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Abstract
Down syndrome is a common genetic disorder caused by partial or complete triplication of chromosome 21. This syndrome 
shows an overall and progressive impairment of olfactory function, detected early in adulthood. The olfactory neuronal 
cells are located in the nasal olfactory mucosa and represent the first sensory neurons of the olfactory pathway. Herein, 
we applied the olfactory swabbing procedure to allow a gentle collection of olfactory epithelial cells in seven individuals 
with Down syndrome and in ten euploid controls. The aim of this research was to investigate the peripheral gene expres-
sion pattern in olfactory epithelial cells through RNAseq analysis. Validated tests (Sniffin’ Sticks Extended test) were used 
to assess olfactory function. Olfactory scores were correlated with RNAseq results and cognitive scores (Vineland II and 
Leiter scales). All Down syndrome individuals showed both olfactory deficit and intellectual disability. Down syndrome 
individuals and euploid controls exhibited clear expression differences in genes located in and outside the chromosome 21. 
In addition, a significant correlation was found between olfactory test scores and gene expression, while a non-significant 
correlation emerged between olfactory and cognitive scores. This first preliminary step gives new insights into the Down 
syndrome olfactory system research, starting from the olfactory neuroepithelium, the first cellular step on the olfactory way.

Keywords Olfactory neuroepithelium swabbing · RNAseq analysis · Differential gene expression analysis · Down 
syndrome · Euploid controls

Introduction

Down syndrome (DS) is one of the most common chromo-
somal abnormalities in live-born children, characterized by 
well-defined and distinctive phenotypic features. It repre-
sents the most frequent form of intellectual disability caused 
by a microscopically demonstrable chromosomal aberration 
such as a trisomy of all or a critical portion of chromosome 
21 [1–3]. The DS brain is typically reduced in volume since 
the 13th week of pregnancy and this abnormality contributes 
to intellectual disability [4]. Neuropathological findings of 
individuals with DS, such as senile plaques and neurofibril-
lary tangles, overlap to those of Alzheimer’s disease, and of 
course occur earlier [5, 6].

These neuropathological hallmarks were also found in 
cortical brain regions associated with olfactory process-
ing [7–9]. Over the years, research focusing on individual 
aspects of olfactory function in DS was carried out, describ-
ing an olfactory deficit of various degrees [10–19]. The 
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olfactory system can distinguish a very large number of 
odorant molecules and the nasal olfactory epithelium con-
tains the first neuronal cells, which give rise to the olfactory 
pathway. Compared to biopsy, olfactory swabbing is a non-
invasive and gentle procedure that enables the collection 
of olfactory epithelial cells in living individuals [20]. In a 
previous study, we showed that with a single nasal swab-
bing procedure at the middle turbinate, around 1,000,000 of 
total epithelial cells are collected. These are composed of 
olfactory neurons (ONs), which represented the 30% of the 
total sampled cell population, and by other non-neural cells 
such as sustentacular and microvillar cells, with supporting/
protective function for neurons, not completely unraveled 
[21, 22].

Gene expression investigations are meaningful to detect 
expression variations in DS versus euploid tissues in order to 
understand the molecular effect of genetic overdosage [23]. 
Previous studies were particularly focused on various human 
DS tissues or total brains [24, 25], while studies on DS olfac-
tory mucosa are lacking. In this regard, for DS research as 
well as for other neurological conditions, it could be mean-
ingful to have data from olfactory neuroepithelium samples, 
other than blood, since this epithelium is composed by neu-
ronal and non-neuronal cells that are easily accessible in 
living subjects [26, 27]. Therefore, to offer new information 
on this topic, our aim was to investigate the gene expression 
pattern of olfactory neuroepithelium samples of DS individ-
uals compared to euploid controls through RNAseq analysis. 
In view of this, we correlated in both groups the olfactory 
function with RNAseq results. Moreover, according to our 
previous work [19], we also made a correlation analysis 
between olfactory and cognitive scores in DS. Our original 
approach aimed to provide new insights at DS olfactory neu-
roepithelium, where the processing of olfactory information 
starts. This might help to improve the knowledge on the 
smell impairment in this syndrome.

