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Abstract
Advanced age correlates with higher morbidity and mortality among patients affected with the novel coronavirus disease 
2019 (COVID-19). Because systemic inflammation and neurological symptoms are also common in severe COVID-19 
cases, there is concern that COVID-19 may lead to neurodegenerative conditions such as Alzheimer’s disease (AD). In this 
review, we summarize possible mechanisms by which infection with the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), the causative agent of COVID-19, may cause AD in elderly COVID-19 patients and describe preventive 
measures to mitigate risk. Potential mechanisms include NLRP3 inflammasome activation and IL-1β release, renin-angio-
tensin system hyperactivation, innate immune activation, oxidative stress, direct viral infection, and direct cytolytic β-cell 
damage. Anti-inflammatory therapies, including TNF-α inhibitors and nonsteroidal anti-inflammatory drugs, antioxidants 
such as the vitamin E family, nutritional intervention, physical activity, blood glucose control, and vaccination are proposed 
as preventive measures to minimize AD risk in COVID-19 patients. Since several risk factors for AD may converge during 
severe SARS-CoV-2 infection, neurologists should be alert for potential symptoms of AD and actively implement preventive 
measures in patients presenting with neuropsychiatric symptoms and in high-risk patients such as the elderly.
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Introduction

About one year after its onset, the outbreak of the novel 
coronavirus disease 2019 (COVID-19) caused by the 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has evolved into an emergent global pandemic that 
impacted dramatically on the field of Alzheimer’s disease 
(AD) research [1]. There are several parallels between AD 
and COVID-19 in regard to pathogenic mechanisms and 
risk factors. Advanced age, for instance, is both the main 
risk factor for AD and the strongest predictor of COVID-19 
mortality [2]. On the other hand, a broad range of neuro-
logical and neuropsychiatric symptoms, including loss of 
smell (anosmia) or taste (ageusia), headache, dizziness, and 
epilepsy, have been reported in patients infected with SARS-
CoV-2 [3–6]. Since cognitive decline was also described in 
elderly COVID-19 patients, it was suggested that SARS-
CoV-2 infection can lead to AD development and other 
long-term neurological sequelae [5, 7, 8]. Although direct 
evidence for COVID-19-induced AD has not so far surfaced, 
there are several possible mechanisms by which COVID-
19 may initiate AD. These include systemic inflammation, 
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renin-angiotensin system (RAS) hyperactivation, innate 
immune activation, oxidative stress, direct viral infection, 
and direct cytolytic β-cell damage. This review aims to sys-
tematically summarize hypothetical mechanisms of COVID-
19-mediated AD onset and progression in elderly patients 
and puts forward some preventive measures to minimize 
those risks.

COVID‑19 may cause cognitive dysfunction

Recent reports discussed evidence of neurodegeneration and 
cognitive impairment sequelae triggered by immunological 
issues in patients with neurological symptoms caused by 
COVID-19 [5, 9]. Indeed, an observational study in France 
reported that one-third of COVID-19 patients admitted due 
to acute respiratory distress syndrome (ARDS) had evidence 
of cognitive impairment at the time of discharge [10]. There-
fore, it is particularly meaningful to summarize the potential 
mechanisms by which SARS-CoV-2 can cause AD.

Possible mechanisms of SARS‑CoV‑2‑induced AD

Systemic inflammation

Mounting evidence suggests that neuroinflammation is 
involved in the pathophysiology of neurodegenerative dis-
eases such as AD, a condition characterized by Aβ accumu-
lation and tau phosphorylation [11–13]. The immunological 
sensor nucleotide-binding domain and leucine-rich repeat 
(NLR) pyrin domain-containing 3 (NLRP3) inflammasome 
is a key mediator of AD development [14, 15]. Studies have 
shown that the systemic inflammatory response induced by 
SARS-CoV-2 infection is mediated in part by overstimula-
tion in the NLRP3 inflammasome pathway [16–18]. Criti-
cally, NLRP3 inflammasome activation can potentially 
aggravate or initiate AD by impairing microglial amyloid-
beta (Aβ) peptide clearance [19]. Moreover, AD develop-
ment in COVID-19 patients can be further aided by pro-
inflammatory cytokines such as interleukin (IL)-1β, released 
upon NLRP3 inflammasome activation [14], or IL-17, IL-6, 
and tumor necrosis factor-α (TNF-α), produced by immune 
cells in response to the infection [20–22].

