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Abstract
Objective Our study aimed to investigate the correlations between microstructural changes of cingulum and patients with 
mild cognitive impairment (MCI) by diffusion kurtosis imaging (DKI) technique.
Method A total of 104 patients with cerebral small vessel diseases (cSVD) were retrospectively enrolled in this study. 
According to Montreal Cognitive Assessment Scale (MoCA) scores, these patients were divided into MCI group (n = 59) 
and non-MCI group (n = 45). The general clinical data was collected and analyzed. The regions of interests (ROIs) were 
selected for investigation in cingulum. The values of DKI parameters were measured in each ROI and compared between 
the two groups, the correlations between DKI parameters and MoCA scores were examined.
Results Compared to non-MCI group, MCI patients had more severe white matter hyperintensities (WMHs) (P = 0.038) 
and lower MoCA scores (P < 0.01). MCI patients showed significantly decreased fractional anisotropy (FA), axial kurtosis 
(AK), mean kurtosis (MK), radial kurtosis (RK), and kurtosis fractional anisotropy (KFA) in the left cingulum in the cin-
gulated cortex (CgC) region (all P < 0.0125). In the left CgC region, FA, AK, MK, RK, and KFA were positively correlated 
with MoCA scores (r = 0.348, 0.409, 0.310, 0.441, 0.422, all P < 0.001). Meanwhile, FA, AK, MK, RK, and KFA were 
also positively correlated with MoCA scores (r = 0.338, 0.352, 0.289, 0.380, 0.370, all P < 0.001) in the right CgC region.
Conclusion DKI technique could be used to explore the microstructural changes of cingulum in MCI patients and DKI-
derived parameters might be feasible to evaluate MCI patients.
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Introduction

Cerebral small vessel diseases (cSVD) is a disease with a 
high prevalence related to age; it is mainly including WMHs, 
recent small subcortical infarct, prominent perivascular 
spaces (PVS), cerebral microbleeds (CMBs), lacunes, and 
atrophy [1]. The prevalence of WMHs increased from 50 
to 95% at the age of 45–80 years [2]. The prevalence of 
brain microbleeds is 24%; it gradually increases with age and 
reaches up to 38.8% in the patients over the age of 80 years 
[3]. The recent studies based on Chinese populations have 
shown that lacunar infarction accounts for 38–46% of 
ischemic stroke [4–6].

cSVD is thought to be one of the main causes of MCI. 
Growing evidence indicates that cerebrovascular pathology 
is the most important contributor to dementia. However, 
pure vascular dementia is relatively uncommon, accounting 
only 10% of all dementia cases, whereas multiple-etiology 
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dementia with a vascular component, most often in com-
bination with Alzheimer’s disease (AD), is more common 
and accounts for approximately 30 to 40% of all dementia 
cases [7, 8]. MCI is a common condition encountered by 
clinicians, the prevalence in persons 60 years and older was 
estimated between 15 and 20%, and the annual rate in which 
MCI progresses to dementia varies between 8 and 15% per 
year [9]. A meta-analysis that assessed the reversion rates 
from MCI to normal cognition in 25 studies indicated an 
overall reversion rate of approximately 24% [10]. The most 
cognitive impairment in the elderly arises from multiple 
pathologies, of which the vascular component is currently 
one of the treatable and preventable etiologies. Therefore, 
early recognition and timely intervention of MCI patients 
with cSVD may slow the progression to dementia. Several 
studies have confirmed that cSVD contributes to multiple 
domains of cognitive impairment [2, 11, 12]. This is thought 
to be the result of disruption of white matter (WM) tracts. 
The cingulum bundle is one of the most distinctive WM 
tracts, which interconnects frontal, parietal, and medial tem-
poral sites, while it is also linking subcortical nuclei to the 
cingulate gyrus [13]. A recent study by Metoki found that 
the microstructural abnormality of cingulum is related to 
mnemonic function in cSVD [14]. This result was consistent 
with a number of previous studies of correlations between 
microstructural changes in the cingulum and MCI or AD 
[15–21]. However, all the studies mentioned above were 
analyzed through diffusion tensor imaging (DTI) methods, 
which cannot accurately describe the complexity of tissue 
microstructure because of the complexity of tissue struc-
ture and cell components. DKI can partially overcome these 
limitations and DKI parameters have been found to be very 
sensitive to identify certain changes in many neurologi-
cal diseases [22, 23]. DKI can detect these microstructural 
changes even before any imaging findings through conven-
tional imaging, that the reason why it is better than DTI [24]. 
This study aimed to investigate the correlation between the 
microstructural changes of cingulum and MCI patients with 
cSVD by DKI technology, which may provide neuroimaging 
evidence for the early evaluation of MCI patients.