Materials and methods

Subject recruitment

Through the “AGBD Association”' (Associazione Geni-
tori Bambini Down, Marzana, Verona), ten DS individu-
als were recruited. Exclusion criteria were documented 
comorbidities able to affect olfactory performance (e.g., 
recent head trauma, otolaryngology disorders, diabetes, 
stroke). Three DS individuals withdrew for personal rea-
sons. Finally, a total of seven DS volunteers (n = 7; 3 M, 4F, 
mean age: 23.8 years, age range: 18–33 years) attended the 
study. Euploid healthy subjects (n = 10; 4 M, 6F, mean age: 
24.9 years, age range: 22–31 years), matched for age and 
sex, served as controls. Control group recruitment was done 

through public announcements at the University of Verona 
and all subjects recruited were students of the Verona Uni-
versity. All investigations were carried out according to the 
Helsinki declaration and each subject, or the legal repre-
sentative, signed informed consent for the olfactory swab-
bing procedure (Prot.n.28917 June, 15th, 2012).

Cognitive evaluation

The cognitive datum was an additional information of the 
DS group, already present at AGBD association, as in our 
previous work [19]. Cognitive evaluation was performed by 
an expert psychologist, by means of the Vineland II scale 
(Vineland Adaptive Behavior Scales-II-second Edition) [28] 
and the Leiter-R scale (Leiter International Performance 
Scale-Revised) [29], considering both verbal and non-verbal 
abilities. Recently, in DS, a high interindividual variability 
is reported and various cognitive profiles could emerge in 
the verbal and non-verbal domains [30, 31].

The Vineland-II scale is a valid and reliable method to 
measure a person’s adaptive level of functioning. It is helpful 
in diagnosis and in classifying intellectual and developmen-
tal disabilities and other disorders, such as developmental 
delays, and it is organized within a three-domain structure: 
communication, daily living, and socialization. The com-
munication scale domain was used as a measure of verbal 
intelligence.

Although the Leiter-R scale is a test designed for children 
and adolescents (ages 2–18), it can yield an intelligence quo-
tient (IQ) and a measure of logical ability for all ages. This 
test provides a non-verbal measure of general intelligence 
by sampling a wide variety of functions from memory to 
non-verbal reasoning. A remarkable feature of the Leiter 
scale is that it can be administered completely without the 
use of oral language, including instructions, and requires no 
verbal response from the participant. Because of the exclu-
sion of language, it claims to be more accurate than other 
tests when testing subjects who cannot or will not provide a 
verbal response. Leiter contains 20 subtests organized into 
two domains: visualization and reasoning (VR) and attention 
and memory (AM). The VR domain is the only domain rou-
tinely used at the AGBD Association. Through the different 
subtests, it is possible to obtain a series of measures con-
nected to intelligence (i.e., reasoning and problem solving).

Olfactory evaluation

Olfactory function was assessed by means of a standardized 
test battery, the “Sniffin’ Sticks Extended test” (Burghart 
Company, Wedel, Germany). One DS subject presented 
quite severe intellectual disability and reduced speech so 
that finally, 6 out of 7 DS individuals were able to undergo 
this assessment.
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This validated procedure consists of three subtests, 
namely, threshold (the concentration at which the odor is 
reliably detected), discrimination (the subject’s ability to dis-
tinguish odors), and identification (the subject has to iden-
tify 16 different odors, choosing among different options of 
answer each time). In order to increase the reliability of the 
measurements, each subject must give an answer (forced-
choice paradigm).

During each subtest, the experimenter removes the pen’s 
cap and the pen’s tip is held for around 3 s approximately 
1 cm under both nostrils. All participants were tested blind-
folded by a sleeping mask to prevent visual identification of 
the odorant-containing pens, for the threshold and discrimi-
nation test, as required by the procedure. During the iden-
tification assessment for DS people, subjects were asked to 
choose the answer option that they think to be correct after 
the odor had been presented, with the possibility to read a 
paper words list linked to pictures of the four choice options, 
as previously reported in DS [19].

Scores of the three subtests are presented as a compos-
ite “TDI score,” the sum of results obtained for threshold, 
discrimination, and identification measures. This global 
score represents a reliable measure to estimate the degree 
of olfactory function and allows for the detection of nor-
mosmia (TDI ≥ 30.3), hyposmia (30.3 > TDI > 16), and func-
tional anosmia (TDI ≤ 16). Kobal et al. introduced the term 
“functional anosmia” in 2000. This definition means that 
subjects with a TDI score below 16 are considered com-
pletely anosmic or to have some olfactory function left, even 
if not useful in daily life [32–34]. Indeed, a subject with 
functional anosmia may still perceive a few odors, be able to 
discriminate between some of them, or even show olfactory 
event-related potentials [35]. However, this residual olfac-
tory function does not contribute to the enjoyment of food/
drink or to the detection of spoiled food or gas leaks.

