Skip to main content

Advertisement

Log in

Uric acid levels and their association with vascular dementia and Parkinson’s disease dementia: a meta-analysis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Objectives

To explore the association between uric acid (UA) levels and vascular dementia (VaD) and Parkinson’s disease dementia (PDD), a meta-analysis was conducted.

Methods

The relevant studies were identified by searching PubMed, Embase, Web of Science, and Cochrane Collaboration Database up to May 2022. Pooled analysis, sensitivity analysis, and publication bias examination were all conducted. All analyses were performed by using STATA 16.

Results

Twelve studies with a total of 2097 subjects were included. The pooled analysis showed that UA levels were not associated with VaD (WMD =  - 10.99 μmol/L, 95% CI (- 48.05, 26.07), P = 0.561) but were associated with PDD (WMD =  - 25.22 μmol/L, 95% CI (- 43.47, - 6.97), P = 0.007). The statistical stability and reliability were evaluated using sensitivity analysis and publication bias outcomes.

Conclusion

UA levels are associated with PDD but not with VaD. This study will help to strengthen our knowledge of the pathophysiologies of VaD and PDD, and promote the development of prevention and treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article. Further enquiries can be directed to the corresponding author.

References

  1. Long JM, Day GS (2018) Autoimmune dementia. Semin Neurol 38(3):303–315. https://doi.org/10.1055/s-0038-1660480

    Article  PubMed  Google Scholar 

  2. Achterberg W, Lautenbacher S, Husebo B et al (2019) Pain in dementia. Pain Rep 5(1):e803. https://doi.org/10.1097/PR9.0000000000000803

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gale SA, Acar D, Daffner KR (2018) Dementia. Am J Med 131(10):1161–1169. https://doi.org/10.1016/j.amjmed.2018.01.022

    Article  PubMed  Google Scholar 

  4. Flores-Cordero JA, Pérez-Pérez A, Jiménez-Cortegana C et al (2022) Obesity as a risk factor for dementia and Alzheimer’s disease: the role of leptin. Int J Mol Sci 23(9):5202. https://doi.org/10.3390/ijms23095202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gorelick PB, Scuteri A, Black SE et al (2011) Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American heart association/American stroke association. Stroke 42(9):2672–2713. https://doi.org/10.1161/STR.0b013e3182299496

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tariq S, Barber PA (2018) Dementia risk and prevention by targeting modifiable vascular risk factors. J Neurochem 144(5):565–581. https://doi.org/10.1111/jnc.14132

    Article  CAS  PubMed  Google Scholar 

  7. Ilari S, Russo P, Proietti S et al (2022) DNA damage in dementia: evidence from patients affected by severe Chronic Obstructive Pulmonary Disease (COPD) and meta-analysis of most recent literature. Mutat Res Genet Toxicol Environ Mutagen 878:503499. https://doi.org/10.1016/j.mrgentox.2022.503499

    Article  CAS  PubMed  Google Scholar 

  8. Loh KP, Huang SH, De Silva R et al (2006) Oxidative stress: apoptosis in neuronal injury. Curr Alzheimer Res 3(4):327–337. https://doi.org/10.2174/156720506778249515

    Article  CAS  PubMed  Google Scholar 

  9. Castagne V, Gautschi M, Lefevre K et al (1999) Relationships between neuronal death and the cellular redox status. Focus on the developing nervous system. Prog Neurobio 59(4):397–423. https://doi.org/10.1016/s0301-0082(99)00012-x

    Article  CAS  Google Scholar 

  10. Hou X, Xu H, Chen W et al (2020) Neuroprotective effect of dimethyl fumarate on cognitive impairment induced by ischemic stroke. Ann Transl Med 8(6):375. https://doi.org/10.21037/atm.2020.02.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Annanmaki T, Pohja M, Parviainen T et al (2011) Uric acid and cognition in Parkinson’s disease: a follow-up study. Parkinsonism Relat Disord 17:333–337. https://doi.org/10.1016/j.parkreldis.2011.01.013

    Article  PubMed  Google Scholar 

  12. Becker BF (1993) Towards the physiological function of uric acid. Free Radic Biol Med 14(6):615–631. https://doi.org/10.1016/0891-5849(93)90143-i

