Skip to main content

Advertisement

Log in

The alterations of spontaneous neural activities and white matter microstructures in anti-N-methyl-D-aspartate receptor encephalitis: a resting-state fMRI and DTI study

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background and purpose

Limited studies had jointly excavated the structural and functional changes in cognitive deficit in anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis patients. We aimed to explore these changes in anti-NMDAR patients and their effect on cognitive function.

Methods

Twenty-three patients and 25 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging, diffusion tensor imaging scanning, and neuroethology tests. The significantly differentiated brain regions via the fractional amplitude of low-frequency fluctuation (fALFF) were defined as regions of interest (ROIs). Granger causal, functional connectivity, and tract-based spatial statistical analyses were applied to explore the functional changes in ROIs and assess the structural changes.

Results

HCs outperformed patients in Montreal Cognitive Assessment. The fALFF values of right gyrus rectus (RGR) in patients were significantly reduced. The fractional anisotropy (FA) values of WM in the genu of corpus callosum and right superior corona radiata were significantly decreased and positively associated with neuroethology testing scores. The Granger causal connectivity (GCC) from the left inferior parietal lobule to RGR was significantly decreased and positively associated with inherent vigilance. Indicated by the multiple linear regression result, decreased FA value of the right superior corona radiata might be a reliable marker that reflects the cognitive impairment.

Conclusions

Significant changes in spontaneous neural activities, GCC, and WM structures in anti-NMDAR encephalitis were reported. These findings promote the understanding of underlying relationships between cerebral function, structural network alterations, and cognitive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Available upon request.

References

  1. Graus F, Titulaer MJ, Balu R et al (2016) A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 15(4):391–404. https://doi.org/10.1016/S1474-4422(15)00401-9

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nosadini M, Eyre M, Molteni E et al (2021) Use and safety of immunotherapeutic management of N-methyl-d-aspartate receptor antibody encephalitis: a meta-analysis. JAMA Neurol 78(11):1333–1344. https://doi.org/10.1001/jamaneurol.2021.3188

    Article  PubMed  Google Scholar 

  3. Venkatesan A, Michael BD, Probasco JC, Geocadin RG, Solomon T (2019) Acute encephalitis in immunocompetent adults. Lancet 393(10172):702–716. https://doi.org/10.1016/S0140-6736(18)32526-1

    Article  PubMed  Google Scholar 

  4. Bacchi S, Franke K, Wewegama D, Needham E, Patel S, Menon D (2018) Magnetic resonance imaging and positron emission tomography in anti-NMDA receptor encephalitis: a systematic review. J Clin Neurosci 52:54–59. https://doi.org/10.1016/j.jocn.2018.03.026

    Article  PubMed  Google Scholar 

  5. Liang Y, Cai L, Zhou X, Huang H, Zheng J (2020) Voxel-based analysis and multivariate pattern analysis of diffusion tensor imaging study in anti-NMDA receptor encephalitis. Neuroradiology 62(2):231–239. https://doi.org/10.1007/s00234-019-02321-x

    Article  PubMed  Google Scholar 

  6. Gibson LL, McKeever A, Coutinho E, Finke C, Pollak TA (2020) Cognitive impact of neuronal antibodies: encephalitis and beyond. Transl Psychiatry 10(1):304. https://doi.org/10.1038/s41398-020-00989-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peer M, Pruss H, Ben-Dayan I, Paul F, Arzy S, Finke C (2017) Functional connectivity of large-scale brain networks in patients with anti-NMDA receptor encephalitis: an observational study. Lancet Psychiatry 4(10):768–774. https://doi.org/10.1016/S2215-0366(17)30330-9

    Article  PubMed  Google Scholar 

  8. Noroozi A, Rezghi M (2020) A tensor-based framework for rs-fMRI classification and functional connectivity construction. Front Neuroinform 14:581897. https://doi.org/10.3389/fninf.2020.581897