Olfactory swabbing

After olfactory assessment, all participants underwent olfac-
tory swabbing (DS = 7; euploid controls = 10). An expert 
otolaryngologist explored nasal cavities using a 30° rigid 
endoscope. Olfactory swabbing sampling was performed 
using a sterile disposable nasal swab (Copan Flock Tech-
nologies, Brescia, Italy) in both nasal cavities. The human 
olfactory neuroepithelium is located on the cribriform plate, 
the superior part of the nasal septum, and the superior and 
middle turbinate [36, 37]. To minimize discomfort in this 
kind of individuals, the swab was gently rolled on the 
mucosa surface at the level of the middle turbinate. We pre-
viously showed that, from a surface of 2  cm2, it is possible 
to collect ~ 2 ×  106 cells for both nostrils, and among these 
cells, ~ 30% are ONs [20, 22]. This technique is a gentle 
approach to collect in vivo olfactory epithelial cells and no 

participant evaluated this procedure as painful. In particular, 
the most frequent DS individuals’ opinion after the proce-
dure was of “no pain and no discomfort at all.” Swabs were 
then immersed in RNA stabilization solution for total RNA 
extraction. Additional swabs were immersed in a fixative 
solution (Diacyte, Diapath, Italy) for cytological quality 
control of the samples.

RNA extraction

Nasal swabs (DS = 7; euploid controls = 10), collected in 
TRIzol reagent (Invitrogen, Italy), were frozen and stored 
at − 80 °C. RNA was extracted from each sample using 
Direct-zol™ RNA Miniprep Plus kit (Zymo Research, CA, 
USA) following the manufacturer’s instructions. Briefly, the 
tubes were shaken for 8 s and the swab head removed. Then, 
each tube was centrifuged at 14,000 × g to remove particular 
debris and the supernatant was transferred into an RNase-
free tube. An equal volume of ethanol (95–100%) was added 
to each sample and transferred into the columns, and then 
centrifuged. After two washes, the RNA was eluted. Purifi-
cation of total RNA was performed using Agencourt RNA-
Clean XP beads (2 × the volume per RNA volume; Beckman 
Coulter Genomics, Danvers, MA, USA). The concentration 
and purity of the total RNA samples were measured using 
the NanoDrop ND-1000 Spectrophotometer (NanoDrop 
Technologies Inc., Wilmington, DE). RNA integrity was 
assessed with an Agilent 2100 Bioanalyzer and the RNA 
6000 LabChip kit (Agilent Technologies, Palo Alto, CA). 
Total RNA was then verified on Bioanalyzer 2100 (Agilent 
Technologies) to assess its quality and integrity, to a final 
RIN of 6.6 ± 1, and then quantified using Qubit RNA HS 
assay.

RNA preparation and sequencing

Samples were further processed with Lexogen RiboCop 
rRNA depletion kit to remove the ribosomal content and 
prepared for sequencing using Lexogen SENSE RNA-seq 
kit following the manufacturer’s protocol (Lexogen). The 
17 samples were sequenced by using the Illumina Next-
Seq 500 applying the 75-single-end chemistry. The data 
were deposited with links to BioProject accession number 
PRJNA789170 in the NCBI BioProject and SRA databases.

RNAseq data analysis

Sequenced reads were trimmed by using cutadapt v1.16 [38] 
to remove the first 9 nucleotides associated with the library 
preparation. Trimmed reads were mapped with Salmon 
v0.9.1 [39] to the Ensembl Homo sapiens GRCh38 cDNA 
(ftp.ensembl.org/pub/release-92/fasta/homo_sapiens/cdna/
Homo_sapiens.GRCh38.cdna.all.fa.gz) using v92 of the 
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Ensembl gene annotation (http:// ftp. ensem bl. org/ pub/ relea 
se- 98/ gtf/ homo_ sapie ns/ Homo_ sapie ns. GRCh38. 98. gtf. gz). 
Automatic selection of library type (-l A) and aggregated 
gene-level abundance estimation (–geneMap) were added 
to standard salmon parameters. Salmon was executed into a 
quasi-mapping-based mode (salmon quant), and to improve 
the read mapping process, whose performance could be 
reduced by a short read length (~ 66 bp), a k-mers size of 21 
was chosen to calculate salmon genome index.

The obtained tables were aggregated into a unique file of 
raw counts and further normalized to account for sequencing 
depth between samples, using the procedure implemented in 
the DESeq2 package [40]. Data analysis, statistical testing, 
and plotting were performed with Python3 and R, exploiting 
appropriate libraries and packages.