Material and method

Subjects

We retrospectively collected 104 patients with cSVD from 
January 2018 to December 2019. The diagnosis was con-
firmed by conventional head magnetic resonance imaging 
(MRI) scan and magnetic resonance angiography (MRA) 
of the head [25]. All the participants underwent a baseline 
evaluation, including clinical data collection, cognitive 
function, and neuropsychological assessment. Inclusion 

criteria were as follows: age of ≥ 50 years, cranial MRI 
confirmed the presence of cSVD, mainly including lacunar 
infarcts and/or WMHs [1], complete cognitive and neu-
ropsychological assessment, complete head MRI, includ-
ing T1-weighted images (T1WI), T2-weighted images 
(T2WI), fluid-attenuated inversion recovery (FLAIR), dif-
fusion-weighted imaging (DWI), susceptibility-weighted 
imaging (SWI), DKI, and MRA. Exclusion criteria were 
as follows: patients with severe neurological diseases, such 
as AD, Parkinson’s disease or brain trauma; patients with 
intracranial and external large vascular stenosis; patients 
with severe medical diseases, such as renal failure, liver 
diseases, heart diseases, or other systemic diseases; 
patients with severe mental disease or neuropsychologi-
cal disorders; patients with low image data quality.

General criteria for MCI

MCI diagnostic criteria were in compliance with the 
International Working Group on MCI [26]. Firstly, the 
participants should be judged neither normal nor demen-
tia; Secondly, functional activities of the participants are 
mainly preserved, or at least that impairment is minimal; 
Thirdly, the participants should have evidence of cognitive 
decline, measured either by self and/or informant report in 
conjunction with deficits on objective cognitive tasks, and/
or evidence of decline over time on objective neuropsy-
chological tests.

Cognitive function and neuropsychological 
assessment

All patients were evaluated by neuropsychological scales 
at admission. Mini-mental state examination (MMSE) and 
MoCA scales were applied to assess overall cognitive func-
tion and interpret the score according to their social/edu-
cational status. MoCA scores were ≤ 13 points for illiter-
ate patients, ≤ 19 points for primary school patients, ≤ 24 
points for junior high school and above patients, and the 
clinical dementia rating (CDR) ≤ 0.5 were considered to 
be MCI group, otherwise were considered to be non-MCI 
group [27]. We also assessed the severity of depressive or 
anxiety disorders by 24 stems of Hamilton Depression Scale 
(HAMD) and the Hamilton Anxiety Scale (HAMA). Patients 
with HAMD score < 7 points were considered normal; 7 to 
17 points were considered mild depression; 18 to 24 points 
were considered moderate depression; and > 24 points were 
considered major depression. Patients with HAMA > 29 
were divided into severe anxiety, 22 to 29 have markedly 
anxious, 15 to 21 have definitely anxious, 8 to 14 were likely 
to have anxiety, and < 8 was no anxiety symptoms.
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Assessment of WMHs

Assessments of WMHs were performed by two experienced 
radiologists (K. L. and Z. P.). Discrepancies were resolved 
by consensus. The k statistic of the intra-rater and inter-rater 
agreement was 0.85 or above, indicating good reliability. 
WMHs were defined as diffuse or confluent white matter 
hyperintensities in the periventricular or subcortical white 
matter observed on T2WI or FLAIR. WMHs were scored 
by using the Fazekas Scale. A detailed description of these 
assessments has been previously described. Periventricular 
white matter hyperintensities (P-WMHs) and deep white 
matter hyperintensities (D-WMHs) were evaluated sepa-
rately and summed as Fazekas scores. The degree of WMHs 
were rated by Fazekas scores (mild: 0 to 2; moderate: 3 to 4; 
severe: 5 to 6; see Fig. 1) [28].

