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Abstract
Mutations in POLR3A are characterized by high phenotypic heterogeneity, with manifestations ranging from severe child-
hood-onset hypomyelinating leukodystrophic syndromes to milder and later-onset gait disorders with central hypomyelina-
tion, with or without additional non-neurological signs. Recently, a milder phenotype consisting of late-onset spastic ataxia 
without hypomyelinating leukodystrophy has been suggested to be specific to the intronic c.1909 + 22G > A mutation in 
POLR3A. Here, we present 10 patients from 8 unrelated families with POLR3A-related late-onset spastic ataxia, all harboring 
the c.1909 + 22G > A variant. Most of them showed an ataxic-spastic picture, two a “pure” cerebellar phenotype, and one a 
“pure” spastic presentation. The non-neurological findings typically associated with POLR3A mutations were absent in all 
the patients. The main findings on brain MRI were bilateral hyperintensity along the superior cerebellar peduncles on FLAIR 
sequences, observed in most of the patients, and cerebellar and/or spinal cord atrophy, found in half of the patients. Only one 
patient exhibited central hypomyelination. The POLR3A mutations present in this cohort were the c.1909 + 22G > A splice 
site variant found in compound heterozygosity with six additional variants (three missense, two nonsense, one splice) and, 
in one patient, with a novel large deletion involving exons 14–18. Interestingly, this patient had the most “complex” presen-
tation among those observed in our cohort; it included some neurological and non-neurological features, such as seizures, 
neurosensory deafness, and lipomas, that have not previously been reported in association with late-onset POLR3A-related 
disorders, and therefore further expand the phenotype.
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Introduction

POLR3-related disorders are a group of clinically overlap-
ping disease entities caused by recessive mutations in the 
POLR3A, POLR3B, POLR1C, and POLR3K genes, which 
encode subunits of human RNA polymerase III (Pol III), 
an enzyme involved in the synthesis and translation of 
several forms of RNA. The best recognized phenotypes 
consist of severe early-onset hypomyelinating leukodystro-
phy manifesting with variable combinations of cerebellar 
ataxia, tremor, spasticity, dystonia, neurodevelopmental 
regression, oligodontia, and hypogonadotropic hypog-
onadism [1]. POLR3A encodes a catalytic subunit of Pol 
III. Mutations in this gene are associated with the great-
est phenotypic heterogeneity. Other than severe child-
hood-onset hypomyelinating leukodystrophy, variants in 
POLR3A have been associated with milder, late-onset gait 
disorders with central hypomyelination, and with parkin-
sonism dystonia with basal ganglia involvement, with or 
without non-neurological signs [2–4]. POLR3A mutations 
have also been reported in rare cases of autosomal reces-
sive neonatal progeroid syndrome [5] and in a single case 
of severe infantile generalized dystonia and hypotonia, 
leukocytosis, and metabolic acidosis with a lactate peak 
on brain magnetic resonance spectroscopy [6]. Recently, 
a milder phenotype consisting of late-onset spastic ataxia 
has been suggested to be specific to an intronic mutation 
(c.1909 + 22G > A) in the POLR3A gene [7–13]. Interest-
ingly, brain and spine MRI in most patients showed supe-
rior cerebellar peduncle (SCP) hyperintensity and spinal 
cord atrophy without white matter lesions.

Here, we present a series of 10 patients from 8 unrelated 
families with POLR3A-related late-onset spastic ataxia, all 
presenting with the c.1909 + 22G > A variant in compound 
heterozygosity, and discuss genotype–phenotype correla-
tions in this cohort.

Methods

Patients

In a multicenter study aimed at uncovering the genetic 
etiology of undefined patients with inherited ataxia and 
associated disorders [14], we collected 10 consecutive 
patients from 8 unrelated Italian pedigrees recruited at 
different third-level neurological centers. The individu-
als had a previous diagnosis of either cerebellar ataxia or 
hereditary spastic paraplegia (HSP) of unknown origin. 
They underwent clinical evaluations at the neurological 
services in our institutions as part of the routine diagnostic 

pathway for cases with suspected inherited forms of spas-
tic ataxia. The patients were assessed using a standardized 
evaluation form. The following categorical scale of disa-
bility was applied: 0 = no functional handicap; 1 = no func-
tional handicap but neurological signs on examination; 
2 = mild, able to run, unlimited walking; 3 = moderate, 
unable to run, limited walking without aid(s); 4 = severe, 
walking with 1 stick; 5 = walking with 2 sticks; 6 = unable 
to walk, requiring a wheelchair; and 7 = confined to bed 
[15]. A potential disease progression index was calculated 
as the ratio between the level of disability (from 0 to 7) 
and the disease duration in years. MRI studies were per-
formed for diagnostic purposes at multiple centers using 
1.5-T MRI scanners and applying standard clinical proto-
cols. All scans were evaluated by the same experienced 
neuroradiologist.

All the patients and their parents signed an informed 
consent document and the study was approved by the local 
ethics committees.