Activation of the NLRP3 inflammasome

The SARS coronavirus ORF3a protein was shown to induce 
the extrinsic apoptotic pathway in human cells [23] and 
to activate the NLRP3 inflammasome by promoting TNF 
receptor-associated factor 3 (TRAF3)-dependent ubiquit-
ination of apoptosis-associated speck-like protein contain-
ing a caspase recruitment domain (ASC) [24]. On the other 
hand, ARDS, a common complication of severe COVID-19 
resulting from dysregulated hyperinflammation, can rapidly 

stimulate the innate immune response and lead to NLRP3 
inflammasome activation [25–27]. Therefore, SARS-CoV-2 
infection can trigger activation of NLRP3 inflammasome 
through both direct (ORF3a) and indirect (ARDS) mecha-
nisms. As we all know, ARDS patients needed the lung pro-
tective ventilatory strategies to reduce pulmonary morbidity, 
however, which almost always lead to hypercapnia. A study 
from Ding et al. reported that hypercapnia can strengthen 
the activation of NLRP3 inflammasome and enhance the 
release of pro-inflammatory IL-1β in the hypoxia-activated 
microglia [18]. Elevated IL-1β secretion via activating the 
NLRP3 can induce neuroinflammation, neuronal death and 
cognitive impairments, which might involve in the pathogen-
esis of AD. Additionally, these findings can be reinforced by 
this fact that apoptosis of neurons and impairments of cog-
nitive function might be ameliorated though pharmacologi-
cally inhibiting NLRP3 inflammasome activation and IL-1β 
release. Therefore, SARS-CoV-2 infection might contribute 
to the pathogenesis of AD via activation of NLRP3 inflam-
masome and overproduction of IL-1β [18] (Fig. 1).

Role of IL‑17, IL‑6, and TNF‑α

Systemic inflammation caused by COVID-19 is character-
ized by the convergence of inflammatory mediators such 
as IL-17, IL-6, and TNF-α, among others [28]. IL-17, pro-
duced by T helper 17 cells, has been implicated in the patho-
genesis of chronic inflammatory diseases such as AD [20]. 
The main targets of IL-17 are the neutrophils, which can 
promote inflammation and central nervous system (CNS) tis-
sue damage upon stimulation by this cytokine. Through this 
mechanism, IL-17 plays an important role in AD pathology. 
TNF-α can link peripheral and central inflammation and was 
shown to modulate various neuropathological mechanisms 
in AD [29]. In turn, high levels of IL-6 in severe COVID-19 
patients may predict hippocampal atrophy [22], which is one 
of the pathophysiological characteristics of AD.

Renin‑angiotensin system (RAS) hyperactivation

There is evidence suggesting that angiotensin-converting 
enzyme 2 (ACE2) expression may be downregulated after 
binding of the receptor-binding domain of the S glycoprotein 
of SARS-CoV-2 to cellular ACE2 [28]. Downregulation of 
ACE2 may lead to increased expression of Angiotensin II 
(Ang-II) [28], the most important effector peptide of the 
RAS and a main systemic regulator of blood pressure [30]. 
In turn, SARS-CoV-2 may also stimulate RAS activity in 
the brain indirectly, by inducing the production of neurotox-
ins and proinflammatory factors acting on astrocytes [30]. 
Many tissues, such as the nigrostriatal system in the brain, 
are known to have a local RAS [30]. In the nigrostriatal 
system, RAS hyperactivation exacerbates oxidative stress 
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and the microglial inflammatory response, contributing to 
dopaminergic degeneration and favoring AD development 
[30] (Fig. 2). Indeed, the contribution of the brain RAS to 
the development and progression of AD has been demon-
strated by observational and experimental studies [31].

Innate immune activation

SARS-CoV-2 may enter the brain by binding to host cells, 
such as glial cells and neurons, that express the ACE2 recep-
tor [32]. There is ample evidence that microglia, the brain’s 

Fig. 1   COVID-19 may cause 
AD by activating the NLRP3 
inflammasome

Fig. 2   COVID-19 may cause AD via hyperactivation of the RAS
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major innate immune cells, play an indispensable role in 
AD pathogenesis by inducing neuroinflammatory responses 
that stimulate Aβ production [33]. Several key molecular 
and clinical manifestations of AD, such as Aβ accumula-
tion, neuronal loss, and memory decline, might therefore be 
exacerbated after microglia become infected with SARS-
CoV-2 [33].

Oxidative stress

Oxidative stress, triggered by a state of imbalance between 
reactive oxygen species (ROS) and the antioxidant defense 
system, has been reported to be involved in pathogenesis of 
SARS-CoV-2 infection [34]. This finding was further con-
firmed by a study by Panfoli et al. [35]. Interestingly, a study 
by Nasi et al. reported that production of ROS can induce 
lipid peroxidation [36]. Another research found that lipid 
peroxidation can cause oxidative dysfunction of key energy-
related complexes in mitochondria and trigger neurodegen-
eration, which may eventually contribute to the development 
of AD [37]. This finding that SARS-CoV-2 may initiate AD 
by oxidative stress mechanism is consistent with the fact that 
oxidative stress, as we all know, is one of the pathogenesis 
of AD [22].