MRI acquisition

Two radiologists viewed these images. All patients were 
scanned on a 3 Tesla scanner (MAGNETOM Skyra, Sie-
mens Healthcare, Erlangen, Germany) with a 20-channel 
phased-array head coil. Foam fillers and earplugs were 
used to limit head movement and reduce scanner noise. 
T1WI were acquired using a 3D magnetization-prepared 
rapid acquisition gradient echo (MPRAGE). The parameters 
were set as follows: repetition time (TR) = 2300 ms, echo 
time (TE) = 89 ms, inversion time (TI) = 900 ms, flip angle 
(FA) = 8°, voxel size = 0.9-mm isotropic, parallel accel-
eration factor (PAT) = 2, field-of-view (FOV) = 240 × 240 
 mm2, and acquisition time = 5 min 21 s. Diffusion imaging 

was performed by using spin-echo plane imaging (SE-EPI) 
and scanned in two blocks. The sequence parameters of the 
first block were: TR = 7700 ms, imaging matrix = 74 × 74, 
TE = 89 ms, FOV = 222 × 222 mm, slice thickness = 3 mm, 
number of slices = 50, b = 0, 1000, 2000s/mm2, 30 gradient 
directions, 1 average, PAT = 2, and the acquisition time was 
8 min 14 s. The parameters of the second block were the 
same as those of the first block, except that only b = 0 s/mm2 
was used; the average was 9; and the acquisition time was 
1 min 34 s. The total time of diffusion scan was 9 min 48 s.

DKI data processing

The diffusion images were first transformed to NII file 
format by using the dcm2nii tool, then, supplied to the 
diffusional kurtosis estimator (DKE) to generate DKI 
parameter maps. The T1WI acquired by MPRAGE were 
supplied to the SPM12 toolbox [29]. The DWI images 
(b = 0 s/mm2) were strictly aligned with T1WI space, and 
the transformed matrix was applied to the DKI parameter 
map. The DKI parameters of ROIs were automatically 
extracted by using MATLAB (2017a, The MathWorks, 
Inc., Natick, MA). The parameters of DKI include: MD, 
AD, RD, FA, MK, AK, RK, and KFA. MK, the most 
commonly used DKI parameter, means the average of 
the diffusion kurtosis along all diffusion directions; AK 
is the kurtosis along the axial direction of the diffusion 
ellipsoid; RK is the kurtosis along the radial direction 
of the diffusion ellipsoid; and FA is the most commonly 
used DTI parameter, which has been a primary imag-
ing metric used in the evaluation of a wide range of 

Fig. 1  Differing severity of 
P-WMHs and D-WMHs. Mag-
netic resonance images showing 
severity in P-WMHs: (A) mild, 
(B) moderate and (C) severe. 
Magnetic resonance images 
showing severity in D-WMHs: 
(D) mild, (E) moderate and (F) 
severe
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neuropathologic processes [30]. The cingulum (CG) in 
the cingulate gyrus and the hippocampal regions is sepa-
rated at the axial level of the splenium of the corpus cal-
losum and denoted as CgC and CgH, respectively. CgC 
and CgH were selected as ROIs according to the ICBM 
template (see Fig. 2) [31].