Genetic analyses

In all the patients, all other potential causes of ataxia and 
spasticity (i.e., toxic, inflammatory, and metabolic) were 
ruled out prior to embarking on genetic investigations. 
Genetic analysis for different spinocerebellar ataxias (SCA1, 
2, 3, 6, 7, 17), DRPLA, Friedreich ataxia, and FMR1/
FXTAS were negative prior to this study. Clinical whole-
exome sequencing (in two patients, cases 4 and 10) and 
next-generation sequencing (NGS) with a targeted multi-
gene panel (in the remaining eight patients) were performed 
using methodologies and a sensitive bioinformatics pipeline 
that we have already described elsewhere [16]. Segregation 
studies were performed in nine living parents with writ-
ten informed consent. Missense variants were classified as 
pathogenic or likely pathogenic according to their predicted 
deleteriousness, as established using multiple bioinformatics 
tools, and prioritized on the basis of a Combined Annotation 
Dependent Depletion (CADD) score > 25 [17] and the estab-
lished recommendations of the American College of Medi-
cal Genetics and Genomics (ACMG) [18]. Sanger sequenc-
ing in each index case and in the parents (when available) 
confirmed all variants. To corroborate the presence of an 
intragenic gene rearrangement in patient 4, we developed a 
quantitative real-time (qRT)-PCR method for use in DNA 
from the index case and available family members.

Results

The following features and findings were observed in 10 
patients, from eight unrelated kindred, with bi-allelic patho-
genic variants in POLR3A.
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Clinical features

The 10 index cases (five men and five women) in this cohort 
had heterogeneous clinical, imaging, and genetic character-
istics (summarized in Table 1).

Their median age at examination was 39,5 + / − 12,3 years, 
and their age at the last follow-up ranged from 38 to 
64 years. Age at onset of the first symptoms ranged from 13 
to 49 years (median age 14,5 + / − 2,1). Gait imbalance was 
the presenting symptom in most of the cases (9/10). Most 
were able to walk independently at the time of examination 
(grade 2 or 3 on the scale of disability), while two required 
a walker (grade 5 disability). Patients 1 and 4 presented 
an almost “pure” cerebellar phenotype, whereas patient 2 
had a pure HSP phenotype; the remaining cases presented 
mixed ataxic/spastic features. Dysarthria was present in 7/10 
patients; six of the 10 patients showed intentional tremor and 
in two subjects we noticed head tremor. POLR3A-related 
non-neurological findings typically described by others [10] 
(i.e., acrocyanosis and dental abnormalities) were absent in 
all these Italian patients, with the exception of patient 4 who 
presented subclinical hypogonadotropic hypogonadism with 
low levels of FSH and LH. No patient showed clinically 
overt signs of gonadal dysfunction or cognitive abnormali-
ties. Nerve conduction studies and electromyography were 
unremarkable in all the patients who underwent neurophysi-
ological examinations, whereas motor and somatosensory 
evoked potentials, when examined, were pathological. 
One patient (patient 4) presented drug-responsive general-
ized epilepsy, high-frequency neurosensorial deafness, and 
lipomas.

Brain and spinal cord MRI features

The main findings on brain MRI were bilateral SCP hyperin-
tensity on FLAIR sequences (observed in 7/10 patients), cer-
ebellar atrophy (5/10), and spinal cord atrophy (3/6). Other 
MRI findings included hypoplasia of the corpus callosum 
(3/10) and corticospinal tract hyperintensity (3/10). A single 
case (patient 6) exhibited central hypomyelination. Figure 1 
shows key MRI features in two of the patients.

Genetic findings

In our cohort, the so-called common c.1909 + 22G > A splice 
site variant in POLR3A occurred in all the patients, invari-
ably in compound heterozygosity with one of six additional 
variants (three missense, two nonsense, one splice site), or, 
in the other case, with a novel large deletion leading to a 
frameshift and premature protein truncation) (Table 1). The 
different single-nucleotide variants found in POL3RA in our 
study cohort were classified as likely pathogenic according 
to the ACMG guidelines.

At first examination, patient 4 appeared to carry the 
homozygous “common” mutation. However, on the basis 
of absence of precise segregation in the family, and also 
through closer analysis of NGS traces and read depth, we 
were able to detect a possible intragenic rearrangement 
encompassing exons 14–18 of POLR3A, which was con-
firmed by a qRT-PCR analysis (see Supplementary Figure) 
in both the patient and his father, but not in his mother, who 
did carry the “common” variant.

