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Abstract
Hyposmia is a common finding in Parkinson’s disease (PD) and is usually tested through the University of Pennsylvania Smell Iden-
tification Test (UPSIT). The aim of our study is to provide a briefer version of the Italian-adapted UPSIT test, able to discriminate 
between PD patients and healthy subjects (HS). By means of several univariate and multivariate (machine-learning-based) statistical 
approaches, we selected 8 items by which we trained a partial-least-square discriminant analysis (PLS-DA) and a decision tree (DT) 
model: class predictions of both models performed better with the 8-item version when compared to the 40-item version. An area 
under the receiver operating characteristic (AUC-ROC) curve built with the selected 8 odors showed the best performance (sensi-
tivity 86.8%, specificity 82%) in predicting the PD condition at a cut-off point of ≤ 6. These performances were higher than those 
previously calculated for the 40-item UPSIT test (sensitivity 82% and specificity 88.2 % with a cut-off point of ≤ 21). Qualitatively, 
our selection contains one odor (i.e., apple) which is Italian-specific, supporting the need for cultural adaptation of smell testing; 
on the other hand, some of the selected best discriminating odors are in common with existing brief smell test versions validated 
on PD patients of other cultures, supporting the view that disease-specific odor patterns may exist and deserve a further evaluation.

Keywords University of Pennsylvania Smell Identification Test · Smell impairment · Parkinson’s disease · Machine 
learning

Introduction

Hyposmia represents one of the most frequent non-motor symp-
toms in Parkinson’s disease (PD), affecting more than 90% of 
PD patients [1, 2]. It can be detected very early in the course of 
the disease, often before motor symptoms start [1]. For this rea-
son, olfaction dysfunction has been proven to be a reliable, early 
predictive marker for PD, with smell evaluation testing being as 
sensitive as the gold standard instrumental investigation, i.e., 

single-photon emission computed tomography (SPECT) for 
dopamine transporter (DaT) study [3]. The University of Penn-
sylvania Smell Identification Test (UPSIT) is the most employed 
tool to detect olfactory dysfunction in PD patients, in both clini-
cal and research settings [4]. It consists of 40 microencapsulated 
odorants which are released by scratching standardized odor-
impregnated strips [5]. Its use has been validated across different 
cohorts worldwide [6–9], with cultural item adaptation. We have 
previously developed the Italian version of the UPSIT in which 
some odors that are virtually unknown to Italian subjects, such 
as cheddar cheese, gingerbread, and turpentine were replaced by 
other odors, validating it in healthy subjects [10] and in PD [7].

A number of briefer smell tests have been subsequently devel-
oped (for example, the brief smell identification test (B-SIT) 
[11] and its version adapted to PD, namely the BSIT-B [12]), 
with the aim of abbreviating and, thus, optimizing smell evalua-
tion in the routine clinical practice. As reviewed by Morley et al., 
[13] they reached fairly good diagnostic performances when 
compared to the UPSIT test. However, not all of them have been 
validated on the PD population. Therefore, abbreviated versions 
of the UPSIT have been tested in several studies, with reasonable 
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predictive performance for PD [13, 14]. As for the full-length, 
40-item version of the UPSIT, cross-cultural adaptation of brief 
versions is necessary. Therefore, the aim of the current work is 
to develop an abbreviated version of the Italian-adapted UPSIT 
test. To this aim, we employed several univariate and multivari-
ate (machine learning-based) statistical approaches in order to 
select the best items of the 40-item UPSIT in discriminating PD 
patients from healthy subjects (HS).

Materials and methods

Study population

The current work stems from a secondary analysis of data from 
our previous study validating the culturally adapted version of 
the 40-item UPSIT smell test for the Italian population [7], with 
enrollment performed prior to the Covid-19 pandemic outbreak, 
thus excluding the possibility of SARS-CoV-2 infection-related 
hyposmia. In brief, the study subjects consisted of PD patients, 
as diagnosed according to the UK Brain Bank Criteria [15], 
compared to HS. Exclusion criteria for patients and HS were as 
follows: dementia, active upper respiratory tract inflammation, 
history of diabetes, nose surgery, or head trauma. The exclusion 
criterion for HS was a history of neurologic and/or psychiat-
ric disease. All subjects underwent olfaction evaluation under 
medical supervision through the Italian version of the 40-item 
UPSIT.