Differential expression analysis

Differential expression (DE) analysis was performed with 
DESeq2 version 1.22.1 [40] with standard parameters. The 
full DESeq2 pipeline was applied to raw gene counts to char-
acterize DE genes (DEGs). Genes with an adjusted p-value 
lower than 0.1 were considered differentially expressed. No 
specific filter on the fold change was applied.

Enrichment analysis

Pathway enrichment analysis was performed on DE genes 
by using enrichPathway function of reactomePA R package 
[41], exploiting features contained in the Reactome database 
[42], which includes most of the known biochemical reac-
tions and pathways. enrichPathway was applied with default 
parameters. Differential expressed genes have been used also 
as input of enrichGO function of the Bioconductor pack-
age clusterProfiler [43]. This function is designed for clas-
sifying genes based on GO distribution at a specific level, 
allowing to select among the three orthogonal ontologies of 
GO: molecular function (MF), biological process (BP), and 
cellular component (CC). enrichGO was run with default 
parameters, applying BH p-value correction.

Correlation analysis

Pearson’s correlation coefficients among the results of the 
olfactory and cognitive tests and/or the normalized counts of 
differentially expressed genes were calculated by using rcorr 
method of the pingouin python package (https:// pingo uin- 
stats. org/ index. html). Correlations among olfactory scores 
and normalized gene counts have been calculated consider-
ing the two groups together (6 DS and 10 euploid controls) 
as well as separated by group. Instead, correlation among 
olfactory scores and cognitive scores was assessed within 
the DS group. The Benjamini–Hochberg correction [44] 

for multiple comparisons was used to correct p-values and 
assess the false discovery rate (FDR).

Results

Cognitive evaluation

The Vineland II assessment resulted in 6 DS individuals 
showing severe intellectual disability and 1 DS individual 
showing moderate intellectual disability. Regarding the 
Leiter-R assessment, 2 DS individuals showed a moderate, 
3 DS individuals a moderate/severe, and 2 DS individuals 
severe intellectual disability (Table 1).

Olfactory evaluation and olfactory swabbing

In accordance with our previous work [19], all DS individu-
als (n = 6) showed a clear olfactory deficit in all the three 
assessed domains (Threshold, Discrimination, Identifica-
tion). In particular, all DS were markedly hyposmic with one 
case at the limit of functional anosmia (TDI score: 16.5). All 
euploid controls (n = 10) were normosmic (Table 2). Olfac-
tory swabbing was bilaterally performed in all the recruited 
individuals (7 DS individuals and 10 euploid controls) and 
all of the obtained samples were of good quality, showing 
both neuronal and non-neuronal cellular component in both 
DS and euploid controls at light microscopy check, as previ-
ously reported [22].

Sequencing results and DE analysis

To evaluate if significant differences in gene expression 
among DS individuals and euploid controls were detectable, 
we sequenced the RNA depleted from rRNA of 17 people (7 
DS individuals and 10 euploid controls) by means of Illu-
mina NextSeq 500, after the proper RNA quality check (RIN 

Table 1  Cognitive assessment in DS individuals. Total weighted 
scores of both Vineland II Communication area and Leiter-R visuali-
zation and reasoning domain. F, female; M: male

* Total weighted scores

DS individuals Sex Vineland II 
Communication

Leiter-R 
visualization and 
reasoning

198365 F 27 10
198367 F 32 14
198366 F 34 12
198364 F 30 9
198368 M 33 10
232286 M 37 13
232331 M 20 7

922 Neurological Sciences (2023) 44:919–930

http://ftp.ensembl.org/pub/release-98/gtf/homo_sapiens/Homo_sapiens.GRCh38.98.gtf.gz
http://ftp.ensembl.org/pub/release-98/gtf/homo_sapiens/Homo_sapiens.GRCh38.98.gtf.gz
https://pingouin-stats.org/index.html
https://pingouin-stats.org/index.html


1 3

6.6 ± 1). For each sample, 66.8 ± 18.3 million reads were 
produced, with a minimum of 37.9 and a maximum of 91, 
thus granting a high coverage of sequenced transcripts. Sev-
eral alignment and feature association pipelines were tested 
(data not shown), finding the best choice in the transcript-
level quantification of salmon, accounting for the percentage 
of the assigned reads to the features (61.2 ± 5.1).