Statistical analysis

Statistical analyses were performed using SPSS (version 
20.0, IBM Corp., Armonk, NY). The one-sample Kolmogo-
rov–Smirnov test was used to test the normality of the data 
distribution. Data was expressed as mean ± standard devia-
tion ( X ± SD) or median (quartile). The Mann–Whitney U 
test, the independent t-test, or the χ2 test were applied appro-
priately for comparison between the two groups. The Bon-
ferroni method was used to correct the P value, and the cor-
rected P value was statistically significant when P < 0.0125 
(0. 05/4 = 0.0125). Correlation between the MoCA scale 
scores and DKI parameters was evaluated with Spearman 
correlation analysis. A value of P < 0.05 was considered 
statistically significant.

Results

Comparison of general characteristics

According to the presence or absence of MCI, the 104 patients 
were divided into MCI group (59 cases) and non-MCI group (45 
cases). In MCI group, there were 35 males, the ages ranged from 
50 to 88 years old, with a median age of 65 (60, 72) years old, the 

education period was from 0 to 18 years, and the median duration 
of education was 8 (7, 10) years. In the non-MCI group, there 
were 26 males; the ages ranged from 50 to 78 years old, with a 
median age of 64 (58, 69) years old; the duration of education was 
from 8 to 11 years, and the median duration of education was 9.5 
(8, 11) years. There were no significant differences in age, gender, 
and years of education between the two groups (P > 0.05).

Patients with MCI had more severe total WMHs 
(P = 0.038) and had evident decreased cognitive function 
scores. MMSE and MoCA scores were significantly differ-
ent between the two groups (both P < 0.001). There were no 
significant differences in the risk factors of cerebrovascular 
diseases (such as diabetes mellitus, hypertension, and his-
tory of smoking) and the blood test results (such as serum 
glucose, total cholesterol, and serum homocysteine) between 
the two groups (see Table 1).

Neuropsychological test scores

The results showed that 27 of the 59 MCI patients had 
normal MMSE scores; the MoCA scale indicated that in 
addition to delayed recall impairment, MCI patients mainly 
combined with damage to visuospatial/executive, language, 
and abstract functions (see Table 2).

Comparison of DKI parameters in cingulum 
between the MCI and non‑MCI groups

Compared to non-MCI group, the MCI patients showed 
significantly increased MD and RD (P = 0.03, 0.02 respec-
tively) and significantly decreased FA, AK, MK, RK, and 
KFA in the left CgC region (P = 0.002, 0.001, 0.001, 

Fig. 2  The CG in cingulate 
gyrus and hippocampal regions 
was separated at the axial level 
of the splenium of the corpus 
callosum and denoted as CgC 
(A and B), CgH (C and D). 
CgC: cingulum in cingulated 
cortex; CgH: cingulum in hip-
pocampus
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0.002, 0.005, respectively). No parameters were found to 
be significantly different between the two groups in the 
right CgC region, and both sides of the CgH regions. After 
correction by Šídák-Bonferroni method, FA, AK, MK, RK, 
and KFA still remained statistically different in the left 
CgC region (P = 0.002, 0.001, 0.001, 0.002, 0.005, respec-
tively; see Tables 3–4).

Correlations between DKI parameters and MoCA 
scale scores

In left CgC region, FA, AK, MK, RK, and KFA were posi-
tively correlated with MoCA scores (r = 0.348, 0.409, 0.310, 
0.441, 0.422, all P < 0.001), and in the right CgC region, 

FA, AK, MK, RK, and KFA were also positively correlated 
with MoCA scores (r = 0.338, 0.352, 0.289, 0.380, 0.370, 
all P < 0.001). However, the AD, MD, RD of the left and 
right CgC regions had no correlations with MoCA scores, 
and the parameters in the CgH regions also had no correla-
tions with MoCA scores (detailed Spearman coefficients are 
summarized in Table 5).