Statistical Analysis

Univariate analysis

Individual responses to each of the 40 items were recorded as 
correct or incorrect. In order to calculate the performance of an 
UPSIT odor subset, as predictive of PD diagnosis, we computed 
the discriminatory power of each odor in differentiating PD from 
HS using different statistical methods. First, we assessed the 
diagnostic performance of each item by calculating the cor-
rect/incorrect answer ratio for each class and p-values using the 
Fisher χ2 test. Secondly, we calculated diagnostic odds ratios 
for each item. Thirdly, we calculated the area under the receiver 
operating characteristic (AUC-ROC) curve for each item using 
the statistical software SPSS ver.26 (IBM Corp., Armonk, NY, 
USA).

Machine learning algorithms: logistic regression and linear 
discriminant analysis

The discriminatory power of each odor in differentiat-
ing PD from HS was also evaluated using multivariate 

(machine-learning-based) statistical models: logistic regres-
sion (LR) and linear discriminant analysis (LDA) [16, 17]. 
A Full explanation of the mathematical bases of these two 
models can be found in Supplementary Information (Online 
resource).

LR was performed using the MetaboAnalystR Package 
[18]. LDA was performed using the corresponding operator 
from RapidMiner v. 9.10 [19]. This operator needed no setting, 
so it was used as it is. UPSIT items were ranked according to 
their weight in discriminating the two classes.

UPSIT item selection

For each statistical model, we selected the top 12 items with 
the best discriminating performance. The UpSetR plot, which 
is a diagram to visualize intersections of multiple sets [20], 
was employed to aggregate these items in a combination 
matrix in order to show their simultaneous selection by sev-
eral statistical approaches. The items which resulted as being 
selected by at least 4 out of 5 models were used to train a par-
tial least square-discriminant analysis (PLS-DA) model [21], 
which is a supervised method that uses multivariate regres-
sion techniques to extract, via linear combinations of original 
variables (X, in our case, the best-selected odor items), the 
information that can predict class membership (Y, in our case, 
PD vs. HS). This PLS-DA model has then been submitted to 
a cross-validation process, by means of which we constructed 
a confusion matrix to synthetize correct and incorrect attribu-
tions. This was accompanied by diagnostic performance (in 
terms of sensitivity, specificity, negative and positive likeli-
hood ratio, negative and positive predictive value, accuracy, 
AUCROC) calculation of item combinations (MetaboAna-
lystR Package) [18]. Also, a decision tree (DT) [22] was built 
with the same best-discriminating items and the related diag-
nostic performances were calculated. (RapidMiner 9.10). The 
concept behind DT functioning is explained in Supplementary 
Information (Online resource). DT was subjected to a cross-
validation process similar to PLS-DA.

Finally, an AUCROC curve was build using the same best-
discriminating items and cut-off points for assigning subjects 
to the PD group were calculated (SPSS ver. 26), the best 
threshold being evaluated using the Youden index [23].

Results

Demographic and clinical features of the studied 
populations

UPSIT examinations were obtained from a population of 
68 PD patients and 61 healthy subjects [7]. The two popu-
lations were homogeneous in terms of age (61.8 ± 8.5 vs. 
59.5 ± 8.5 for PD and subjects, respectively, p = 0.1), sex 
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distribution (men/women distribution of 58.8%/41.2% for 
PD and 44.3%/55.7% for HS, p = 0.6), and smoking status 
(14.7% of PD smokers vs. 16.4% of HS smokers, p = 0.4). 
In the PD group, the mean Unified PD Rating Scale, motor 
sub-scale (UPDRSIII) value was 14.1 ± 6.4, and the mean 
Hoehn and Yahr stage was 1.6 ± 0.4. As expected, the mean 
40-item UPSIT score was significantly lower in PD than in 
HS (16.8 ± 4.9 vs. 26.6 ± 507, p < 0.001).

Odor selection

Five different statistical ranking strategies were used in 
order to select the best discriminating odors. Supplementary 
Table 1a shows the top 12 items with the best discriminating 
performance for each statistical method. Their occurrence 
or co-occurrence in one or more feature selection strate-
gies was evaluated by means of an UpSetR plot (see Fig.1). 
As a result, 4 odors (namely, coconut, apple, lilac, orange) 
were selected by 5 models, 4 odors (namely, motor oil, 
banana, clove, watermelon) were selected by 4 models, 4 
odors (namely, onion, talc, walnut, rose) were selected by 3 