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hao L, Sheng Z, Ruijun W, Kun HZ, Peng Z, Yu H (2020) Altered Granger causality connectivity within motor-related regions of patients with Parkinson’s disease: a resting-state fMRI study. Neuroradiology 62:63–69. https://doi.org/10.1007/s00234-019-02311-z

    Article  PubMed  Google Scholar 

  10. Li C, Pang X, Shi K, Long Q, Liu J, Zheng J (2021) The insula is a hub for functional brain network in patients with anti-n-methyl-d-aspartate receptor encephalitis. Front Neurosci 15:642390. https://doi.org/10.3389/fnins.2021.642390

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cai L, Liang Y, Huang H, Zhou X, Zheng J (2020) Cerebral functional activity and connectivity changes in anti-N-methyl-D-aspartate receptor encephalitis: a resting-state fMRI study. Neuroimage Clin 25:102189. https://doi.org/10.1016/j.nicl.2020.102189

    Article  PubMed  PubMed Central  Google Scholar 

  12. Finke C, Kopp UA, Scheel M et al (2013) Functional and structural brain changes in anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol 74(2):284–296. https://doi.org/10.1002/ana.23932

    Article  CAS  PubMed  Google Scholar 

  13. Fan J, Gu X, Guise KG et al (2009) Testing the behavioral interaction and integration of attentional networks. Brain Cogn 70(2):209–220. https://doi.org/10.1016/j.bandc.2009.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zou QH, Zhu CZ, Yang Y et al (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Method 172(1):137–141. https://doi.org/10.1016/j.jneumeth.2008.04.012

    Article  Google Scholar 

  15. Xia M, Wang J, He Y (2013) BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS One 8(7):e68910. https://doi.org/10.1371/journal.pone.0068910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cui Z, Zhong S, Xu P, He Y, Gong G (2013) PANDA: a pipeline toolbox for analyzing brain diffusion images. Front Hum Neurosci 7:42. https://doi.org/10.3389/fnhum.2013.00042

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sakurai T, Gamo NJ (2019) Cognitive functions associated with developing prefrontal cortex during adolescence and developmental neuropsychiatric disorders. Neurobiol Dis 131:104322. https://doi.org/10.1016/j.nbd.2018.11.007

    Article  PubMed  Google Scholar 

  18. Dalmau J (2016) NMDA receptor encephalitis and other antibody-mediated disorders of the synapse: the 2016 Cotzias Lecture. Neurology 87(23):2471–2482. https://doi.org/10.1212/WNL.0000000000003414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Breukelaar IA, Antees C, Grieve SM et al (2017) Cognitive control network anatomy correlates with neurocognitive behavior: a longitudinal study. Hum Brain Mapp 38(2):631–643. https://doi.org/10.1002/hbm.23401

    Article  PubMed  Google Scholar 

  20. Bi XA, Xu Q, Luo X, Sun Q, Wang Z (2018) Weighted random support vector machine clusters analysis of resting-state fMRI in mild cognitive impairment. Front Psychiatry 9:340. https://doi.org/10.3389/fpsyt.2018.00340

    Article  PubMed  PubMed Central  Google Scholar 

  21. Qiu A, Mori S, Miller MI (2015) Diffusion tensor imaging for understanding brain development in early life. Annu Rev Psychol 66:853–876. https://doi.org/10.1146/annurev-psych-010814-015340

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gao S, Ming Y, Wang J et al (2020) Enhanced prefrontal regional homogeneity and its correlations with cognitive dysfunction/psychopathology in patients with first-diagnosed and drug-naive schizophrenia. Front Psychiatry 11:580570. https://doi.org/10.3389/fpsyt.2020.580570

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dalmau J, Armangue T, Planaguma J et al (2019) An update on anti-NMDA receptor encephalitis for neurologists and psychiatrists: mechanisms and models. Lancet Neurol 18(11):1045–1057. https://doi.org/10.1016/S1474-4422(19)30244-3

    Article  CAS  PubMed  Google Scholar 

  24. Tong J, Zhou Y, Huang J et al (2021) N-methyl-D-aspartate receptor antibody and white matter deficits in schizophrenia treatment-resistance. Schizophr Bull 47(5):1463–1472. https://doi.org/10.1093/schbul/sbab003