Raw count tables were processed using DESeq2 in order 
to identify genes showing a differential expression (adj 
p-value < 0.1) between controls and DS individuals. A total 
of 52 differentially expressed genes (DEGs) were detected 
(Table  S1), the majority of which has a |logFC|> 0.5, 
although no filter on fold change was applied. As expected, 
several DEGs are located in chromosome 21, and genes such 
as APP, DYRK1A, and DOPEY2 were significantly upregu-
lated in DS individuals (Fig. 1). In addition, we also noticed 
that the misregulation is spread along the entire genome 
(Fig. S1): in fact, other interesting DEGs, including MUC16, 
S100PBP, CREB3L2 and CREB5, which could play a role in 
the DS related olfactory peripheral impairment, are located 
outside of the chromosome 21.

Regarding the downstream steps, no significant result 
was showed. A possible explanation for the non-significant 
enrichment analysis results (related to Reactome pathways 
and GO) could be the relative low number of detected DEGs. 

Nevertheless, pathway analysis allowed us to better char-
acterize data found in the previous step. At this regard, we 
noticed modifications of glycosylation processes, mainly 
O-linked and mucin associated, mediated by MUC16 and 
POFUT2. In addition, APP was found to be involved in dif-
ferent processes so that its upregulation could trigger an 
increase in inflammation and neuronal dysfunction (Fig. S2; 
Table S2; Table S3).

Olfactory test scores and gene correlation analysis

Pearson’s analysis showed different significant correla-
tions (Fig. 2). In particular, a subset of interesting genes 
involved in neuronal function, cellular regeneration, and 
mucus physiology located in the chromosome 21 and also 
in chromosomes other than 21 was considered for correla-
tions (i.e., APP, DYRK1A, DOPEY2, S100PBP, CREB3L2, 
CREB5, POFUT2, MUC16, PAX7, KLF9, SPARCL1, 
ITGA6, STATH). Among the DS upregulated genes (i.e., 
APP, DYRK1A, DOPEY2, S100PBP, CREB3L2, CREB5, 
POFUT2, MUC16), a strong significant negative correla-
tion with the global olfactory TDI score emerged. Thus, 
when gene expression increases, olfactory performance 
decreases (APP ρ = − 0.87, p-value = 0; MUC16 ρ = − 0.67, 
p-value = 0; CREB5 ρ = − 0.52, p-value = 0.04; CREB3L2 
ρ = − 0.79, p-value = 0; DYRK1A ρ = − 0.71, p-value = 0; 
DOPEY2 ρ = − 0.62, p-value = 0.01; POFUT2 ρ = − 0.81, 
p-value = 0; S100PBP ρ = − 0.66, p-value = 0.01). On the 
other hand, looking at the downregulated genes, a sig-
nificant positive correlation with the TDI score emerged, 
namely when gene expression increases, olfactory perfor-
mance increases. This is particularly clear for the PAX7 and 
ITGA6 genes (PAX7 ρ = 0.73, p-value = 0; ITGA6 ρ = 0.61, 
p-value = 0.01).

Analyzing the single subtest olfactory scores, the cor-
relation between the threshold score and MUC16 expres-
sion (ρ = − 0.52, p-value = 0.04) is particularly interesting. 
Regarding discrimination score, a significant correlation is 
showed both with the CREB3L2 (ρ = − 0.68, p-value = 0), 
DYRK1A (ρ = − 0.73, p-value = 0), POFUT2 (ρ = − 0.77, 
p-value = 0), and S100PBP (ρ = − 0.56, p-value = 0.02) 
genes. The identification (I) score shows a strong correlation 
with both the CREB3L2 (ρ = − 0.72, p-value = 0), DYRK1A 
(ρ =  − 0.68, p-value = 0), and DOPEY2 (ρ =  − 0.62, 
p-value = 0) genes.

Regarding the relationship between downregulated genes 
and olfactory scores, PAX7 expression was found to be 
strongly correlated with both threshold and discrimination 
(ρ = 0.63 and ρ = 0.62 respectively, p-value = 0.01), while 
ITGA6 showed a positive correlation with the discrimination 
score (ρ = 0.68, p-value = 0).

In addition, the aforementioned results were also 
retained by means of the Benjamini/Hochberg FDR method 

Table 2  Olfactory assessment. TDI (total smell score) and threshold 
(T), discrimination (D), and identification (I) domain scores in both 
euploid controls and Down syndrome (DS) individuals (F, female; M, 
male). DS subject (code: 232,331) was unable to attend the olfactory 
evaluation due to quite severe mental retardation and reduced speech 
but underwent the olfactory swabbing procedure