Discussion

Our study found that compared to non-MCI group, MCI 
group had more severe WMHs patients. Our study also 
showed that MoCA scale was more sensitive than MMSE for 

Table 1  General characteristics 
and cognition function of MCI 
and non-MCI patients

DM diabetes mellitus, UA uric acid, Cr creatinine, TC total cholesterol, TG triglyceride, LDL-C low density 
lipoprotein cholesterol, Lpa lipoprotein a, HCY homocysteine, MoCA Montreal Cognitive Assessment, MCI 
mild cognitive impairment, WMHs white matter hyperintensities, MMSE mini-mental state examination

MCI group N = 59 Non-MCI group N = 45 U/χ2 P

Age [year, M  (P25,  P75)] 65 (60,72) 64 (58,69)  − 0.765 0.329
Sex (male, N, %) 35 (59.3) 26 (57.8) 0.053 0.645
Education [year, M  (P25,  P75)] 8 (7,10) 9.5 (8,11)  − 1.708 0.088
Hyperlipidemia [N, %] 27 (56.3) 15 (44.1) 1.173 0.279
DM [N, %] 23 (39.1) 18 (40.2) 0.146 0.956
Hypertension [N, %] 40 (67.8) 28 (62.2) 0.442 0.531
History of drinking [N, %] 16 (27.1) 14 (31.1) 1.694 0.468
History of smoking [N, %] 22 (37.3) 18 (40.0) 0.142 0.894
Glucose[mmol/L, M  (P25,  P75)] 5.5 (4.8,6.6) 5.3 (4.6,7.2)  − 0.118 0.814
UA [umol/L, M  (P25,  P75)] 285 (230,392) 281 (252,355)  − 0.381 0.712
CR [umol/L, M  (P25,  P75)] 69.3 (62.9,85.1) 68.2 (57.1,76.2)  − 1.589 0.986
TC [mmol/L, M  (P25,  P75)] 4.5 (3.5,4.8) 4.4 (3.8,5.2)  − 0.634 0.563
TG [mmol/L, M  (P25,  P75)] 1.4 (1.0,1.8) 1.3 (0.8,1.9)  − 0.952 0.381
LDL-C [mmol/L, M  (P25,  P75)] 2.4 (1.8,2.7) 2.3 (2.0,2.7)  − 0.442 0.658
LPa [mmol/L, M  (P25,  P75)] 173 (72,386) 134 (53,181)  − 1.312 0.162
HCY [mmol/L, M  (P25,  P75)] 14.2 (12.1,16.4) 12.5 (10.7,15.2)  − 1.723 0.067
Glycated hemoglobin 6 (5.7,6.7) 6.3 (5.7,6.7)  − 0.968 0.329
Total-WMHs (Fazekas scale) 6.552 0.038

  Mild (0–2) 11 (18.8%) 17 (38.2%)
  Moderate (3–4) 26 (43.8%) 21 (47.1%)
  Severe (5–6) 22 (37.5%) 7 (14.7)

MoCA [scores, M  (P25,  P75)] 21 (18,22) 27 (25,28) 75.50 0.000
MMSE [scores, M  (P25,  P75)] 27 (25,28) 30 (29,30) 201.00 0.000

Table 2  Characteristics of MMSE and MoCA scores of patients in MCI group

MMSE Mini-mental state examination, MoCA Montreal Cognitive Assessment, N number

Scales MMSE MoCA

 ≥ 27  < 27 Visuospatial/
executive

Naming Attention Language Abstraction Delayed recall Orientation

N 27 32 44 25 25 52 46 59 24
% 46% 54% 75% 42% 42% 88% 78% 100% 41%
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MCI patients. In addition to delayed recall impairment, MCI 
patients mainly combined with damage to language, visu-
ospatial/executive and abstract functions. Our study mainly 
found that MCI patients showed significantly decreased FA, 
AK, MK, RK, and KFA in the left CgC region. FA, AK, 
MK, RK, and KFA were significantly positively correlated 
with MoCA scores in both sides of the CgC regions, while 
the DKI parameters in the CgH regions had no significant 
correlations with MoCA scores.