Discussion and conclusion

Bi-allelic pathological variants in POLR3A were initially 
associated with a number of clinically overlapping neurode-
generative disorders characterized by the common finding 
of hypomyelinating leukodystrophy. Over the past 2 years, 
there has been mounting evidence that POLR3A-related 
disorders are a growing group of clinically and genetically 
heterogeneous diseases with a wide range of timing at onset 
(from neonatal period to adulthood) and possible involve-
ment of several neurological and non-neurological systems. 
The intronic c.1909 + 22G > A variant has been reported 
in compound heterozygosity in patients with a slowly pro-
gressive neurodegenerative disease characterized by late 
onset and a uniform clinical picture of spastic ataxia (rarely 
pure ataxia), SCP hyperintensity, and spinal cord atrophy 
on MRI. Frequent concurrent features (present in at least 
20% of cases) were dental problems, kinetic tremor, muscle 
atrophy, dysarthria, pes cavus, ocular problems, thinning of 
the corpus callosum (TCC), dystonia, and polyneuropathy. 
Hypogonadism was rare (5%) and leukodystrophy absent 
[13]. Others [7] have demonstrated that the “common” 
c.1909 + 22G > A variant is a mutation hotspot.

In this work, we confirmed the strong genotype–pheno-
type correlation between the c.1909 + 22G4A variant com-
bined with a second, “variable” POLR3A mutation and juve-
nile-adult-onset spastic ataxia with SCP hyperintensity and 
spinal cord atrophy. We have here detailed 10 new cases that 
support this association and provided further details on the 
related clinical, genetic, and neuroimaging features. While 
the “common” c.1909 + 22G4A variant affects skipping by 
introducing a cryptic donor splice site and likely impair-
ing mRNA abundance [10], the other variants are straight-
forwardly pathogenic leading to early protein truncation or 
resulting in a frameshift with a premature stop codon.

Our cohort confirmed that intentional tremor and dysar-
thria are frequent associated features, whereas dental anom-
alies, dystonia, and polyneuropathy are only occasionally 
detected.

One of our cases (patient 2) presented with pure pyrami-
dal involvement. To date, only one subject with a similar 
pure HSP phenotype has been reported, and this subject had 
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a different genotype in the “variable” allele [19]. The MRI 
features of our cohort coincided with those reported in previ-
ous series: the key feature was SCP hyperintensity, shown by 
70% of our patients, followed by cerebellar atrophy (50%), 
spinal cord atrophy (50%), and TCC (30%); corticospinal 
tract hyperintensity was an inconstant feature. Thus, our 
data further reinforce the message that apparently sporadic 
HSP patients should be investigated for SCP hyperinten-
sity, before ordering POLR3A studies. Previous authors have 
demonstrated that the c.1909 + 22G > A variant is a rela-
tively common cause of disease in cerebellar ataxia/HSP 
patients [7]. Our study seems to confirm this in the Italian 
ataxia/HSP population, too, even though POLR3A accounts 
for less than 2% of the solved cases in our cohort of patients 
with inherited ataxia and HSP undergoing NGS (FMS and 
AT personal communication).

Our data expand the genetic heterogeneity of this rela-
tively frequent form of spastic ataxia. Our series includes the 
first patient found to carry a large deletion involving exons 
14–18; this was suspected on the basis of lower coverage in 
NGS studies and detected by gene-specific qRT-PCR analy-
ses. To date, intragenic deletions have been described only 

in POLR3B, which encodes another catalytic subunit of Pol 
III, in two patients with severe infantile hypomyelinating 
leukodystrophy [20], and, more recently, in POLR3A in a 
patient with early-adulthood onset cerebellar ataxia and cog-
nitive impairment and hypomyelinating leukodystrophy [3]. 
Since both traditional and massive, NGS-derived sequencing 
techniques can fail to detect intragenic rearrangements; our 
finding underlines the usefulness of quantitative techniques 
in selected cases. Interestingly, our patient with the novel 
deletion involving exons 14–18 had the most “complex” phe-
notype observed within this relatively small cohort, showing 
several neurological and non-neurological features (drug-
responsive generalized epilepsy, neurosensory deafness, and 
lipomas) that, not previously reported in POLR3A-related 
disorders, further expand the phenotype.

In addition to this five-exon deletion, the other loss-of-
function mutations identified in this cohort add to the allelic 
heterogeneity of POLR3A-related disorders, but did not 
seem to influence the clinical presentation.

In conclusion, our study strengthens the genotype–pheno-
type characterization of the c.1909 + 22G > A compound het-
erozygous variant and, identifying an intragenic multi-exon 

Fig. 1  Brain and spinal cord MRI findings in two patients. Patient 2 
A–D: Hyperintense signal of superior cerebellar peduncles (arrow-
heads) on coronal 3D T2-FLAIR (A) and T2-weighted (B) sequences; 
hyperintensity of corticospinal tract (white arrows) on coronal (C) 
and axial (D) 3D T2-FLAIR sequences. Patient 9 E–I: thin corpus 
callosum (E) on sagittal T1-weighted sequence; cerebellar atrophy 

(black arrows) on coronal 3D T1-weighted sequence (F). Cervical 
(G) and thoracic (H) spinal cord atrophy on sagittal T1-weighted 
and axial MERGE T2-weighted sequences (the latter measured at the 
level of cervical enlargement—arrow: transverse diameter of 4.3 mm) 
(I)
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deletion associated with new clinical features, expands the 
molecular mechanisms and clinical spectrum associated with 
late-onset POLR3A-related disorders.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10072- 021- 05462-1.
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