Code Sex TDI score T D I

Euploid controls
173064 F 34.5 6.5 14 14
173065 M 35.75 8.75 13 14
173066 M 32.75 7.75 10 15
173067 F 41 12 14 15
232280 F 37.25 9.25 15 13
232281 F 31.5 4.5 13 14
232282 M 32.75 7.75 12 13
232283 M 34.5 10.5 12 12
232284 F 33 8 12 13
232285 F 36.5 7.5 13 16
Down syndrome
198365 F 22.5 11.5 5 6
198367 F 22.5 6.5 8 8
198366 F 21.75 7.75 6 8
198364 F 20.25 1.25 7 12
198368 M 16.5 1.5 5 10
232286 M 22.25 2.25 10 10
232331 M - - - -
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(p-value = 0.1) showing a robust significant correlation 
between olfactory scores and genes’ expression for the global 
TDI score (APP ρ = − 0.87, p-value = 0; MUC16 ρ = − 0.67, 
p-value = 0.01; CREB5 ρ = − 0.52, p-value = 0.06; CREB3L2 
ρ = − 0.79, p-value = 0; DYRK1A ρ = − 0.71, p-value = 0.01; 
DOPEY2 ρ = − 0.62, p-value = 0.02; POFUT2 ρ = − 0.81, 
p-value = 0; S100PBP ρ = − 0.66, p-value = 0.02) and for 
the following single subtests: threshold score and MUC16 

expression (ρ =  − 0.52, p-value = 0.06); discrimination 
and CREB3L2 (ρ = − 0.68, p-value = 0.01); discrimination 
and DYRK1A (ρ = − 0.73, p-value = 0.01); discrimination 
and POFUT2 (ρ =  − 0.77, p-value = 0); discrimination 
and S100PBP (ρ = − 0.56, p-value = 0.05); identification 
with CREB3L2 (ρ =  − 0.72, p-value = 0.01), DYRK1A 
(ρ = − 0.68, p-value = 0.01), and DOPEY2 (ρ = − 0.69, 
p-value = 0.01) genes. The same thing occurs considering 
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Fig. 1  Down syndrome DEG heatmap. Cluster heatmap shows sam-
ples in columns and genes in rows. The level of expression is repre-
sented by the background color, where blue means low and red means 

high expression. Experimental conditions are shown in green and 
purple, illustrating euploid controls and Down syndrome (DS) indi-
viduals respectively
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the DS downregulated gene PAX7 and the TDI score 
(ρ = 0.73, p-value = 0.01) and ITGA6 and the TDI score 
(ρ = 0.61, p-value = 0.03) as well as for the single subtest 
scores: both threshold, discrimination with PAX7 (ρ = 0.63 
and ρ = 0.62 respectively, p-value = 0.03), and discrimina-
tion with ITGA6 (ρ = 0.68, p-value = 0.02).

Olfactory test scores and cognitive evaluation 
correlation analysis

For correlation analysis, the weighted scores of both cogni-
tive scales were considered (Table 1). For both the Vineland-
II Communication scale and the Leiter-R visualization and 

reasoning domain, non-significant correlation emerged with 
TDI, T, D, and I scores (Table S4).

Discussion

To our knowledge, this is the first pilot study that explores 
gene expression in olfactory neuroepithelium cytological 
samples of DS individuals compared to euploid controls. 
Additionally, correlation analysis among olfactory scores 
and normalized gene counts was calculated as well as 
among genomic data and cognitive data, the latter only in 
DS individuals.

Fig. 2  DEG and olfactory scores correlation matrix. Pearson’s coef-
ficient (lower triangle) and p-value (upper triangle) between the 
expression of interesting differentially expressed genes in Down syn-
drome (DS) individuals (upregulated: MUC16, CREB5, CREB3L2, 
DYRK1A, DOPEYE2, APP, POFUT2, S100PBP; downregulated: 
PAX7, KLF9, SPARCL1, ITGA6, STATH) and olfactory test scores 

(TDI, T, D, I) are shown in the matrix. Blue background indicates 
negative correlation while red indicates positive. p-value background 
ranges from pale yellow (high significance) to green (no signifi-
cance). T, threshold; D, discrimination; I, identification; TDI, total 
smell score
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It is clear that DS individuals exhibit differential gene 
expression when compared to euploid controls, even if inter-
individual variability is present (Fig. 1). Not all upregulated 
genes are located in chromosome 21, supporting the previ-
ous knowledge that the trisomy 21 status induces not only 
a change in chromosome 21 genes but also whole-genome 
perturbation, causing a disomic gene misregulation [45–47].