Direct viral infection

Like other human coronaviruses, SARS-CoV-2 has neuroin-
vasive, neurotropic, and neurovirulent properties [38]. Com-
mon neurological manifestations of SARS-CoV-2 infection 
include anosmia and ageusia, and clinical studies reported 
that olfactory and gustatory dysfunction affected a majority 
of patients with mild or severe COVID-19 [39, 40]. It is well 
known that some viral infections (e.g. the influenza virus) 
can cause loss of olfactory function [41]. Evidence suggests 
that SARS-CoV-2 can enter the CNS through the olfactory 
nerve in the nasal cavity by combination of its spike protein 
with ACE2 receptors in various cells of the olfactory epi-
thelium, leading to loss of olfaction and eventually to viral 
dissemination to deeper structures in the brain [38]. It is 
reported that neurons and glial cells within brain structures 
such as the striatum, the substantia nigra, and brain stem 
express the ACE-2 receptor [28]. Upon entering the CNS, 
SARS-CoV-2 may directly activate innate immunity medi-
ated by glial cells, potentially leading to Aβ accumulation 
and AD progression or onset [33]. Besides, direct infection 
of neurons within cognitive structures will cause neuroin-
flammation and neuronal necrosis, further stimulating the 
development of AD [18]. Importantly, reportedly elevated 
levels of ACE2 in AD patients may make them more sus-
ceptible to severe COVID-19 infection [42].

Direct cytolytic β‑cell damage

There is an obvious relationship between AD and diabe-
tes mellitus (DM) [43, 44]. It was estimated that the risk 
of developing AD is increased by 1.5- to twofold in long-
term diabetic patients [43]. Glucose is the primary energy 
supply to the brain. By depriving the brain from insulin, 
DM decreases glucose metabolism, impairs cerebral blood 
supply, and disrupts normal cellular functions, promoting 
neurodegeneration and memory and cognitive deficits [44]. 
DM may also increase the aggregation of Aβ peptide, induce 
hyperphosphorylation of tau protein [44], and trigger del-
eterious changes in vascular structure and function [45]. 
Indeed, since hallmark molecular/clinical manifestations of 
AD can be triggered by insulin resistance in brain cells, AD 
has been referred to as “diabetes of the brain” or “type 3 
diabetes” [46].

DM is considered a main risk factor for developing severe 
COVID-19 symptoms [47]. In turn, COVID-19 can exac-
erbate dysglycemia in people with DM, and evidence has 
emerged of diabetes-related symptoms, such as acute hyper-
glycemia and acute diabetic ketoacidosis, precipitated by 
SARS-CoV-2 in people with no history of diabetes [48]. It 
was thus proposed that SARS-CoV-2 can induce new-onset 
type 1 diabetes mellitus (T1DM) via direct cytolytic damage 
of pancreatic β-cells, which express the ACE2 receptor [48].

Potential preventive measures

As discussed in the above sections, the global spread of 
SARS-CoV-2 has had profound implications in the field of 
AD [1, 49–51]. Of particular concern is the evidence that 
the COVID-19-related death rate is higher for AD patients 
than for elderly COVID-19 cases without AD [52]. Because 
AD is incurable and there are few effective drug treatments 
to slow disease progression [53], it is urgently necessary to 
adopt preventive measures to avoid SARS-CoV-2 contagion 
in AD patients and to mitigate, especially in the elderly, the 
risk of developing AD following infection. The sections 
below summarize key preventive measures in such regard.

Anti‑inflammatory therapy

Both severe COVID-19 and AD are characterized by sys-
temic inflammation triggered by elevated levels of TNF-α 
and other pro-inflammatory factors. Therefore, anti-inflam-
matory therapies represent first-line interventions to mitigate 
risk of brain damage and to prevent AD initiation in COVID-
19 patients. Several studies on mice, rats, and monkeys 
showed that treatment with TNF-α inhibitors can signifi-
cantly reduce the burden of neurofibrillary tangles, amyloid 
precursor protein, and Aβ plaques [13]. Therefore, TNF-α 
inhibitors represent valuable prophylactic agents to prevent 
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AD through immune modulation of the TNF inflammatory 
pathway. In addition, another study reported that long-term 
use of nonsteroidal anti-inflammatory drugs can prevent the 
occurrence of AD by blocking neuronal ectopic cell cycle 
events caused by microglial activation induced by Aβ oli-
gomers [54].

Antioxidant therapy

Because oxidative stress is involved in the pathogenesis 
of both the COVID-19 and AD, antioxidant therapies can 
be useful to prevent the occurrence of AD in COVID-19 
patients. Vitamin E and derivatives such as tocotrienol are 
powerful antioxidants that were shown to act in brain cells 
to mitigate oxidative stress and mitochondrial dysfunction, 
two inter-dependent phenomena closely associated with AD 
pathogenesis [55, 56]. In this regard, a recent study indicated 
that garcinoic acid, a natural vitamin E metabolite, can pre-
vent Aβ oligomerization and deposition in the mouse brain 
[57].