    Article  CAS  PubMed  Google Scholar 

  13. Squadrito GL, Cueto R, Splenser AE et al (2000) Reaction of uric acid with peroxynitrite and implications for the mechanism of neuroprotection by uric acid. Arch Biochem Biophys 376(2):333–337. https://doi.org/10.1006/abbi.2000.1721

    Article  CAS  PubMed  Google Scholar 

  14. Santos CX, Anjos EI, Augusto O (1999) Uric acid oxidation by peroxynitrite: multiple reactions, free radical formation, and amplification of lipid oxidation. Arch Biochem Biophys 372(2):285–294. https://doi.org/10.1006/abbi.1999.1491

    Article  CAS  PubMed  Google Scholar 

  15. Seet RC, Kasiman K, Gruber J et al (2010) Is uric acid protective or deleterious in acute ischemic stroke? A prospective cohort study. Atherosclerosis 209(1):215–219. https://doi.org/10.1016/j.atherosclerosis.2009.08.012

    Article  CAS  PubMed  Google Scholar 

  16. Wan X, Wang W, Liu J (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14:135. https://doi.org/10.1186/1471-2288-14-135

    Article  PubMed  PubMed Central  Google Scholar 

  17. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605. https://doi.org/10.1007/s10654-010-9491-z

    Article  PubMed  Google Scholar 

  18. Higgins JP, Thompson SG, Deeks JJ et al (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  19. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50(4):1088–1101

    Article  CAS  PubMed  Google Scholar 

  20. Egger M, Davey Smith G, Schneider M et al (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634. https://doi.org/10.1136/bmj.315.7109.629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Serdarevic N, Stanciu AE, Begic L et al (2020) Serum uric acid concentration in patients with cerebrovascular disease (ischemic stroke and vascular dementia). Med Arch 74(2):95–99. https://doi.org/10.5455/medarh.2020.74.95-99

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu H, Reynolds GP, Wei X (2020) Uric acid and high-density lipoprotein cholesterol are differently associated with Alzheimer’s disease and vascular dementia. J Alzheimers Dis 73(3):1125–1131. https://doi.org/10.3233/JAD-191111

    Article  CAS  PubMed  Google Scholar 

  23. Tuven B, Soysal P, Unutmaz G et al (2017) Uric acid may be protective against cognitive impairment in older adults, but only in those without cardiovascular risk factors. Exp Gerontol 89:15–19. https://doi.org/10.1016/j.exger.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  24. Xu Y, Wang Q, Cui R et al (2016) Uric acid is associated with vascular dementia in Chinese population. Brain Behav 7(2):e00617. https://doi.org/10.1002/brb3.617

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hatanaka H, Hanyu H, Fukasawa R et al (2015) Differences in peripheral oxidative stress markers in Alzheimer’s disease, vascular dementia and mixed dementia patients. Geriatr Gerontol Int 15(1):53–58. https://doi.org/10.1111/ggi.12659

    Article  PubMed  Google Scholar 

  26. Cervellati C, Romani A, Seripa D et al (2014) Oxidative balance, homocysteine, and uric acid levels in older patients with late onset Alzheimer’s disease or vascular dementia. J Neurol Sci 337(1–2):156–161. https://doi.org/10.1016/j.jns.2013.11.041

    Article  CAS  PubMed  Google Scholar 

  27. González-Aramburu I, Sánchez-Juan P, Sierra M et al (2014) Serum uric acid and risk of dementia in Parkinson’s disease. Parkinsonism Relat Disord 20(6):637–639. https://doi.org/10.1016/j.parkreldis.2014.02.023

    Article  PubMed  Google Scholar 

  28. Maetzler W, Stapf AK, Schulte C et al (2011) Serum and cerebrospinal fluid uric acid levels in lewy body disorders: associations with disease occurrence and amyloid-β pathway. J Alzheimers Dis 27(1):119–126. https://doi.org/10.3233/JAD-2011-110587

    Article  CAS  PubMed  Google Scholar 

  29. Polidori MC, Mattioli P, Aldred S et al (2004) Plasma antioxidant status, immunoglobulin g oxidation and lipid peroxidation in demented patients: relevance to Alzheimer disease and vascular dementia. Dement Geriatr Cogn Disord 18(3–4):265–270. https://doi.org/10.1159/000080027