MMSE and MoCA were two widely used cognitive func-
tion assessment scales in clinical practice. The meta-analysis 
found that the sensitivity of MoCA to MCI patients was 
80.4%, and the specificity was 81.19%. However, the sensi-
tivity and specificity of MMSE to MCI patients were 66.34% 
and 72.94%, respectively [32]. Approximately 46% of the 
MCI patients in our study had normal MMSE scores, sug-
gesting that MMSE had poor sensitivity to MCI patients, 

which is consistent with the results of previous study [32]. 
Our study showed that all patients with MCI had delayed 
recall impairment, and most patients accompanied with 
multiple cognitive domain impairments. Our results were 
consistent with those found by Papma et al., which indi-
cated MCI patients with cSVD showed a cognitive profile 
of prominent memory impairment, dysexecutive function-
ing, and language problems, when compared with controls 
[33]. Similar to our results, Boyle et al. also found WMH 
volume was associated with an increased rate of decline 
in global cognition, including perceptual speed, working 
memory, episodic memory, and semantic memory [34]. 
However, different from our results, previous studies have 
also shown that patients with vascular brain lesions were 
impairments mainly in executive function and processing 
speed [35, 36]. Delayed recall of words in a verbal learn-
ing test is a sensitive measure for the diagnosis of amnestic 

Table 3  Comparison of DKI 
parameters in CgC in patients 
between MCI and non-MCI 
group

DKI diffusion kurtosis imaging, CgC cingulum in cingulated cortex, MCI mild cognitive impairment, AD 
axial diffusion, MD mean diffusion, RD radial diffusion, FA fractional anisotropy, AK axial kurtosis, MK 
mean kurtosis, RK radial kurtosis, KFA kurtosis fractional anisotropy
a The right side group test value and P value
b The left side group test value and P value

Group MCI group N = 59 Non-MCI group N = 45 t/U  valuea P  valuea t/U  valueb P  valueb

Left Right Left Right

AD 1.45 ± .22 1.50 ± 0.24 1.38 ± 0.13 1.45 ± 0.17 1.22 .225 1.88 .064

MD 1.22 ± .20 1.27 ± 0.22 1.14 ± .12 1.21 ± 0.16 1.54 .126 2.21 .03
RD 1.10 ± .19 1.15 ± 0.21 1.02 ± .11 1.08 ± 0.15 1.72 .089 2.38 .02
FA .17 ± .21 0.16 ± 0.03 .18 ± .02 0.17 ± 0.03  − 2.22 .029  − 3.17 .002
AK .52 ± .04 0.52 ± 0.06 .56 ± .04 0.56 ± .06  − 2.45 .017  − 3.45 .001
MK .60 ± .05 .59 ± .07 .64 ± .05 .62 ± .07  − 2.33 .023  − 3.50 .001
RK .68 ± .07 .66 ± .09 .73 ± .06 .70 ± .08  − 2.20 .031  − 3.24 .002
KFA .24 ± .03 .24 ± .04 .26 ± .03 .26 ± .04  − 1.98 .051  − 2.91 .005

Table 4  Comparison of DKI parameters in CgH in patients between MCI and non-MCI group

DKI diffusion kurtosis imaging, CgH cingulum in hippocampus, MCI mild cognitive impairment, AD axial diffusion, MD mean diffusion, RD 
radial diffusion, FA fractional anisotropy, AK axial kurtosis, MK mean kurtosis, RK radial kurtosis, KFA kurtosis fractional anisotropy
a The right side group test value and P value
b The left side group test value and P value

Group MCI group N = 59 Non-MCI group N = 45 t/U  valuea P  valuea t/U  valueb P  valueb

