patients. Front Hum Neurosci 15:669915. https://doi.org/10.3389/fnhum.2021.669915

    Article  PubMed  PubMed Central  Google Scholar 

  64. Miraglia F, Tomino C, Vecchio F, Alù F, Orticoni A, Judica E et al (2021) Assessing the dependence of the number of EEG channels in the brain networks’ modulations. Brain Res Bull 167:33–36. https://doi.org/10.1016/j.brainresbull.2020.11.014

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lanzone.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval and informed consent

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Supplementary file2 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanzone, J., Motolese, F., Ricci, L. et al. Quantitative measures of the resting EEG in stroke: a systematic review on clinical correlation and prognostic value. Neurol Sci 44, 4247–4261 (2023). https://doi.org/10.1007/s10072-023-06981-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06981-9

Keywords

Navigation