    Article  CAS  PubMed  Google Scholar 

  30. Foy CJ, Passmore AP, Vahidassr MD et al (1999) Plasma chain-breaking antioxidants in Alzheimer’s disease, vascular dementia and Parkinson’s disease. QJM 92(1):39–45. https://doi.org/10.1093/qjmed/92.1.39

    Article  CAS  PubMed  Google Scholar 

  31. Tohgi H, Abe T, Takahashi S et al (1993) The urate and xanthine concentrations in the cerebrospinal fluid in patients with vascular dementia of the Binswanger type, Alzheimer type dementia, and Parkinson’s disease. J Neural Transm Park Dis Dement Sect 6(2):119–126. https://doi.org/10.1007/BF02261005

    Article  CAS  PubMed  Google Scholar 

  32. Maesaka JK, Wolf-Klein G, Piccione JM et al (1993) Hypouricemia, abnormal renal tubular urate transport, and plasma natriuretic factor(s) in patients with Alzheimer’s disease. J Am Geriatr Soc 41(5):501–506. https://doi.org/10.1111/j.1532-5415.1993.tb01885.x

    Article  CAS  PubMed  Google Scholar 

  33. Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703(2):93–109. https://doi.org/10.1016/j.bbapap.2004.08.007

    Article  CAS  PubMed  Google Scholar 

  34. Shao A, Lin D, Wang L et al (2020) Oxidative stress at the crossroads of aging, stroke and depression. Aging Dis 11(6):1537–1566. https://doi.org/10.14336/AD.2020.0225

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yu ZF, Bruce-Keller AJ, Goodman Y et al (1998) Uric acid protects neurons against excitotoxic and metabolic insults in cell culture, and against focal ischemic brain injury in vivo. J Neurosci Res 53(5):613–625. https://doi.org/10.1002/(SICI)1097-4547(19980901)53:5%3c613::AID-JNR11%3e3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

  36. Chamorro A, Obach V, Cervera A et al (2002) Prognostic significance of uric acid serum concentration in patients with acute ischemic stroke. Stroke 33(4):1048–1052. https://doi.org/10.1161/hs0402.105927

    Article  CAS  PubMed  Google Scholar 

  37. Borghi C, Rosei EA, Bardin T et al (2015) Serum uric acid and the risk of cardiovascular and renal disease. J Hypertens 33(9):1729–1741. https://doi.org/10.1097/HJH.0000000000000701

    Article  CAS  PubMed  Google Scholar 

  38. Raffaitin C, Gin H, Empana JP et al (2009) Metabolic syndrome and risk for incident Alzheimer’s disease or vascular dementia: the Three-City Study. Diabetes Care 32(1):169–174. https://doi.org/10.2337/dc08-0272

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vannorsdall TD, Jinnah HA, Gordon B et al (2008) Cerebral ischemia mediates the effect of serum uric acid on cognitive function. Stroke 39(12):3418–3420. https://doi.org/10.1161/STROKEAHA.108.521591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paganoni S, Schwarzschild MA (2017) Urate as a marker of risk and progression of neurodegenerative disease. Neurotherapeutics 14(1):148–153. https://doi.org/10.1007/s13311-016-0497-4

    Article  CAS  PubMed  Google Scholar 

  41. Beydoun MA, Beydoun HA, Gamaldo AA et al (2014) Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC Public Health 14:643. https://doi.org/10.1186/1471-2458-14-643

    Article  PubMed  PubMed Central  Google Scholar 

  42. Moccia M, Picillo M, Erro R et al (2015) Presence and progression of non-motor symptoms in relation to uric acid in de novo Parkinson’s disease. Eur J Neurol 22(1):93–98. https://doi.org/10.1111/ene.12533

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are appreciative of all the participants in this study.

Author information

Authors and Affiliations

Authors

Contributions

Qian Li wrote the first draft, searched the literature, and extracted the data. Kaiwen Cen and Ying Cui searched the literature and extracted the data. Xu Feng conducted the data analysis. Xiaowen Hou designed the study and revised the manuscript.

Corresponding author

Correspondence to Xiaowen Hou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Cen, K., Cui, Y. et al. Uric acid levels and their association with vascular dementia and Parkinson’s disease dementia: a meta-analysis. Neurol Sci 44, 2017–2024 (2023). https://doi.org/10.1007/s10072-023-06620-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06620-3

Keywords

Navigation