Left Right Left Right

AD 1.14 (.75, 1.60) 1.17 (.75, 1.58) .86 (.60, 1.36) .98 (.68, 1.30) 639.00 .096 638.00 .094

MD .91 (.62, 1.24) .94 (.62, 1.27) .66 (.49, 1.07) .79 (.56, 1.08) 638.00 .094 633.00 .085
RD .80 (.53, 1.07) .82 (.54, 1.09) .57 (.44, .91) .70 (.50, .94) 639.00 .096 622.00 .068
FA .15 (.09, .21) .15 (.09, .21) .12 (.08, .18) .12 (.08, .16) 657.00 .135 690.00 .236
AK .47 (.30, .67) .52 (.34, .65) .35 (.27, .56) .37 (.31, .52) 634.00 .087 668.00 .164
MK .51 (.32, .74) .55 (.35, .72) .39 (.28, .58) .42 (.33, .56) 631.00 .082 672.00 .175
RK .52 (.32, .74) .58 (.37, .75) .41 (.29, .58) .43 (.34, .58) 630.50 .081 667.00 .161
KFA .24 (.15, .37) .24 (.16, .72) .19 (.14, .31) .20 (.14, .28) 662.00 .147 691.00 .239
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mild cognitive impairment (aMCI), and aMCI is the typical 
prodromal stage of dementia due to AD [9]. Iadecola et al. 
found that AD is the leading cause of clinically diagnosed 
dementia in Western countries; cognitive impairment of vas-
cular etiology is the second most common cause and may be 
the predominant one in East Asia [35]. As most cognitive 
impairment in the elderly arises from multiple pathologies, 
the population enrolled by our study maybe mainly repre-
sented with mixed etiology cognitive impairment (mostly 
vascular + degenerative AD-type).

Our study mainly found that compared to non-MCI group, 
the MCI patients showed significantly decreased FA, AK, 
MK, RK, and KFA in the left CgC region. The cingulum 
was regarded as the core part of the limbic system and also 
an important part of the cholinergic pathway. However, both 
the limbic system and the cholinergic pathway are related to 
cognitive impairment [37, 38]. This tract carries information 
from the cingulate gyrus to the hippocampus. Our results 
were consistent with a recent study, which found that indi-
vidual FA differences in the dorsal/anterior cingulum con-
tribute independently to all executive functions by Bettcher 
et al. [39]. Kantarci et al. employed ROI approach to explore 
the contribution of anterior and posterior cingulum FA and 
MD to executive/attention, language, memory, and visuo-
spatial function in a group of 220 cognitive health older 
adults. They also found FA differences in the anterior cin-
gulum were related to differences in attention/execution and 
memory, while FA seems to contribute to all four cognitive 
domains in the post cingulum [40]. Another study used by 
DTI tractography reconstructed cingulum and found indi-
vidual FA differences in the anterior and posterior cingulum 
portion which was correlated with executive function tasks 
[17]. The reason may be that the anterior cingulum mainly 
correlated with attention and executive functions, while the 
parahippocampal cingulum will be more closely linked to 
learning and episodic memory [13]. The white matter micro-
structural changes in cingulum may be the reason for the 
decrease of FA; however, most of the studies on the micro-
structural changes of cingulum were conducted through the 
DTI method, and DKI technology was rarely applied [14, 15, 
41]. Our previous study found that compared to non-MCI 

group, MCI patients showed significantly decreased MK in 
the left hippocampus (P = 0.002) [42]. We also found that 
MCI patients showed significantly decreased FA, AK, MK, 
RK, and increased MD and RD in the cingulate gyrus region 
[43]. Our results showed that kurtosis parameters were sug-
gested to be more sensitive than diffusivity parameters for 
detecting microstructural changes in the cingulum. The rea-
son for decreased of FA, AK, MK, RK, and KFA may be due 
to the loss of neuron cell bodies, synapses, and dendrites; the 
extracellular spaces were increased, and further research is 
needed to confirm our hypothesis.

Our study also found FA, AK, MK, RK, and KFA were 
significantly positively correlated with MoCA scores in both 
sides of the CgC regions. Kantarci et al. also found FA of 
parahippocampal cingulum was correlated with the sever-
ity of AD [44]. Likewise, the relationship between disease 
severity and cingulum microstructure comes from a study 
which also found the correlations between AD patients’ 
MMSE scores and MD in the posterior cingulum [45]. Our 
previous study also found in the left hippocampal region, 
FA, RK,MK, and KFA were positively correlated with 
MoCA scores [42]. Based on above studies, although the 
specific neurobiological mechanism behind the changes 
in kurtosis parameters was still unclear, the microstruc-
ture changes of DKI parameters may be caused by cerebral 
atrophy, or may appear before cerebral atrophy. However, 
the kurtosis and the diffusion parameters complement each 
other, and DKI technology may provide a certain reference 
value for the early diagnosis of MCI patients.