models, and 9 odors (chewing-gum, leather, fruit juice, cin-
namon, chocolate, diluent, pine, grape, soap) were selected 
by only 1 model. This resulted in 8 items selected by at 
least 4 statistical models, (see Fig. 1 and items in bold, sup-
plementary Table 1a) which were used to build a PLS-DA 
model for prediction performance calculation. The 8-item 
performances were compared to the PLS-DA-based pre-
diction performances of the 40-item odor set. As shown in 
Table 1, the 8-item odor subset outperformed the 40-item 
odor set in terms of sensitivity (82% vs. 79%), specificity 
(92% vs. 85%), positive likelihood ratio (10:05 vs. 5,38), 
negative likelihood ratio (0:19 v. 0:24), positive predic-
tive value (92% vs. 86%), negative predictive value (82% 
vs. 79%), and accuracy (86% vs. 82%). Figure 2 compares 
PLS-DA-based AUCROC curves for the 8-item and the 
40-item set (0.887 vs. 0.89 respectively). Two DTs were 
built employing and comparing the 8 best discriminating 
items and the whole set of 40 items. They are shown in sup-
plementary Fig. 1 and 2 (Online resource). In both trees, 
item 7 (i.e., banana) represents the starting node, and item 
8 (i.e., clove) represents the immediately subsequent node 

Fig. 1  UpSetR plot showing odors selected across the different statis-
tical models. The red numbers represent the items (odors), as they are 
numbered in the UPSIT test, selected by the different statistical mod-
els. Odors selected by at least 4 statistical models are shown on the 
right, being the final 8-item UPSIT. Column height depends on how 

many items are selected by the statistical models shown at the bottom 
(Abbreviations: LR = logistic regression, LDA = linear discriminant 
analysis, AUC-ROC= area under the receiver operating characteris-
tic curve). The set size (i.e., the black bars on the left) represents the 
number of items chosen for each statistical method (in our case, 12)
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with a huge relevance if correctly identified, in PD exclu-
sion. As secondary nodes, items 10 (i.e., coconut) and 30 
(i.e., watermelon) are shared by both trees in having a cer-
tain relevance in discriminating PD from healthy subjects. 
The diagnostic performances of the two DTs are shown in 
Table 1. They are lower than those obtained with PLS-DA 
but again, the 8-item subset performs better than the whole 
odor set of 40 items with respect to sensitivity (72% vs. 
65%), specificity (85% vs. 80%), positive likelihood ratio 
(4:88 vs. 3:29), negative likelihood ratio (0:33 vs. 0:44), 
positive predictive value (84% vs. 79%), negative predictive 
value (73% vs. 67%), and accuracy (78.3% vs. 72.1%).

Finally, the AUCROC curve built with the selected 
8 odors (coconut, apple, lilac, orange, motor oil, banana, 
clove, watermelon) showed the best performance (sensitiv-
ity 86.8%, specificity 82%) in predicting the PD condition 
at a cut-off point of ≤ 6. These performances were higher 
than those calculated for the 40-item UPSIT test (sensitivity 
82% and specificity 88.2 % with a cut-off point of ≤ 21) [7].

Discussion

In the present work, by means of several univariate and mul-
tivariate (machine learning) statistical algorithms, we selected 
the 8 best UPSIT items in discriminating PD patients from HS. 
Machine learning supervised approaches (in our case, PLS-DA 
and DT) were also employed to train and cross-validate models 
for PD vs. HS class prediction. These two statistical algorithms 
showed a better diagnostic performance when dealing with the 
selected 8 items than when dealing with the whole set of 40 
odors. This is intrinsically related to machine learning behavior. 
Indeed, data dimension reduction, which means that the number 
of features (in our case, the UPSIT items) is limited with respect 
to the number of observations (in our case, subjects), makes 
the training of classifiers more effective and decreases overfit-
ting occurrence [24]. Accordingly, one of the principal concepts 
(informally known as “garbage in garbage out”) of computer 
science is that the better the quality of input data, the better the 
output is [25].

Table 1  PLS-DA-based 
and DT-based predictive 
performances of the 8-item odor 
subset compared to the whole 
odor set (values are shown as 
estimate ± standard error)

PLS-DA based DT based

8-item subset 40-item set 8-item subset 40-item set

Sensitivity 0.82 ± 0.05 0.79 ± 0.05 0.72 ± 0.05 0.65 ± 0.06
Specificity 0.92 ± 0.04 0.85 ± 0.05 0.85 ± 0.05 0.80 ± 0.05
Positive likelihood ratio 10.05 5.38 4.88 3.29
Negative likelihood ratio 0.19 0.24 0.33 0.44
Negative predictive value 0.82 ± 0.05 0.79 ± 0.05 0.73 ± 0.05 0.67 ± 0.05
Positive predictive value 0.92 ± 0.04 0.86 ± 0.04 0.84 ± 0.05 0.79 ± 0.05
Accuracy 0.868 0.822 0.783 0.721

Fig. 2  PLS-DA-built AUC-ROC curves comparing 8-item (A) and 40-item (B) AUCs
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In addition, a comparison of our short test with the leader 
short smell identification test among those validated for PD 
(i.e., the 12-item BSIT-B, as evaluated by Joseph et al. [14]), 
showed, at the best sensitivity/specificity combination, a 
much better specificity with a quite negligible difference in 
sensitivity (sensitivity/specificity of 86.8/82% with a cut-
off point of ≤ 6 vs. 96.5/51.8% with a cut-off point of ≤ 
9, respectively), which is valuable aiming to screen for PD 
among subjects who might have lower smell performance 
due to other reasons, including aging.