The main findings of the study are as follows: (1) all 
DS individuals were markedly hyposmic, with one case at 
the limit of functional anosmia, and a strong correlation 
emerged between olfactory function and gene expression. 
In particular, a negative correlation emerged with the DS 
upregulated genes, namely when gene expression increases, 
olfactory performance decreases. In addition, a less evident 
positive correlation emerged with DS downregulated genes, 
meaning that the expression of such genes is directly related 
to the olfactory performance. (2) All DS individuals had a 
moderate to severe cognitive impairment, and through the 
aforementioned cognitive tests (Vineland-II and Leiter-R), a 
non-significant correlation emerged between olfactory func-
tion and cognition.

The first finding of this study is that olfactory function 
was severely impaired in DS individuals, for all olfactory 
domains (i.e., threshold, discrimination, identification), in 
agreement with our previous results [19]. In addition, this 
deficit was strongly related to gene expression especially 
for the upregulated genes (i.e., APP, DYRK1A, DOPEY2, 
CREB5, CREB3L2, MUC16, POFUT2, S100PBP). To our 
knowledge, no study has ever evaluated expression of these 
genes in the human olfactory neuroepithelium of DS indi-
viduals. In particular, some upregulated genes, located in 
chromosome 21, could be related to neuronal function. At 
this regard, the well-known APP gene (chromosome 21, 
cytogenetic band 21q 21.3) is relevant to neurite growth, 
neuronal adhesion, and axonogenesis and the extra copy of 
APP gene could affect the correct olfactory neurons function 
with synapse signaling disruption and neuroinflammation, 
as showed in the brain [48]. Indeed, two post-mortem mor-
phological studies showed dystrophic neurites and β amy-
loid deposits in the olfactory mucosa of DS [49, 50] and 
a preclinical work showed that the expression of a human 
APP mutation in mice impairs connectivity and function of 
the peripheral olfactory neural circuit, even in the absence 
of plaques [51].

Another interesting upregulated gene is the DYRK1A 
gene (chromosome 21, cytogenetic band: 21q 22.13) which 
is located in the DS critical region of chromosome 21 and 
plays a key role in neurogenesis, outgrowth of axons and 
dendrites, neuronal trafficking, and aging [52]. Previous 
preclinical work showed strong expression of DYRK1A 
gene in the olfactory bulb and in the piriform/entorhinal 
cortex suggesting a possible involvement of DYRK1A in 
the physiology of olfaction [53]. Hence, DYRK1A gene 

upregulation in DS olfactory epithelium could interfere 
with physiological peripheral olfactory processing, con-
tributing to the olfactory deficit genesis.

DOPEY2 (chromosome 21, cytogenetic band 21q22.12) 
is another upregulated gene that could possibly be impli-
cated in correct olfactory neurons function. DOPEY2 is 
also located in the DS chromosome 21 critical region and 
plays a role in the membrane protein trafficking with pos-
sible involvement in learning, memory, and intellectual 
disability pathogenesis [23, 54]. This gene is reported to 
be upregulated in DS human and trisomic mice tissues 
[55] with no study involving the olfactory mucosa.

Looking at other upregulated genes located in chro-
mosomes other than 21 and possibly involved in olfac-
tory neuroepithelium physiology, there is the S100PBP 
gene (chromosome 1, cytogenetic band 1p35.1). This 
gene encodes a protein which is a binding partner of S100 
proteins, a large protein family found in a wide range of 
cells, and involved in the regulation of a number of cel-
lular processes such as cell cycle progression, differentia-
tion, and cellular calcium signaling, the latter playing a 
meaningful role in olfactory pathway activation [56, 57]. 
Moreover, within the S100 protein family, it is important 
to mention that the S100B (encoded by a gene located on 
the chromosome 21) was shown to be involved in APP pro-
cessing, protein inclusion formation, and tau post-transla-
tional modifications in Down syndrome [48]. Therefore, 
the upregulation of the S100 binding protein gene here 
observed might interfere with correct APP processing, 
affecting olfaction.