Nutritional interventions

Mounting evidence suggests that the incidence and severity 
of AD can be significantly attenuated by modulation of the 
gut microbiota and cerebral Aβ production through dietary 
interventions [58]. The bioactive components of commonly 
consumed foods and dietary supplements include prebiotics, 
probiotics, and synbiotics. Among the prebiotics, wheat bran 
was shown to promote the growth of commensal bacteria, 
positively modulate the gut–brain axis, decrease neuroin-
flammation, and delay the occurrence and progression of 
AD [58, 59]. The role of dietary patterns and nutritional 
interventions in AD progression and prevention was recently 
reviewed by Rodriguez-Casado et al. [60].

Physical activity

Several risk factors related to AD, such as DM, hyperten-
sion, and heart disease [61] are modifiable through physi-
cal activity and moderate intensity exercise such as aerobic 
activities and balance and flexibility training [62, 63]. Main 
benefits of physical activity on AD prevention include anti-
inflammatory and antioxidative effects, as well as increased 
cerebral blood flow [62].

Blood glucose control

Some pathophysiological factors shared by DM and AD, 
such as chronic inflammation, oxidative stress, and mito-
chondrial dysfunction can be directly linked to abnormal 
glucose homeostasis [64]. As discussed above, DM is a 
risk factor for AD [64]. It is thus possible that COVID-19 

may aggravate AD symptoms or stimulate its development 
by inducing dysglycemia and even T1DM [48]. Therefore, 
blood glucose control strategies represent a wise preventive 
approach to minimize AD risk and pathology in individu-
als affected by COVID-19. Main consequences of unstable 
blood glucose levels include microvascular complications, 
atherosclerosis, and severe hypoglycemic events [65]. As 
reviewed by Fiore et al. both hyperglycemia and hypoglyce-
mia can induce cognitive decline and AD [64]. The potential 
therapeutic benefit of successful stabilization of blood glu-
cose levels on SARS-CoV-2-related AD progression or risk 
is highlighted by a study from Sardu et al. who reported that 
insulin infusion can effectively achieve glycemic targets and 
improve poor prognosis in patients with COVID-19 [66].

Anti‑Aβ vaccine that has the potentially promising

Since available treatments for AD show at best modest thera-
peutic effects, researchers have undertaken intensive efforts 
to develop vaccines able to halt AD progression by remov-
ing Aβ from the brain [67]. However, following promising 
results in mice, a clinical trial examining the effectiveness 
of vaccination with full length Aβ42 was stopped after 6% 
of patients with mild to moderate AD developed menin-
goencephalitis [68]. Follow-up studies showed however 
both partial and extensive plaque clearance in post-mortem 
AD brains from some vaccinated patients, although this did 
not translate into improved cognitive and disability scores 
[69]. This experience paved the way to further development 
of vaccine formulations targeting more specific disease 
epitopes and offering better control of the immune response 
[68]. In this regard, a recent study in the APP/PS1 mouse 
model of AD showed that injection of dendritic cells pre-
senting a modified Aβ peptide triggered a specific antibody 
response and improved memory performance to a similar 
degree than that exhibited by non-transgenic, untreated 
mice. Importantly, the vaccine did not trigger an inflam-
matory response [70]. Despite past failures and the signifi-
cant challenge involved in developing and testing vaccines 
against endogenous neurodegenerative disease proteins, 
these sustained efforts to harness the immune system to treat 
AD will hopefully bring long-awaited success.

Conclusions

The ongoing COVID-19 pandemic is having a major impact 
in both AD patients and AD research. CNS symptoms such 
as anosmia, ageusia, headache, dizziness, epilepsy, and 
cognitive decline, as well as systemic inflammation, RAS 
activation, innate immune activation, oxidative stress, direct 
viral infection, and direct cytolytic β-cell damage may all 
contribute to aggravate or initiate AD in people affected by 
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COVID-19. Accordingly, preventive measures in the form of 
anti-inflammatory and antioxidant therapies appear particu-
larly necessary to mitigate AD onset and progression caused 
by SARS-CoV-2. Further measures, including nutritional 
interventions, increased physical activity, and glycemic 
control can further help prevent the occurrence of AD in 
people at risk for developing severe COVID-19 symptoms. 
Although there are currently few studies addressing the rela-
tionship between COVID-19 and AD, the numerous poten-
tial links between the two diseases reinforce the need for 
comprehensive assessment of neurological symptoms and 
implementation of prophylactic and preventive measures to 
minimize AD risk following infection with SARS-CoV-2.
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