As highlighted in the introductory section, many efforts 
in selecting UPSIT odor subsets and in testing their abil-
ity in identifying PD subjects have been performed in other 
cultures. Our 8-item selection shares a few items with previ-
ously published works. Indeed, “orange” and “clove” were 
also selected by Joseph et al. [14], who chose 2 “winning” 
7-items subsets of the UPSIT from all the possible com-
binations containing 1–7 smells. Moreover, “banana” and 
“motor oil” were also selected by Morley et al. [13], who 
chose the 12 best discriminating smells as selected from 
the UPSIT using a combination of different statistical rank-
ing strategies. Furthermore, common items have been also 
identified with the BSIT-B test, namely “banana,” “clove,” 
and “coconut”[12]. The item “banana” was also identified 
as one of the best discriminating items between PD and HS 
by Bohnen et al. [26] and in a shorter 5-item version of the 
B-SIT test by Double et al. [27]. Also, this item was also 
selected, via the random forest machine-learning approach, 
as one of the three best PD vs. HS discriminating odors from 
the 16-item “Sniffin’ Sticks” test [28]. This aspect of com-
mon patterns in odor identification has raised the argument 
that there may be a selective hyposmia in PD [12], yet with 
conflicting results [29]. Indeed, “clove” was also selected 
in two studies aimed at finding UPSIT subsets able to pre-
dict Alzheimer’s disease, although the two selected subsets 
were not sufficiently consistent with each other [30, 31]. It 
should be also acknowledged that a qualitative comparison 
between previously developed abbreviated versions of the 
UPSIT is not entirely possible because of cultural adapta-
tions: indeed, one of the items selected by our statistical 
model (i.e., “apple”), is Italian-specific and, as such, not 
present in the original UPSIT version; likewise, other odor 
sub-selections described in Morley et al. [13] and Joseph 
et al. [14] contain culturally specific items (i.e., items that 
have been substituted in the Italian UPSIT version). These 
are “root beer” and “gingerbread” in Joseph et al.[14] and 
“turpentine” in Morley et al. [13]. This raises concern about 
the fact that odor identification patterns in the available pub-
lished cohorts might be, at least partially, dependent on cul-
tural issues. This aspect might also explain the fact that the 
results obtained in the discovery cohort were not entirely 
confirmed when reassessed in an independent cohort [13]. 
More in general, however, the PD-predictive ability of 4 

“cross-cultural” odors identified by Joseph et al. [14], was 
confirmed after validation on an independent, even though 
geographically linked, PD cohort [32], supporting the con-
cept of a specific quality of smell dysfunction in PD.

A few studies have tried to look for distinctive patterns 
of smell impairment among hyposmic patients of vari-
ous causes. A study by Hähner et al. [33] investigated PD 
patients in comparison to patients with smell loss from other 
causes, by using the 16-item “Sniffin’ Sticks” test; they 
found no differences in odor identification thresholds and 
patterns between the two populations. On the contrary, in 
a Japanese cohort of PD and post-viral hyposmic patients 
evaluated with the Open Essence test, two odors (namely, 
menthol and Indian Ink) were found to accurately differ-
entiate the two cohorts of hyposmic patients [34]. These 
heterogenous findings remark on the need of obtaining cul-
turally adapted versions of specific smell evaluation tests, 
the performances of which should be evaluated according 
to the specific research purpose. These tests might in fact 
be proven useful to discriminate between PD and hyposmic 
patients due to other reasons and/or to differentiate PD from 
other non-degenerative parkinsonian syndromes [35].

Conclusion

We have here presented an abbreviated 8-item UPSIT with 
a high accuracy in differentiating PD patients from healthy 
subjects, which makes smell evaluation much less time-
consuming and feasible in routine clinical practice. We 
further showed that machine-learning-based odor selec-
tion is able to optimize this process, outperforming diag-
nostic performances of the full-length 40-item UPSIT. In 
this regard, however, we acknowledge a limitation of our 
study in the lack of validation on an independent PD cohort. 
Further studies are also warranted to explore whether the 
selected items are PD-specific by evaluating other popula-
tions affected by hyposmia due to other reasons and whether 
it accurately discriminates PD from other parkinsonian 
syndromes.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10072- 022- 06457-2.
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