Other extra-21 genes found to be upregulated are the 
CREB genes (CREB5, CREB3L2) (chromosome 7 cytoge-
netic band p15.1-p14.3 and q33). These genes encode a 
well-known transcription factor modulated by cAMP (cyclic 
AMP-responsive element-binding protein), involved in vari-
ous pathways [58] and in different cellular processes includ-
ing neuronal survival and synaptic plasticity [59–62]. Fur-
thermore, the CREB activity was reported to be regulated 
also by the DYRK1A gene [63]. The CREB gene was also 
reported to have a role in the physiological airway mucous 
cell differentiation [64]. Indeed, olfactory mucosa is covered 
by a mucus layer involved in multiple protective functions 
and in the mechanism of odorant detection through different 
pre-receptor events. Olfactory mucosal enzymes participate 
in the olfactory signal termination and modulation [65–71]. 
A recent proteome analysis revealed different proteins in the 
mucus with a potential involvement in olfaction, correlating 
with olfactory threshold and identification [72]. Moreover, 
preclinical studies showed that the CREB signaling pathway 
is necessary for the acquisition of olfactory aversive learn-
ing in young rats [73] and that exposure of mice to odorant 
mixture induced a significant CREB signal increase in both 
olfactory sensory neurons and sustentacular cell nuclei [74].
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Other two differently expressed genes are MUC16 (chro-
mosome 19, cytogenetic band 19p13.2) and POFUT2 (chro-
mosome 21, cytogenetic band 21q22.3) which upregulation 
in DS could have implications on the correct mucous cell 
function and on olfactory cell survival, both meaningful ele-
ments for preserving the olfactory function.

On the other hand, among the downregulated genes, inter-
estingly, ITGA6 (chromosome 2, cytogenetic band 2q31.1) 
was identified in horizontal basal cells of the olfactory epi-
thelium [75, 76], while the PAX7 (chromosome 1, cytoge-
netic band 1p36.13) gene was found in embryonic olfactory 
precursor cells, contributing to the development of different 
neuronal and non-neuronal cell lineages [77]. Since olfac-
tory function preservation relies on stem cell activity, thus, 
the downregulation of these genes in the DS olfactory neu-
roepithelium might contribute to olfactory deficit genesis.

All DS individuals had cognitive impairment, and through 
the available Vineland-II Communication and Leiter-R visu-
alization and reasoning domains, non-significant correlation 
emerged between the cognitive weighted scores and all the 
olfactory scores. This fact might be related to the small DS 
sample size and to the olfactory profile revealed, which is 
very similar in all individuals (i.e., all were markedly hypos-
mic and one case was at the limit of functional anosmia; 
see Table 2). In addition, it is important to mention that at 
the AGBD Association, the Leiter-R attention and memory 
domains were not used and other more detailed cognitive 
measurements such as the Wechsler Adult Intelligence 
Scale-Revised are no longer used because of being time-
consuming. Actually, in DS, the memory ability is known 
to be poor, also with olfactory stimuli, and then, memory 
function could be meaningful for the required olfactory tasks 
especially for discrimination and identification tests [19, 78, 
79]. Following this line of reasoning, we can assume that 
the cognitive deficit certainly plays a role in determining 
the detected olfactory impairment, even if the basic cog-
nitive tests here available failed to uncover the relation-
ship between olfaction and cognition. Hence, to overcome 
this limit, further studies with a more detailed cognitive 
measurement are required to compare the DS group with a 
euploid control group with non-DS individuals but having 
cognitive disabilities. This would add new information to 
deepen investigate the possible link between the olfactory 
deficit and cognition in this syndrome. Nevertheless, based 
on these data, it might be possible to assume that the known 
olfactory deficit reported in Down syndrome could be not 
only attributable to a cortical involvement but also to more 
peripheral mechanisms.

However, we must consider these results with caution, since 
very preliminary data on a small sample size. Indeed, this is 
only a first step investigation, and future studies on a bigger 
sample size are necessary. It would be also important to assess 
the protein expression to see if the protein level matches the 

RNAseq data, better unraveling the link to the emerged olfac-
tory deficit. Moreover, it is important to mention that we ana-
lyzed epithelial samples of the olfactory mucosa characterized 
by a heterogeneous cell population, neuronal and non-neu-
ronal, and a more precise gene expression attribution will be 
needed in further studies. In addition, in the middle turbinate, 
olfactory neurons are unevenly distributed, compared to those 
located in the mucosal surface covering the nasal vault. Moreo-
ver, in humans, the olfactory epithelium is not clearly cut from 
the non-olfactory tissue, in contrast to rodents where there is a 
marked boundary [80, 81]. Despite the aforementioned limita-
tions, this first exploratory approach gives new insights into 
the DS olfactory system research, starting from the olfactory 
neuroepithelium, the first cellular step on the olfactory way. In 
addition, regarding the sampling technique, olfactory swab-
bing could represent an innovative gentle technique to study 
the olfactory epithelium in living DS individuals. Indeed, in 
our experience, all DS participants referred minimal or no dis-
comfort at all during sampling procedure. This chance might 
also open to the future research on the peripheral neurodegen-
eration signs of this genetic syndrome, a peculiar model of 
early AD-like pathology.
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