In addition, our study also revealed bilateral asymme-
try in the microstructural changes of the cingulum in MCI 
patients. Compared to non-MCI group, the microstructural 
changes in the left cingulum were more obvious than in the 
right in MCI patients. Asymmetry plays an essential role in 
the healthy human brain, and changes in standard asymmetry 
patterns often mean pathological changes in the brain. Several 
studies focused on the relationship between abnormalities in 
brain symmetry and changes in the cognitive abilities. The 
big majority of these studies were on AD patients and in this 
population, the left hemisphere has been demonstrated to be 
significantly more impaired than the right, indicating a faster 

Table 5  Spearson's correlations 
with DKI parameters for MoCA 
scale scores

CgC cingulum in cingulate gyrus, CgH cingulum in hippocampal, R right, L left, AD axial diffusion, MD 
mean diffusion, RD radial diffusion, FA fractional anisotropy, AK axial kurtosis, MK mean kurtosis, RK 
radial kurtosis, KFA kurtosis fractional anisotropy
* P < 0.01

MoCA Brain regions AD MD RD FA AK KFA MK RK

CgC_R  − .085  − .131  − .152 .338* .352* .289* .380* .370*
CgC_L  − .159  − .167  − .173 .348* .409* .310* .441* .422*
CgH_R  − .100  − .113  − .117  − .036  − .092  − .063  − .088  − .079
CgH_L  − .073  − .079  − .086  − .024  − .040  − .020  − .036  − .040
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left hemisphere degeneration in AD[46–48]. However, there 
are only few studies on vascular dementia. A recent study 
about the changes in gray matter asymmetry and their rela-
tionship with cognitive impairment in patients with subcorti-
cal ischemic vascular disease (SIVD) found that in the fusi-
form and parahippocampal gyruses, the SVCI group displayed 
a dramatic rightward asymmetry [49]. WM asymmetries of 
the human brain have been well documented using diffusion 
tensor imaging (DTI) and revealed that cingulum was left-
ward asymmetry in human brains [47, 50]; our results were 
consistent with these studies. Our previous study also revealed 
that the microstructural changes in the left hippocampus were 
more obvious than in the right in MCI patients [42].

Limitations of the study

Our study also has several limitations. Firstly, we have no 
normal healthy control patients; both of our two groups 
were cSVD patients, which may have a certain impact on 
the results. Secondly, because the MRI scan of the head of 
the enrolled patients took nearly 1 h, and most AD patients 
could not tolerate the long-time MRI scan, our study 
excluded AD patients. However, it has been clearly dem-
onstrated that cSVD contributes to the development of AD 
and accelerates its progression [35]. So, this may have a 
certain impact on the results. Thirdly, the sample size of 
our study is relatively small, which may have contributed 
to the significant group difference. Furthermore, we did not 
analyze the volume of the cingulum, and the relationship 
between the volume of cingulum and the kurtosis diffusion 
parameters. Finally, due to the small number of MCI patients 
in our study, we did not further analyze the subtypes of MCI. 
Although we found that DKI technology has certain imag-
ing diagnostic value in the early diagnosis of MCI patients, 
further research is still needed.

Conclusion

DKI technology could be applied to observe the microstruc-
tural changes of the cingulum in MCI patients with cSVD. 
Compared to non-MCI group, some DKI parameters of 
cingulum were significantly different in MCI patents. Fur-
thermore, some DKI parameters showed heterogeneous pat-
terns of correlations with the MoCA scores of MCI patients, 
which might provide insights into the imaging evaluation of 
MCI patients.
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