    Article  PubMed  PubMed Central  Google Scholar 

  25. Phillips OR, Joshi SH, Narr KL et al (2018) Superficial white matter damage in anti-NMDA receptor encephalitis. J Neurol Neurosurg Psychiatry 89(5):518–525. https://doi.org/10.1136/jnnp-2017-316822

    Article  PubMed  Google Scholar 

  26. Qiao J, Zhao X, Wang S et al (2020) Functional and structural brain alterations in encephalitis with LGI1 antibodies. Front Neurosci 14:304. https://doi.org/10.3389/fnins.2020.00304

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cui Y, Dong J, Yang Y et al (2020) White matter microstructural differences across major depressive disorder, bipolar disorder and schizophrenia: a tract-based spatial statistics study. J Affect Disord 260:281–286. https://doi.org/10.1016/j.jad.2019.09.029

    Article  PubMed  Google Scholar 

  28. Ruotsalainen I, Gorbach T, Perkola J et al (2020) Physical activity, aerobic fitness, and brain white matter: their role for executive functions in adolescence. Dev Cogn Neurosci 42:100765. https://doi.org/10.1016/j.dcn.2020.100765

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fields RD (2008) White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31(7):361–370. https://doi.org/10.1016/j.tins.2008.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bells S, Lefebvre J, Prescott SA et al (2017) Changes in white matter microstructure impact cognition by disrupting the ability of neural assemblies to synchronize. J Neurosci 37(34):8227–8238. https://doi.org/10.1523/JNEUROSCI.0560-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pruss H, Holtje M, Maier N et al (2012) IgA NMDA receptor antibodies are markers of synaptic immunity in slow cognitive impairment. Neurology 78(22):1743–1753. https://doi.org/10.1212/WNL.0b013e318258300d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Caspers S, Schleicher A, Bacha-Trams M, Palomero-Gallagher N, Amunts K, Zilles K (2013) Organization of the human inferior parietal lobule based on receptor architectonics. Cereb Cortex 23(3):615–628. https://doi.org/10.1093/cercor/bhs048

    Article  PubMed  Google Scholar 

  33. Wu P, Pang X, Liang X et al (2022) Correlation analysis between regional homogeneity and executive dysfunction in anti-N-methyl-D-aspartate receptor encephalitis patients. Eur J Neurol 29(1):277–285. https://doi.org/10.1111/ene.15119

    Article  PubMed  Google Scholar 

  34. Barbeau EB, Chai XJ, Chen JK et al (2017) The role of the left inferior parietal lobule in second language learning: an intensive language training fMRI study. Neuropsychologia 98:169–176. https://doi.org/10.1016/j.neuropsychologia.2016.10.003

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are sincerely grateful to all the participants. Moreover, we are very grateful to Wei Ye, the radiology technician, for his help and support in the MRI data acquisition.

Funding

This study was supported by the grant from the National Natural Science Foundation of China (Number: 81560223).

Author information

Authors and Affiliations

Authors

Contributions

Minda Wei: study design, analyzing the data, writing original manuscript. Zexiang Chen: methodology and statistical analysis. Caitiao Lv and Weining Cen: investigation and data acquisition. Jinou Zheng: providing funding, study design, and revision of the manuscript. All the authors contributed to this research and read and approved the final manuscript.

Corresponding author

Correspondence to Jinou Zheng.

Ethics declarations

Ethics approval

The protocol was approved by the First Affiliated Hospital of Guangxi Medical University Ethics Committee.

Consent to participate

All the subjects (or kinsfolk) signed a written informed consent about the study.

Competing interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, M., Chen, Z., Lv, C. et al. The alterations of spontaneous neural activities and white matter microstructures in anti-N-methyl-D-aspartate receptor encephalitis: a resting-state fMRI and DTI study. Neurol Sci 44, 1341–1350 (2023). https://doi.org/10.1007/s10072-022-06574-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-06574-y

Keywords

Navigation